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• Logical AI (artificial intelligence) is based on

programs that represent facts about the world

in languages of mathematical logic and decide

what actions will achieve goals by logical rea-

soning. A lot has been accomplished with logic

as is.

• This was Leibniz’s goal, and I think we’ll

eventually achieve it. When he wrote Let us

calculate, maybe he imagined that the AI prob-

lem would be solved and not just that of a

logical language for expressing common sense

facts. We can have a language adequate for

expressing common sense facts and reasoning

before we have the ideas needed for human-

level AI.
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• It’s a disgrace that logicians have forgotten

Leibniz’s goal, but there’s an excuse. Non-

monotonic reasoning is needed for common

sense, but it can yield conclusions that aren’t

true in all models of the premises—just the

preferred models.

• Almost 50 years work has gone into logical

AI and its rival, AI based on imitating neuro-

physiology. Both have achieved some success,

but neither is close to human-level intelligence.

• The common sense informatic situation, in

contrast to bounded informatic situations, is

key to human-level AI.

• First order languages will do, especially if a

heavy duty axiomatic set theory is included,

e.g. A × B, AB, list operations, and recur-

sive definition are directly included. To make

reasoning as concise as human informal set-

theoretic reasoning, many theorems of set the-

ory need to be taken as axioms.



THREE KINDS OF EXTENSION: more may

be needed.

• Non-monotonic reasoning. Gödel’s complete-

ness theorem tells us that logical deduction

cannot be extended if we demand truth in all

interpretations of the premises. Non-monotonic

reasoning is relative to a variety of notions of

preferred interpretation.

• Approximate objects. Many entities with

which commonsense reasoning deals do not

admit if-and-only-if definitions. Attempts to

give them if-and-only-if definitions lead to con-

fusion.

• Extensive reification. Contrary to some philo-

sophical opinion, common sense requires lots

of reification, e.g. of actions, attitudes, be-

liefs, concepts, contexts, intentions, hopes, and

even whole theories. Modal logic is insufficient.
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THE COMMON SENSE INFORMATIC

SITUATION

• By the informatic situation of an animal, per-

son or computer program, I mean the kinds of

information and reasoning methods available

to it.

• The common sense informatic situation is

that of a human with ordinary abilities to ob-

serve, ordinary innate knowledge, and ordinary

ability to reason, especially about the conse-

quences of events that might occur including

the consequences of actions it might take.

• Specialized information, like science and about

human institutions such as law, can be learned

and embedded in a person’s common sense in-

formation.
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• Scientific theories and almost all AI common

sense theories are based on bounded informa-

tion situations in which the entities and the

information about them are limited by their

human designers.

• When such a scientific theory or an AI com-

mon sense theory of the kinds that have been

developed proves inadequate, its designers ex-

amine it from the outside and make a better

theory. For a human’s common sense as a

whole there is no outside. AI common sense

also has to be extendable from within.

• This problem is unsolved in general, and one

purpose of this lecture is to propose some ideas

for extending common sense knowledge from

within. The key point is that in the common

sense informatic situation, any set of facts is

subject to elaboration.



THE COMMON SENSE INFORMATIC

SITUATION (2)

The common sense informatic situation has at

least the following features.

• In contrast to bounded informatic situations,

it is open to new information. Thus a person in

a supermarket for steaks for dinner may phone

an airline to find whether a guest will arrive in

time for dinner and will need a steak.

• Common sense knowledge and reasoning of-

ten involves ill-defined entities. Thus the con-

cepts of my obligations or my beliefs, though

important, are ill-defined. Leibniz might have

needed to express logically, “If Marlborough

wins at Blenheim, Louis XIV won’t be able

to make his grandson king of Spain.” The

concepts used and their relations to previously

known entities can take arbitrary forms.

4



• Much common sense knowledge has been

learned by evolution, e.g. the semi-permanence

of three dimensional objects and is available to

young babies [?].

• Our knowledge of the effects of actions and

other events that permits planning has an in-

complete form.

• We do much of our common sense thinking in

bounded contexts in which ill-defined concepts

become more precise. A story about a physics

exam problem provides a nice example.



COMMON SENSE INFORMATIC

SITUATION—PHYSICS EXAMPLE

A nice example of what happens when a stu-

dent doesn’t do the nonmonotonic reasoning

that puts a problem in its intended bounded

context was discussed in the American Jour-

nal of Physics. Problem: find the height of a

building using a barometer.

• Intended answer: Multiply the difference in

pressures by the ratio of densities of mercury

and air.

• In the bounded context intended by the ex-

aminer, the above is the only correct answer,

but in the common sense informatic situation,

there are others. The article worried about

this but involved no explicit notion of non-

monotonic reasoning or of context. Comput-

ers solving the problem will need explicit non-

monotonic reasoning to identify the intended

context.
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UNINTENDED COMMON SENSE

ANSWERS

(1) Drop the barometer from the top of the

building and measure the time before it hits

the ground.

(2) Measure the height and length of the shadow

of the barometer and the shadow of the build-

ing.

(3) Rappel down the building with the barom-

eter as a yardstick.

(4) Lower the barometer on a string till it

reaches the ground and measure the string.

(5) Sit on the barometer and multiply the sto-

ries by ten feet.

(6) Tell the janitor, “I’ll give you this fine barom-

eter if you’ll tell me the height of the building.”
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(7) Sell the barometer and buy a GPS.

• The limited theory intended by the exam-

iners requires elaboration to admit the new

solutions, and these elaborations are not just

adding sentences.

• We consider two common sense theories that

have been developed (the first now and the

second if there’s time). Imbedding them prop-

erly in the common sense informatic situation

will require some extensions to logic—at least

nonmonotonic reasoning.



A WELL-KNOWN COMMON SENSE
THEORY

Here’s the main axiom of the blocks world, a
favorite domain for logical AI research.

Clear(x, s) ∧ Clear(y, s) → On(x, y, Result(M
with the definition

Clear(x, s) ≡ (∀z)¬On(z, x) ∨ x = Table.

(1)
Only one block can be on another. A version
that reifies relevant fluents and in which the
variable l ranges over locations is

Holds(Clear(Top(x)), s) ∧ Holds(Clear(l), s)
→ Holds(At(x, l), Result(Move(x, l)), s).

(2)
This reified version permits quantification over
the first argument of Holds. More axioms than
there is time to present are needed in order to
permit inferring in a particular initial situation
that a certain plan will achieve a goal, e.g. to
infer

On(Block1, Block2,

Result(Move(Block2, Top(Block2, Result(Move(Block3
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where we have On(Block3, Block1, S0) and there-

fore Block3 has to be moved before Block1 can

be moved.

More elaborate versions of the blocks world

have been studied, and there are applications

(Reiter and Levesque) to the control of robots.

However, each version is designed by a human

and can be extended only by a human.

We’ll discuss the well known example of the

stuffy room if there’s time.



NEED FOR NON-MONOTONICITY

• Human-level common sense theories and the

programs that use them must elaborate them-

selves. For this extensions to logic are needed,

but Gödel showed that first order logic is com-

plete. New conclusions given by extended in-

ference rules would be false in some interpretations—

but not in preferred interpretations.

• We humans do nonmonotonic reasoning in

many circumstances. 1 The only blocks on the

table are those mentioned. 2 A bird may be as-

sumed to fly. 3 The meeting may be assumed

to be on Wednesday. 4 The only things wrong

with the boat are those that may be inferred

from the facts you know. 5 In planning one’s

day, one doesn’t even think about getting hit

by a meteorite.

• Deduction is monotonic in the following sense.

Let A be a set of sentences, p a sentence such
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that A ⊢ p, and B a set of sentences such that

A ⊂ B, then we will also have B ⊢ p. Increasing

the set of premises can never reduce the set of

deductive conclusions.

If we nonmonotonically conclude that B1 and

B2 are the only blocks on the table and now

want to mention another block B3, we must

do the nonmonotonic reasoning all over again.

Thus nonmonotonic reasoning is applied to the

whole set of facts—not to a subset.

• The word but in English blocks certain non-

monotonic reasoning. “The meeting is on Wednes-

day but not at the usual time.”

• Nonmonotonic reasoning is not subsumed

under probabilistic reasoning—neither in the-

ory nor in practice. Often it’s the reverse.



• Many formalizations of nonmonotonic rea-

soning have been studied, including circum-

scription, default logic, negation as failure in

logic programming. We’ll discuss circumscrip-

tion, which involves minimization in logical AI

and so is analogous to minimization in other

sciences.

• There are also general theories of nonmono-

tonic reasoning [?]. Unfortunately, the ones I

have seen are not oriented towards common

sense.



CIRCUMSCRIPTION

Circumscription is a form of minimization in

logic, perhaps a logical analog of calculus of

variations. We minimize a predicate P with

one or more arguments. We are allowed to vary

Z, a vector of predicates or domain elements

with respect to an ordering P < P ′. We use a

notation proposed by Vladimir Lifschitz where

CIRC[A;P ;Z] is defined by

A(P, Z) ∧ ¬(∃p z)[A(p, z) ∧ p < P ]

Any unmentioned symbols are thus assumed

constant for the purposes of circumscription.

Often p ≤ p′ ≡ (∀x)(p(x) → p′(x)).

I don’t know whether circumscription admits

anything analogous to Lagrange multipliers.
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AN EXAMPLE OF CIRCUMSCRIPTION

Let A be the following axiom concerning ob-

jects that fly.

¬Ab1(x) → ¬Flies(x)
Bird(x) → Ab1(x)
Bird(x) ∧ ¬Ab2(x) → Flies(x)
Penguin(x) → Bird(x)
Penguin(x) → Ab2(x)
Penguin(x) ∧ ¬Ab3(x) → ¬Flies(x).

Circ[A; (Ab1, Ab2, Ab3); (Flies)] lets us infer that

the flying objects are the birds that aren’t pen-

guins.

Now add to A the assertions Bat(x) → Ab1(x)

and Bat(x) ∧ ¬Ab2(x) → Flies(x) and do the

circumscription again. The flying objects are

now bats and the birds that are not penguins.
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REIFYING PROPOSITIONS AND

INDIVIDUAL CONCEPTS

...it seems that hardly anybody proposes to

use different variables for propositions and for

truth-values, or different variables for individ-

uals and individual concepts.—(Carnap 1956,

p. 113) [Church 1951, perhaps?]

• It is customary to assert the necessity, truth

or knowledge of propositions in some form of

modal logic, but modal logic is weaker than

ordinary language which can treat concepts as

objects.

• We propose abstract spaces of concepts to

provide flexibility. Thus we can have pp AAnd qq =

qq AAnd pp when convenient. Expressions de-

noting concepts have doubled initial letters.
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• Also human-level common sense needs func-

tions from things to concepts of them. Here’s

an example.

Denot(NNumber(PPlanets)) = Number(Planets),
¬Knew(Kepler, CComposite(NNumber(PPlanets))),
Knew(Kepler, CComposite(CConcept1(Denot(NNumber

• Here Denot(xx) is the thing xx denotes.

• We can also define Exists(xx) ≡ (∃x)Denotes(xx, x)

so that ¬Exists(PPegasus) asserts that Pega-

sus doesn’t exist.

• NNumber(PPlanets) is the concept of the

number of planets, and CConcept1(number) is

a standard concept of that number.



APPROXIMATE OR PARTLY DEFINED

CONCEPTS

• Humans language expresses and humans of-

ten think in terms of concepts that are only

partly defined. Examples: the snow and rocks

that constitute Mount Everest, the wants of

the United States. Wants(U.S., DDemocratic(IIraq)).

Mathematical concepts are an exception.

• Syntactically, approximate concepts are han-

dled by weak axioms, e.g.

. . . → Wants(U.S., pp)
and

. . . → ¬Wants(U.S., pp).

• In general, there is no fact of the matter,

even undiscovered, exactly characterizing Wants(U.S., pp

• The semantic situation seems similar. In

some interpretations Wants(U.S., pp) is true,
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and in others it is false, but these needn’t

match up, although they shouldn’t be contra-

dictory. Defining the semantics of approximate

concepts seems puzzling.

• A concept that is approximate in general, can

be precise in a limited context. The barometer

problem shows that.



CONTEXTS AS OBJECTS—1

• Everything a person says, writes, or thinks

is in a context, and the meanings of what one

says is relative to the context. Attempts to

define terms free of context are usually incom-

pletely successful outside mathematics.

• People switch from one context to another

rather automatically. I propose contexts as

objects—members of suitable abstract spaces.

• The are two main formulas. Ist(c, pp) asserts

that the proposition pp is true in the context c.

V alue(c, tterm) gives the value of the individual

concept tterm in the context c. Using V alue re-

quires that there be a domain associated with

c.
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CONTEXTS AS OBJECTS—2

• Ist can be compounded. We can have Ist(c1, IIst(c2,

and Ist(c1, V V alue(c2, term) Equals a).

• An alternative notation to Ist(c, p) is

c : pp,

and likewise

c1 : cc2 : pp.
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EXAMPLES

• Here are some semi-formal examples.

Ist(Conan Doyle, DDetective(HHolmes))
Ist(U.S.medicalhistory, DDoctor(HHolmes))
Ist(U.S.literature, PPoet(HHolmes))
V alue(U.S.literature, HHolmes) = V alue(U.S.medicalhistor

Ist(U.S.legalhistory, JJudge(HHolmes))
V alue(U.S.literature, HHolmes) = Father(V alue(U.S.leg

• Here’s an example of lifting a theory in which

the predicates On and Above have two argu-

ments to a situation calculus theory in which

they have three arguments. [An application

of abstract group theory would provide bigger

examples.]
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On AND Above WITH TWO AND THREE

ARGUMENTS

To describe the two argument Above-theory,

we write

Above-theory :

(∀xy)(On(x, y) → Above(x, y)),

(∀xyz)(Above(x, y) ∧ Above(y, z) → Above(x, z)),

etc.

which stands for

C0 : Ist(Above-theory, (∀xy)(On(x, y) → Above(x, y)))

etc.
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LIFTING Above-theory

We want to apply Above-theory in a context C

in which On and Above have a third argument

denoting a situation. We have

C : (∀x y s)(On(x, y, s) ≡ Ist(C1(s), On(x, y)))

thus associating a context C1(s) with each sit-

uation s. We also need

C0 : Ist(C, (∀p s)(Ist(Above-theory, p) → Ist(

which abbreviates to

C : (∀p s)(Ist(Above-theory, p) → Ist(C1(s), p))

giving finally

C: On(x, y, s) → Above(x, y, s)
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APPROXIMATE ENTITIES CAN BE

PRECISE IN LIMITED CONTEXTS

• Owning, buying and selling, e.g. of a house

or a business, are such complicated concepts

in general that a complete axiomatic theory is

out of reach. However, reasonably complete

theories are possible and used in limited con-

texts, e.g. while shopping in a supermarket.

InMarket(s) ∧ Ist(C(Market), Owns(x, Result(Buys(x)
→ Owns(x, Result(Buys(x), s))

• The AI drosophila theories sampled above

are also valid in limited contexts.

• The lifting relations between the sentences

true in limited contexts and those valid in more

general contexts need to be explored.
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CONSCIOUSNESS AND SELF AWARENESS

• Much self awareness is simple enough not to

require any extensions to logic, e.g. sensations

of hunger. or of the positions of ones limbs.

• However, knowledge and belief, especially

assertions of non-knowledge involve formulas

analogous to reflexion principles. asserting truth.

• In discussing what self awareness a robot re-

quires, I found it helpful to reify hopes, fears,

promises, beliefs, what one thinks a concept

denotes, intentions, prohibitions, likes and dis-

likes, its own abilities and those of others, and

many more. The doctrine, common among

philosophers and mathematicians, advocating

minimizing the set of concepts, seems to me

to be mistaken.

• When a human or robot needs to refer to the

whole of its knowledge, the situation becomes
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more complicated, and there are possibilities

for paradox, e.g. with

• ¬Know(I, SSitting(PPresidentBush, NNow)).

• ¬Know(Putin, SSitting(PPresidentBush, NNow)).

• Kraus, Perlis, and Horty treated formulas like

the above expressing non-knowledge.

• One way of avoiding paradox may be to allow

reference to ones knowledge up to the present

time. This is analogous to the restricted com-

prehension principle.



COMMON SENSE IN MATHEMATICS

• In mathematical writing, the text between

the formulas is essential to understanding the

formulas. Introductions often contain no for-

mulas. Understanding this text is mathemati-

cal common sense. Its formal expression should

be more straightforward than the common sense

of (say) history.

•—from Gödel, Collected Works, p. 147, we

have
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Similarly, proofs, from a formal point of view,

are nothing but finite sequences of formulas

(with certain specifiable properties). Of course,

for metamathematical considerations, it does

not matter what objects are chosen for prim-

itive signs, and we shall assign natural num-

bers to this use. Consequently, a formula will

be a finite sequence of natural numbers, and

a proof array a finite sequence of finite se-

quences of natural numbers. The metamath-

ematical notions (propositions) thus become

notions (propositions) about natural numbers

of sequences of them; therefore they can (at

least in part) be expressed by the symbols of

PM itself. In particular, it can be shown that

the notions “formula”, “proof”, and “provable

formula” can be defined in the system PM;

that is, we can find a formula F(v) with one

free variable v (of the type of a number se-

quence) such that F(v), interpreted according

to the meaning of the terms of PM, says: v is a



provable formula. We now construct an unde-

cidable proposition of the system PM, that is,

a proposition A for which neither A nor not-A

is provable, in the following manner.

• False mathematical counterfactual: If 225
+1

were prime, twice it would be prime.

• “the notion that the continuum hypothesis

is analogous to the parallel axiom”, “Gödel’s

incompleteness theorems demolished Hilbert’s

program.”, “Russell’s first reaction to the para-

dox, which he discovered on reading Frege’s

work, was the ‘vicious circle principle’ which

declared . . . meaningless”,



AI RESEARCH ON COMMON SENSE IN

LOGIC

• Much has been done to express common

sense knowledge and reasoning in logic. How-

ever, present axiomatic AI theories require hu-

man modification whenever they are to be elab-

orated. Human-level AI systems must modify

their own theories.

• There are biennial conferences on knowledge

representation and also triennial workshops on

common sense. CYC is a mostly proprietary

database of more than a million common sense

facts. expressed a syntactically sugared math-

ematical logic. Its reasoning facilities have

proved difficult to use.

• Automatic theorem proving and interactive

theorem proving have had considerable success

in bounded mathematical and AI domains.
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DIFFICULTIES AND CONCLUSIONS

• We will eventually have human-level logical

AI.

• Sooner if we have help from logicians in de-

vising ways of representing common sense the-

ories and extending them.

• The above are almost surely not the only

kinds of extensions to logic needed for dealing

with common sense knowledge and reasoning.

• We discussed the following kinds of exten-

sions. (1) Formal non-monotonic reasoning,

(2) Reification, especially of concepts and contexts—

and even theories, (3) Approximate entities

without if-and-only-if definitions.

• There is a particular difficulty in extending a

theory defined in a limited context to a more
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general context if the theory requires nonmono-

tonic reasoning, e.g. if the set of blocks is to

be minimized.

• Human-level logical AI will also require lan-

guage for expressing facts about methods ef-

fective in reasoning about particular subjects.

• Articles discussing these questions are avail-

able in http://www-formal.stanford.edu/jmc/.



STUFFY ROOM AXIOMS

Effect axioms:

Blocked1(Result(Block1, s))
Blocked2(Result(Block2, s))
¬Blocked1(Result(Unblock1, s))
¬Blocked2(Result(Unblock2, s))
Stuffy(Result(Getstuffy, s))
¬Stuffy(Result(Ungetstuffy, s))

Occurrence axioms:

Blocked1(s) ∧ Blocked2(s) ∧ ¬Stuffy(s)
→ Occurs(Getstuffy, s)
(¬Blocked1(s) ∨ ¬Blocked2(s)) ∧ Stuffy(s)
→ Occurs(Ungetstuffy, s)
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AN ELABORATION GIVING OSCILLATING

STUFFINESS

Suppose Bob is unhappy when the room is

stuffy, but Alice is unhappy when the room is

cold. The stuffy room axioms tolerate adding

the following axioms which makes Vent1 oscil-

late between open and closed.

Stuffy(s) → Occurs(Does(Bob, Unblock1), s)
Unblocked1(s) → Occurs(Getcold(Alice), s),

Cold(Alice, (Result(Getcold, s)),
Cold(Alice, s) → Occurs(Does(Alice, Block1), s).

Alas, these axioms hold in a bounded domain.

Common sense requires logic in which they in-

habit an extendable context.
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