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Abstract

We propose to extend the ontology of logical
AI to include approximate objects, approx-
imate predicates and approximate theories.
Besides the ontology we treat the relations
among different approximate theories of the
same phenomena.

Approximate predicates can’t have complete
if-and-only-if definitions and usually don’t
even have definite extensions. Some approx-
imate concepts can be refined by learning
more and some by defining more and some
by both, but it isn’t possible in general to
make them well-defined. Approximate con-
cepts are essential for representing common
sense knowledge and doing common sense
reasoning. Assertions involving approximate
concepts can be represented in mathematical
logic.

A sentence involving an approximate con-
cept may have a definite truth value even
if the concept is ill-defined. It is definite
that Mount Everest was climbed in 1953 even
though exactly what rock and ice is included
in that mountain is ill-defined. Likewise, it
harms a mosquito to be swatted, although
we haven’t a sharp notion of what it means
to harm a mosquito. Whatif(x,p), which de-
notes what x would be like if p were true, is
an important kind of approximate object.

The article treats successively approximate
objects, approximate theories, and for-
malisms for describing how one object or the-
ory approximates another.

Our discussion will be adequate if

it has as much clearness as the

subject matter admits of, for pre-

cision is not to be sought for alike

in all discussions, any more than

in all the products of the crafts.

—Aristotle, Nicomachean Ethics

1 Introduction

We propose to extend the ontology of logical AI to
include approximate objects, approximate predicates
and approximate theories. Besides the ontology we
discuss relations among different approximations to
the same or similar phenomena.

The article will be as precise as we can make it. We
apply Aristotle’s remark to the approximate theories
themselves. The article treats three topics.

Approximate objects These are not fully defined,
e.g. the wishes of the United States. They may
be approximations to more fully defined objects or
they may be intrinsically approximate (partial).
We give lots of examples, because we don’t have
precise definitions.

Approximate theories These often involve neces-
sary conditions and sufficient conditions but lack
conditions that are both necessary and sufficient.

Relations among approximate entities It is of-
ten necessary to relate approximate entities, e.g.
objects or theories, to less approximate entities,
e.g. to relate a theory in which one block is just
on another to a theory in which a block may be
in various positions on another.

In principle, AI theories, e.g. the original proposals
for situation calculus, have allowed for rich entities
which could not be fully defined. However, almost



all theories used in existing AI research has not taken
advantage of this generality. Logical AI theories have
resembled formal scientific theories in treating well-
defined objects in well-defined domains. Human-level
AI will require reasoning about approximate entities.

Approximate predicates can’t have complete if-and-

only-if definitions and usually don’t even have def-
inite extensions. Moreover, approximate entities of-
ten don’t have equality conditions. Some approximate
concepts can be refined by learning more and some by
defining more and some by both, but it isn’t possible
in general to make them well-defined. Approximate
concepts are essential for representing common sense
knowledge and doing common sense reasoning. In this
article, assertions involving approximate concepts are
represented in mathematical logic.

A sentence involving an approximate concept may
have a definite truth value even if the concept is ill-
defined. It is definite that Mount Everest was climbed
in 1953 even though exactly what rock and ice is in-
cluded in that mountain is ill-defined. We discuss the
extent to which we can build solid intellectual struc-
tures on such swampy conceptual foundations.

Quantitative approximation is one kind considered—
but not the most interesting or the kind that re-
quires logical innovation. Fuzzy logic involves a semi-
quantitative approximation, although there are exten-
sions as mentioned in [Zad99].

For AI purposes, the key problem is relating different
approximate theories of the same domain. For this
we use mathematical logic fortified with contexts as
objects. Further innovations in logic may be required
to treat approximate concepts as flexibly in logic as
people do in thought and language.

Looked at in sufficient detail, all concepts are approx-
imate, but some are precise enough for a given pur-
pose. McCarthy’s weight measured by a scales is pre-
cise enough for medical advice, and can be regarded
as exact in a theory of medical advice. On the other
hand, McCarthy’s purposes are approximate enough
so that almost any discussion of them is likely to bump
against their imprecision and ambiguity.

Many concepts used in common sense reasoning are
imprecise. Here are some questions and issues that
arise.

1. What rocks and ice constitute Mount Everest?

2. When can it be said that one block is on another
block, so that
On(Block1,Block2) may be asserted?

Let there be an axiomatic theory in situation cal-
culus in which it can be shown that a sequence of
actions will have a certain result. Now suppose
that a physical robot is to observe that one block
is or is not on another and determine the actions
to achieve a goal using situation calculus. It is im-
portant that the meanings of On(Block1,Block2)
used in solving the problem theoretically and that
used by the robot correspond well enough so that
carrying out a plan physically has the desired ef-
fect. How well must they correspond?

3. What are the logical relations between different
logical specifications of an approximate object?

4. What are the relations between different approx-
imate logical theories of a domain?

We claim

1. The common sense informatic situation often in-
volves concepts which cannot be made precise.
This is a question of the information available and
not about computation power. It is not a specif-
ically human limitation and will apply to com-
puters of any possible power. This is not a claim
about physics; it may be that a discoverable set
of physical laws will account for all phenomena.
It is rather a question of the information actually
available about particular situations by people or
robots with limited opportunities to observe and
compute.

2. Much pedantry in science and in philosophy re-
sults from demanding if-and-only-if definitions
when this is inappropriate.

3. None of the above objects and predicates admits
a completely precise if-and-only-if definition.

4. Formalized scientific theories, e.g. celestial me-
chanics and the blocks world often have precise
concepts. They are necessary tools for under-
standing and computation. However, they are
imbedded in common sense knowledge about how
to apply them in world of imprecise concepts.
Moreover, the concepts are precise only within the
theory. Most AI theories have also had this char-
acter.

5. Almost all concepts are approximate in the full
common sense informatic situation. However,
many are precise, i.e. have if-and-only-if defini-
tions in particular contexts. Thus in the context
of a particular grocery, an object is a lemon if and
only if it is a small yellow fruit.



6. The human reasoning processes involving com-
mon sense knowledge correspond only partly to
the mathematical and logical reasoning processes
that humans have used so successfully within sci-
entific and mathematical theories.

7. Nevertheless, mathematical logic is an ap-

propriate tool for representing this knowl-

edge and carrying out this reasoning in in-

telligent machines. The use of logic will cer-
tainly require adaptations, and the logic itself may

require modifications.

8. Key tools for common sense reasoning by ma-
chines will be approximate concepts and approxi-

mate theories. These are in addition to formalized

non-monotonic reasoning and formal theories of

context.

9. The most important notion of approximation for
common sense reasoning is not the familiar nu-
merical approximation but a new kind of logical
approximation appropriate for common sense rea-
soning. These mostly differ from the approxima-
tions of fuzzy logic.

In the subsequent sections of this article, tools will be
proposed for reasoning with approximate concepts.

The article treats successively approximate objects, ap-

proximate theories, and formalisms for describing how
one object or theory approximates another.

2 What kinds of approximate

concepts are there?

Concepts can be approximate in at least two ways.

On one hand, a concept may approximate another
more definite but incompletely known concept. This
situation is prevalent with natural kinds. Lemons are
a definite species, but no-one knows all about them.
In particular, a child may be barely able to tell lemons
from other yellow fruit but nevertheless has a concept
of lemon that may be adequate to find the lemons in
the supermarket. The child can improve its concept
of lemon by learning more. The fact that there isn’t a
continuum of fruits ranging from lemons to grapefruit
is an important part of the fact that lemons form a
natural kind. This fact also makes it possible for bi-
ologists to learn specific facts about lemons, e.g. to
sequence lemon DNA.

On the other hand, the legal concept of a person’s
taxable income is refined by defining more. Taxable

income is partly a natural kind. A person’s concept of

his own taxable income is an approximation to the less
approximate legal concept. He could learn more or it
could be defined more as the legal concept is defined
more. However, learning more about the legal concept
eventually reaches a point where there is no further re-
finement on which people thinking independently will
agree. There isn’t a true notion of taxable income for
economists to discover.

My concept of my taxable income and even my tax
accountant’s concept of my taxable income has both
aspects. More can be learned about what deductions
are allowed, and also the concept gets refined by the
courts.

Here are some examples.

2.1 What if?

Whatif(p, x) is what x would be if p were true. Ex-
amples: (1) John McCarthy if he had gone to Harvard
rather than to Caltech as an undergraduate. (2) My
car if it hadn’t been backed into today. (3) The cake I
would have baked if I had known you were coming. (4)
What the world would be like today if Pickett’s charge
had been successful. (5) What would have happened
if another car had come over the hill when you passed
that Mercedes just now.

Whatif(p, x) is an intrinsically approximate concept.
How approximate depends on p and x. “What if an-
other car had come over the hill when you passed”
is much less approximate than“What if wishes were
horses”. [CM99] treats useful counterfactual condi-
tional sentences and gives many examples.

Whatif can serve as the foundation for other con-
cepts, including counterfactual conditional sentences
and statements of causality. [CM99] treats useful
counterfactual conditional sentences and gives many
examples.

Fiction provides an interesting class of approximate
objects and theories, especially historical fiction, in
which the author tries to fit his characters and their
lives into a background of historical fact. Common
sense knowledge tells us that Sherlock Holmes would
have had a mother, but Conan Doyle does not provide
us with a name. A definite address is given, but there
was never a house there corresponding to Doyle’s de-
scription. The author need only define his world to
a point that lets the reader answer the questions the
author wants the reader to ask.



2.2 Mount Everest.

It is clear that we cannot hope to formulate a useful
definition of Mount Everest that would tell about every
rock whether it is part of the mountain. However, we
might suppose that there is a truth of the matter for
every rock even though we cannot know it. Our axioms
would then be weaker than the truth. The question
would be settled for some rocks and not for others.

Not even this is appropriate. The concept of the
territory of Mount Everest may be further refined in
the future—and refined in incompatible ways by differ-
ent people. If we suppose that there is a truth about
what rocks are part of the mountain, then the people
refining it in different ways would get to argue fruit-
lessly about which definition is getting closer to the
truth. On the other hand, there is a truth of the mat-
ter, which may someday be discovered, about whether
Mallory and Irvine reached the summit in 1924.

Consider two theories of mountain climbing, T1 and
T2. Besides these theories, there is T3 based on
plate tectonics that tells us that Everest is still get-
ting higher.

In the simpler theory T1, there is a list of names of
mountains paired with lists of climbing expeditions or
names of climbers. As a logical theory it would have
sentences like.

Climbed(Everest, 1953, {Hillary,Tenzing}). (1)

The larger theory T2 contains routes up the mountain
of the various parties. Routes are approximate entities.

T1 is an approximation to T2, but T1, may be re-
garded as not approximate at all. In particular, it can
be complete, e.g. it decides any sentence in its limited
language.

T1 and T2 may be related using formalized contexts
as in [McC93a] or [MB97], but we won’t do that here.

One approximate theory may be less approximate than
another. We want to discuss relations between sen-
tences in a theory and sentences in a less approximate
theory. It makes the ideas neater if we imagine that
there are true and complete theories of the world even
if they’re not finitely expressible and none of the lan-
guage of any of them is known. This permits regarding
approximating the world as a case of one theory ap-
proximating another. If this is too platonic for your
taste, you can regard approximating the world as a
different notion than that of one theory approximat-
ing another.

There are other approximate theories involving Mount
Everest.

One such theory that lists names of mountains and
the continents containing them. Thus we have
In(Annapurna,Asia). A less approximate theory
gives countries, e.g. In(Annapurna,Nepal). A
still less approximate theory gives locations, e.g.
Location(Annapurna) = (28◦32′, 83◦53′).

2.3 The wants and actions of the United

States

In 1990 the United States wanted Iraq to withdraw
from Kuwait. Evidence for this proposition was pro-
vided by the statements of U.S. officials and sending
troops to Saudi Arabia. It was correctly inferred from
this proposition that the U.S. would do something to
implement its desires. This inference was made with
only an approximate notion of “the US wants”.

Nevertheless, the facts can be expressed by formulas
like the following.

Says(President(USA), x) → Says(USA, x), (2)

Says(President(USA),
Wants(USA,Leaves(Iraq,Kuwait))),

(3)

Says(USA,Wants(USA,Leaves(Iraq,Kuwait))), (4)

Says(entity,Wants(entity, x)) → wants(entity, x),
(5)

wants(USA,Leaves(Iraq,Kuwait)), (6)

wants(x, y) → (∃z)(Does(x, z) ∧Achieves(z, y)). (7)

From these we infer

(∃z)(Does(USA, z)∧Achieves(z,Leaves(Iraq,Kuwait)).
(8)

We have not introduced all the necessary qualifica-
tions, and we have not used a proper theory of actions.
There also should be some more theory of Wants, Says,
and Does.



Someone with a sufficiently detailed knowledge of
events in the Middle East and of the American de-
cision making community might not need “The US
wants . . . ”, because he could work directly with the
various decision makers and the motivations and ef-
fects of their actions. The rest of us must make do
with more approximate concepts. This will apply even
more to future students of 20th century history.

A fuzzy logic theory would take “The US wants”
for granted and concentrate on “The US moderately
wants” and “The US strongly wants”.

2.4 The Blocks World as an Approximate

Theory

The usual AI situation calculus blocks world has a
propositional fluent On(x, y) asserting that block x is
on block y. We can assert Holds(On(x, y), s) about
some situation s and have the action Move(x, y) that
moves block x on top of block y.

Suppose this formalism is being used by a robot acting
in the real world. The concepts denoted by On(x, y),
etc. are then approximate concepts, and the theory
is an approximate theory. Our goal is to relate this
approximate theory to the real world. Similar consid-
erations would apply if we were relating it to a more
comprehensive but still approximate theory.

We use formalized contexts as in [McC93b] and
[MB97]. and let Cblocks be a blocks world context
with a language allowing On(x, y), etc.

Holds(On(x, y), s) is approximate in at least the fol-
lowing respects.

• In the original intended interpretation of the sit-
uation calculus, a situation s is a snapshot of the
world at a given time. According to the theory of
relativity, distant simultaneity is ill-defined. This
is the least of our worries.

• Whether block x is on block y may be ambigu-
ous in the real world. Block x may be partly on
and partly off. We can handle the relation by
sentences

Cond1(s) → Ist(Cblocks,Holds(On(x, y), s))
Cond2(s) → Ist(Cblocks,Holds(Not On(x, y), s)).

(9)

Cond1(s) and Cond2(s) are respectively condi-
tions in the outer context on the situation s that x

shall be on y and x shall not be on y in the context
Cblocks. These need not be the negations of each

other, so it can happen that it isn’t justified to say
either that x is on y or that it isn’t. Cond1(s) and
Cond2(s) need not be mutually exclusive. In that
case the theory associated with Cblocks would be
inconsistent. However, unless there are strong lift-

ing rules the inconsistency within Cblocks cannot
infect the rest of the reasoning.

Notice that the theory in the context Cblocks approx-
imates a theory in which blocks can be in different
orientations on each other or in the air or on the table
in quite different sense than numerical approximation.

2.5 Relating two blocks world theories

Our previous blocks world theory T1 uses
Holds(On1(b1, b2), s). Our less approximate new
theory T2 uses Holds(On2(b1, b2, d), σ) where d is a
displacement of b1 from being centered on b2. Since
T2 has another parameter for On, many situations σ

can correspond to a single situation s in T1.

We may have the relations

Holds(On2(b1, b2, d)), σ)
→ Holds(On1(b1, b2)), St1(σ))
Holds(On1(b1, b2)),St1(σ))
→ (∃d)Holds(On2(b1, b2, d)), σ).

(10)

Here St1(σ) is the T1-situation corresponding to σ.
For simplicity we are assuming that every T2-situation
has a corresponding T1-situation.

T2 is a tiny step from T1 in the direction of the real
world.

Suppose a robot uses T1 as a theory of the blocks
world and takes actions accordingly, but the real world
corresponds to T2. This is quite a simplification, but
maybe it has enough of the right formal properties.

The simplest case is where there are two blocks, and
the initial situation is represented by

{Holds(On1(B1,Table), S0),Holds(On1(B2,Table), S0)}
(11)

in T1, but the real world facts are

{Holds(On2(B1,Table, 3.0), 2.1 cm),
Holds(On(B2,Table, 4.5), 3.2 cm)}

(12)

where
S0 = St1(σ0). (13)

The goal is Holds(On(B1, B2), which might also
be written as (λs)Holds(On(B1, B2), s). Anyway



the robot infers that the appropriate action is
Move(B1, B2) and infers that

Holds(On1(B1, B2),Result(Move1(B1, B2), S0)),
(14)

where we are omitting various qualifications.

In T2, the form of an action is Move2(b1, b2, d), and
the effect of a move action is given by

Holds(On(b1, b2, d),Result2(Move2(b1, b2, d), σ)).
(15)

The translation of a move action in T1 to a move action
in T2 may be given by

Action12(Move1(b1, b2), St1(σ))
= Move2(b1, b2,Displacement(b1, b2, σ)).

(16)

The key point is that the move in T2 corresponding to
a move in T1 depends on the blocks being moved and
also on the situation.

The success of the one step plan worked out in T1 in
the less approximate world T2 is expressed by

St1(Result2(Action12(Move1(B1, B2), St1(σ0))))
= Result1(Move(B1, B2), St1(σ0)).

(17)

The success of multi-step plans would be expressed by
longer correspondence formulas.

These are commutativity relations.

2.6 Temporary entities; wealth and welfare

In natural language, the present tense of the verb “to
be” is used for asserting an intrinsic property of an
entity and for asserting a property that is expected to
hold long enough to provide a constant background for
other events under discussion.

The wealth or welfare of a human or animal is such a
temporary property.

The welfare of a mosquito over a short time is defin-
able. It harms the mosquito to be squashed and helps
it if it finds exposed skin from which to extract blood.
Over a year the welfare of an individual mosquito is
not definable. If it is to be defined, the concepts, e.g.
descendants, will be quite different.

This suggest using contexts. We have

c(Today) : Harms(Swat(M1073543907),M1073543907)
(18)

as a proposition about this particular mosquito.

A person’s wealth at a given time can be measured
as an amount of money. His wealth increases as he is
paid and decreases as he spends money. However, over
a period of 10,000 years, the wealth or welfare of this
individual is undefined.

Nevertheless, wealth and welfare are useful concepts.

Fiction provides an interesting class of approximate
objects and theories, especially historical fiction, in
which the author tries to fit his characters and their
lives into a background of historical fact. Common
sense knowledge tells us that Sherlock Holmes would
have had a mother, but Conan Doyle does not provide
us with a name. A definite address is given, but there
was never a house there corresponding to Doyle’s de-
scription. The author need only define his world to
a point that lets the reader answer the questions the
author wants the reader to ask.

2.7 States of motion

These present a general reason for using approximate
concepts.

Suppose a robot is walking from here to there in dis-
crete steps.

Holds(Walking(R2D2,Here,There), s)

describes a situation that can persist. Sentences giving
the robot’s position at a given time must be frequently
updated. An important human reason for forming an
approximate concept is to get a fluent that will per-
sist. This reason will also apply to robots but perhaps
to a lesser extent, since computers can perform more
frequent updating than can people.

2.8 Folk physics and folk psychology as

approximate theories

For example, the concept of “X believes P” is approxi-
mate both in the criterion for belief and in what is the
object of a belief. These notions will also be approxi-
mate for robots.

Much of the criticism of folk psychology may come
from demanding that it be more precise than is rea-
sonable. Aristotle’s aphorism applies here.



3 Propositional approximate theories

Many topics take an especially simple form when one
uses propositions instead of predicates—and accepts
the reduced expressivity.

Here is one approach to defining approximate propo-
sitional theories.

Let reality, e.g. the situation in a room, be given by
the values of the propositional variables r1, . . . , rn. As-
sume that reality is not directly observable. n may be
very large, e.g. like Avogadro’s number.

Let the values of the propositions o1, . . . , ok be observ-
able. They are functions of reality given by

oi = Oi(r1, . . . , rn),

where k is a modest number corresponding to how
many bits we can actually observe.

We suppose that we want to know the values of
q1, . . . , ql, which are related to reality by

qi = Qi(r1, . . . , rn),

where l is also a modest number.

An approximate theory AT is given by functions
Q′

i
(o1, . . . , ok), i.e. AT undertakes to give what we

want to know in terms of the observations.

If we are lucky in how reality turns out, the Q′ func-
tions correspond to the Q functions, i.e.

Lucky(r1, . . . , rn) → qi = Q′

i
(o1, . . . , ok)

for i = 1, . . . , l, i.e.

Lucky(r1, . . . , rn) → [Qi(r1, . . . , rn)
≡ Q′

i
(O1(r1, . . . , rn), . . .Ok(r1, . . . , rn))].

If we are very fortunate we may be able to know when
we are lucky, and we have

KnowLucky(o1, . . . , ok) → Lucky(r1, . . . , rn).

At the moment, we have no useful propositional ap-
proximate theories in mind, and the reader should
remember Einstein’s dictum “Everything should be
made as simple as possible—but not simpler.”

3.1 Approximate Theories of Digital Circuits

Consider first combinational circuits built from logic
elements, i.e. without bridges and other sneak paths.

The logical elements are treated as boolean functions,
defined by their truth tables. The theory defines the
behavior of any circuit in terms of composition of the
functions associated with the logical elements. The
outputs of a circuit are given by the theory for any
combination of boolean inputs. Fan-in and fan-out
restrictions are outside the logical theory, as are timing
considerations.

Now consider sequential circuits including flipflops.
Now what happens is defined only for some combi-
nations of inputs. For example, the behavior of a D
flipflop is not defined when its 0 and 1 inputs are given
the same value, whether that value be 0 or 1. The be-
havior is only defined when the inputs are opposite.

The manufacturer does not say what will happen when
these and other restrictions are not fulfilled, does not
warrant that two of his flipflops will behave the same
or that a flipflop will retain whatever behavior it has
in these forbidden cases.

This makes the concept of D flipflop itself approxi-
mate, perhaps not in the same sense as some other
approximate theories.

Thus the theory of sequential circuits is an approxi-
mate theory, and it is not an approximation to a defi-
nite less approximate theory of purely digital circuits.
This is in spite of the fact that there is (or can be)
an electronic theory of these digital circuits which de-
scribes their behavior. In that theory one D flipflop is
different from another and changes its behavior as it
ages.

4 When an approximate concept

becomes precise

Suppose an approximate concept represented by a
predicate p(x) has a sufficient condition suff(x) and
a necessary condition nec(x). Thus we have

(∀x)(suff(x) → p(x)), and
(∀x)(p(x) → nec(x)).

(19)

In general the sufficient and the necessary conditions
will not coincide, i.e. we will not have

(∀x)(nec(x) ≡ suff(x)). (20)

However, they made coincide with some restriction on
x, i.e. we may have

(∀x)(special(x) → (nec(x) ≡ suff(x)). (21)



Another way an approximate concept may become def-
inite is by a mapping from the space in which it is first
formalized into more restricted space. We’ll combine
specialization with mapping in

(∀x)(special(x) → (nec(f(x)) ≡ suff(f(x)), (22)

where the function f maps a subset of the original
domain into a specialized domain in which the concept
p(x) becomes definite.

5 Conclusions, remarks, and
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