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Abstract

Logical AI involves representing knowledge of an agent’s world,
its goals and the current situation by sentences in logic. The agent
decides what to do by inferring that a certain action or course of
action is appropriate to achieve the goals. We characterize briefly a
large number of concepts that have arisen in research in logical AI.

Reaching human-level AI requires programs that deal with the
common sense informatic situation. This in turn requires extensions
from the way logic has been used in formalizing branches of mathe-
matics and physical science. It also seems to require extensions to the
logics themselves, both in the formalism for expressing knowledge and
the reasoning used to reach conclusions.

A large number of concepts need to be studied to achieve logical
AI of human level. This article presents candidates. The references,
though numerous, to articles concerning these concepts are still insuf-
ficient, and I’ll be grateful for more, especially for papers available on
the web.

This article is available in several forms via http://www-formal.stanford.edu/jmc/concepts-
ai.html.
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1 Introduction

Logical AI involves representing knowledge of an agent’s world, its goals
and the current situation by sentences in logic. The agent decides what to
do by inferring that a certain action or course of action was appropriate to
achieve the goals. The inference may be monotonic, but the nature of the
world and what can be known about it often requires that the reasoning be
nonmonotonic.

Logical AI has both epistemological problems and heuristic problems.
The former concern the knowledge needed by an intelligent agent and how
it is represented. The latter concerns how the knowledge is to be used to
decide questions, to solve problems and to achieve goals. These are discussed
in [MH69]. Neither the epistemological problems nor the heuristic problems
of logical AI have been solved. The epistemological problems are more fun-
damental, because the form of their solution determines what the heuristic
problems will eventually be like.1

The web form of this article has links to other articles of mine. I’d like
to supplement the normal references by direct links to such articles as are
available.

2 A LOT OF CONCEPTS

The uses of logic in AI and other parts of computer science that have been
undertaken so far do not involve such an extensive collection of concepts.
However, it seems to me that reaching human level AI will involve all of the
following—and probably more.

Logical AI Logical AI in the sense of the present article was proposed in
[McC59] and also in [McC89]. The idea is that an agent can represent
knowledge of its world, its goals and the current situation by sentences
in logic and decide what to do by inferring that a certain action or
course of action is appropriate to achieve its goals.

Logic is also used in weaker ways in AI, databases, logic programming,
hardware design and other parts of computer science. Many AI systems

1Thus the heuristics of a chess program that represents “My opponent has an open file
for his rooks.” by a sentence will be different from those of a present program which at
most represents the phenomenon by the value of a numerical co-efficient in an evaluation
function.
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represent facts by a limited subset of logic and use non-logical programs
as well as logical inference to make inferences. Databases often use
only ground formulas. Logic programming restricts its representation
to Horn clauses. Hardware design usually involves only propositional
logic. These restrictions are almost always justified by considerations
of computational efficiency.

Epistemology and Heuristics In philosophy, epistemology is the study of
knowledge, its form and limitations. This will do pretty well for AI also,
provided we include in the study common sense knowledge of the world
and scientific knowledge. Both of these offer difficulties philosophers
haven’t studied, e.g. they haven’t studied in detail what people or
machines can know about the shape of an object the field of view,
remembered from previously being in the field of view, remembered
from a description or remembered from having been felt with the hands.
This is discussed a little in [MH69].

Most AI work on heuristics, i.e. the algorithms that solve problems,
has usually taken for granted a particular epistemology of a particular
domain, e.g. the representation of chess positions.

Bounded Informatic Situation Formal theories in the physical sciences
deal with a bounded informatic situation. Scientists decide informally
in advance what phenomena to take into account. For example, much
celestial mechanics is done within the Newtonian gravitational theory
and does not take into account possible additional effects such as out-
gassing from a comet or electromagnetic forces exerted by the solar
wind. If more phenomena are to be considered, scientists must make a
new theories—and of course they do.

Most AI formalisms also work only in a bounded informatic situation.
What phenomena to take into account is decided by a person before
the formal theory is constructed. With such restrictions, much of the
reasoning can be monotonic, but such systems cannot reach human
level ability. For that, the machine will have to decide for itself what
information is relevant, and that reasoning will inevitably be partly
nonmonotonic.

One example is the “blocks world” where the position of a block x is
entirely characterized by a sentence At(x, l) or On(x, y), where l is a
location or y is another block.
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Another example is the Mycin [DS77] expert system in which the ontol-
ogy (objects considered) includes diseases, symptoms, and drugs, but
not patients (there is only one), doctors or events occurring in time.
See [McC83] for more comment.

Common Sense Knowledge of the World As first discussed in [McC59],
humans have a lot of knowledge of the world which cannot be put in
the form of precise theories. Though the information is imprecise, we
believe it can still be put in logical form. The Cyc project [LG90] aims
at making a large base of common sense knowledge. Cyc is useful,
but further progress in logical AI is needed for Cyc to reach its full
potential.

Common Sense Informatic Situation In general a thinking human is in
what we call the common sense informatic situation, as distinct from
the bounded informatic situation. The known facts are necessarily in-
complete. We live in a world of middle-sized object which can only
be partly observed. We only partly know how the objects that can
be observed are built from elementary particles in general, and our
information is even more incomplete about the structure of particu-
lar objects. These limitations apply to any buildable machines, so the
problem is not just one of human limitations.2

In many actual situations, there is no a priori limitation on what facts
are relevant. It may not even be clear in advance what phenomena
should be taken into account. The consequences of actions cannot be
fully determined. The common sense informatic situation necessitates
the use of approximate concepts that cannot be fully defined and the
use of approximate theories involving them. It also requires nonmono-

tonic reasoning in reaching conclusions. Many AI texts assume that
the information situation is bounded—without even mentioning the
assumption explicitly.

The common sense informatic situation often includes some knowledge
about the system’s mental state as discussed in [McC96a].

2Science fiction and scientific and philosophical speculation have often indulged in the
Laplacian fantasy of super beings able to predict the future by knowing the positions and
velocities of all the particles. That isn’t the direction to go. Rather they would be better
at using the information that is available to the senses.

4



One key problem in formalizing the common sense informatic situation
is to make the axiom sets elaboration tolerant2.

Epistemologically Adequate Languages A logical language for use in
the common sense informatic situation must be capable of expressing
directly the information actually available to agents. For example,
giving the density and temperature of air and its velocity field and
the Navier-Stokes equations does not practically allow expressing what
a person or robot actually can know about the wind that is blowing.
We and robots can talk about its direction, strength and gustiness
approximately, and can give a few of these quantitities numerical values
with the aid of instruments if instruments are available, but we have
to deal with the phenomena even when no numbers can be obtained.
The idea of epistemological adequacy was introduced in [MH69].

Robot We can generalize the notion of a robot as a system with a variant
of the physical capabilities of a person, including the ability to move
around, manipulate objects and perceive scenes, all controlled by a
computer program. More generally, a robot is a computer-controlled
system that can explore and manipulate an environment that is not
part of the robot itself and is, in some important sense, larger than the
robot. A robot should maintain a continued existence and not reset
itself to a standard state after each task. From this point of view, we
can have a robot that explores and manipulates the Internet without
it needing legs, hands and eyes. The considerations of this article that
mention robots are intended to apply to this more general notion. The
internet robots discussed so far are very limited in their mentalities.

Qualitative Reasoning This concerns reasoning about physical processes
when the numerical relations required for applying the formulas of
physics are not known. Most of the work in the area assumes that
information about what processes to take into account are provided by
the user. Systems that must be given this information often won’t do
human level qualitative reasoning. See [De90] and [Kui94].

Common Sense Physics Corresponds to people’s ability to make deci-
sions involving physical phenomena in daily life, e.g. deciding that
the spill of a cup of hot coffee is likely to burn Mr. A, but Mr. B is
far enough to be safe. It differs from qualitative physics, as studied
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by most researchers in qualitative reasoning, in that the system doing
the reasoning must itself use common sense knowledge to decide what
phenomena are relevant in the particular case. See [Hay85] for one view
of this.

Expert Systems These are designed by people, i.e. not by computer pro-
grams, to take a limited set of phenomena into account. Many of them
do their reasoning using logic, and others use formalisms amounting
to subsets of first order logic. Many require very little common sense
knowledge and reasoning ability. Restricting expressiveness of the rep-
resentation of facts is often done to increase computational efficiency.

Knowledge Level Allen Newell ([New82] and [New93]) did not advocate
(as we do here) using logic as the way a system should represent its
knowledge internally. He did say that a system can often be appropri-
ately described as knowing certain facts even when the facts are not
represented by sentences in memory. This view corresponds to Daniel
Dennett’s intentional stance [Den71], reprinted in [Den78], and was
also proposed and elaborated in [McC79].

Elaboration Tolerance A set of facts described as a logical theory needs
to be modifiable by adding sentences rather than only by going back
to natural language and starting over. For example, we can modify the
missionaries and cannibals problem by saying that there is an oar on
each bank of the river and that the boat can be propelled with one oar
carrying one person but needs two oars to carry two people. Some for-
malizations require complete rewriting to accomodate this elaboration.
Others share with natural language the ability to allow the elaboration
by an addition to what was previously said.

There are degrees of elaboration tolerance. A state space formalization
of the missionaries and cannibals problem in which a state is repre-
sented by a triplet (m c b) of the numbers of missionaries, cannibals
and boats on the initial bank is less elaboration tolerant than a situation
calculus formalism in which the set of objects present in a situation is
not specified in advance. In particular, the former representation needs
surgery to add the oars, whereas the latter can handle it by adjoining
more sentences—as can a person. The realization of elaboration toler-
ance requires nonmonotonic reasoning. See [McC97].
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Robotic Free Will Robots need to consider their choices and decide which
of them leads to the most favorable situation. In doing this, the robot
considers a system in which its own outputs are regarded as free vari-
ables, i.e. it doesn’t consider the process by which it is deciding what
to do. The perception of having choices is also what humans con-
sider as free will. The matter is discussed in [MH69] and is roughly
in accordance with the philosophical attitude towards free will called
compatibilism, i.e. the view that determinism and free will are compat-
ible.

Reification To refify an entity is to “make a thing” out of it (from Latin
re for thing). From a logical point of view, things are what variables
can range over. Logical AI needs to reify hopes, intentions and “things
wrong with the boat”. Some philosophers deplore reification, referring
to a “bloated ontology”, but AI needs more things than are dreamed of
in the philosophers’ philosophy. In general, reification gives a language
more expressive power, because it permits referring to entities directly
that were previously mentionable only in a metalanguage.

Ontology In philosophy, ontology is the branch that studies what things
exist. W.V.O. Quine’s view is that the ontology is what the variables
range over. Ontology has been used variously in AI, but I think Quine’s
usage is best for AI. “Reification” and “ontology” treat the same phe-
nomena. Regrettably, the word “ontology” has become popular in AI
in much vaguer senses. Ontology and reification are basically the same
concept.

Approximate Concepts Common sense thinking cannot avoid concepts
without clear definitions. Consider the welfare of an animal. Over a
period of minutes, the welfare is fairly well defined, but asking what
will benefit a newly hatched chick over the next year is ill defined. The
exact snow, ice and rock that constitutes Mount Everest is ill defined.
The key fact about approximate concepts is that while they are not
well defined, sentences involving them may be quite well defined. For
example, the proposition that Mount Everest was first climbed in 1953
is definite, and its definiteness is not compromised by the ill-definedness
of the exact boundaries of the mountain. See [McC99c].

There are two ways of regarding approximate concepts. The first is to
suppose that there is a precise concept, but it is incompletely known.
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Thus we may suppose that there is a truth of the matter as to which
rocks and ice constitute Mount Everest. If this approach is taken, we
simply need weak axioms telling what we do know but not defining the
concept completely.

The second approach is to regard the concept as intrinsically approxi-
mate. There is no truth of the matter. One practical difference is that
we would not expect two geographers independently researching Mount
Everest to define the same boundary. They would have to interact, be-
cause the boundaries of Mount Everest are yet to be defined.3

Approximate Theories Any theory involving approximate concepts is an
approximate theory. We can have a theory of the welfare of chickens.
However, its notions don’t make sense if pushed too far. For example,
animal rights people assign some rights to chickens but cannot define
them precisely. It is not presently apparent whether the expression
of approximate theories in mathematical logical languages will require
any innovations in mathematical logic. See [McC99c].

Ambiguity Tolerance Assertions often turn out to be ambiguous with the
ambiguity only being discovered many years after the assertion was
enunciated. For example, it is a priori ambiguous whether the phrase
“conspiring to assault a Federal official” covers the case when the crim-
inals mistakenly believe their intended victim is a Federal official. An
ambiguity in a law does not invalidate it in the cases where it can be
considered unambiguous. Even where it is formally ambiguous, it is
subject to judicial interpretation. AI systems will also require means
of isolating ambiguities and also contradictions. The default rule is that
the concept is not ambiguous in the particular case. The ambiguous
theories are a kind of approximate theory.

Causal Reasoning A major concern of logical AI has been treating the
consequences of actions and other events. The epistemological problem
concerns what can be known about the laws that determine the results
of events. A theory of causality is pretty sure to be approximate.

Situation Calculus Situation calculus is the most studied formalism for
doing causal reasoning. A situation is in principle a snapshot of the

3Regarding a concept as intrinsically approximate is distinct from either regarding it
as fully defined by nature or fully defined by human convention.
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world at an instant. One never knows a situation—one only knows
facts about a situation. Events occur in situations and give rise to new
situations. There are many variants of situation calculus, and none
of them has come to dominate. [MH69] introduces situation calculus.
[GLR91] is a 1991 discussion.

Fluents Functions of situations in situation calculus. The simplest fluents
are propositional and have truth values. There are also fluents with
values in numerical or symbolic domains. Situational fluents take on
situations as values.

Frame Problem This is the problem of how to express the facts about the
effects of actions and other events in such a way that it is not necessary
to explicitly state for every event, the fluents it does not affect. Murray
Shanahan [Sha97] has an extensive discussion.

Qualification Problem This concerns how to express the preconditions for
actions and other events. That it is necessary to have a ticket to fly
on a commercial airplane is rather unproblematical to express. That it
is necessary to be wearing clothes needs to be kept inexplicit unless it
somehow comes up.

Ramification Problem Events often have other effects than those we are
immediately inclined to put in the axioms concerned with the particular
kind of event.

Projection Given information about a situation, and axioms about the ef-
fects of actions and other events, the projection problem is to determine
facts about future situations. It is assumed that no facts are avail-
able about future situations other than what can be inferred from the
“known laws of motion” and what is known about the initial situation.
Query: how does one tell a reasoning system that the facts are such
that it should rely on projection for information about the future.

Planning The largest single domain for logical AI has been planning, usu-
ally the restricted problem of finding a finite sequence of actions that
will achieve a goal. [Gre69a] is the first paper to use a theorem prover to
do planning. Planning is somewhat the inverse problem to projection.
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Narrative A narrative tells what happened, but any narrative can only
tell a certain amount. What narratives can tell, how to express that
logically, and how to elaborate narratives is given a preliminary logical
treatment in [McC95b] and more fully in [MC98]. [PR93] and [RM94]
are relevant here. A narrative will usually give facts about the future of
a situation that are not just consequences of projection from an initial
situation. [While we may suppose that the future is entirely determined
by the initial situation, our knowledge doesn’t permit inferring all the
facts about it by projection. Therefore, narratives give facts about the
future beyond what follows by projection.]

Understanding A rather demanding notion is most useful. In particular,
fish do not understand swimming, because they can’t use knowledge to
improve their swimming, to wish for better fins, or to teach other fish.
See the section on understanding in [McC96a]. Maybe fish do learn
to improve their swimming, but this presumably consists primarily of
the adjustment of parameters and isn’t usefully called understanding.
I would apply understanding only to some systems that can do hypo-
thetical reasoning—if p were true, then q would be true. Thus Fortran
compilers don’t understand Fortran.

Consciousness, awareness and introspection Human level AI systems
will require these qualities in order to do tasks we assign them. In order
to decide how well it is doing, a robot will need to be able to examine
its goal structure and the structure of its beliefs from the outside. See
[McC96a].

Intention to do something Intentions as objects are discussed briefly in
[McC89] and [McC96a].

Mental situation calculus The idea is that there are mental situations,
mental fluents and mental events that give rise to new mental sit-
uations. The mental events include observations and inferences but
also the results of observing the mental situation up to the current
time. This allows drawing the conclusion that there isn’t yet informa-
tion needed to solve a certain problem, and therefore more information
must be sought outside the robot or organism. [SL93] treats this and
so does [McC96a].
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Discrete processes Causal reasoning is simplest when applied to processes
in which discrete events occur and have definite results. In situation
calculus, the formulas s′ = result(e, s) gives the new situation s′ that
results when the event e occurs in situation s. Many continuous pro-
cesses that occur in human or robot activity can have approximate

theories that are discrete.

Continuous Processes Humans approximate continuous processes with rep-
resentations that are as discrete as possible. For example, “Junior read
a book while on the airplane from Glasgow to London.” Continuous
processes can be treated in the situation calculus, but the theory is so
far less successful than in discrete cases. We also sometimes approxi-
mate discrete processes by continuous ones. [Mil96] and [Rei96] treat
this problem.

Non-deterministic events Situation calculus and other causal formalisms
are harder to use when the effects of an action are indefinite. Often
result(e, s) is not usefully axiomatizable and something like occurs(e, s)
must be used.

Concurrrent Events Formalisms treating actions and other events must
allow for any level of dependence between events. Complete indepen-
dence is a limiting case and is treated in [McC95b].

Conjunctivity It often happens that two phenomena are independent. In
that case, we may form a description of their combination by taking
the conjunction of the descriptions of the separate phenomena. The
description language satisfies conjunctivity if the conclusions we can
draw about one of the phenomena from the combined description are
the same as the conjunctions we could draw from the single description.
For example, we may have separate descriptions of the assassination
of Abraham Lincoln and of Mendel’s contemporaneous experiments
with peas. What we can infer about Mendel’s experiments from the
conjunction should ordinarily be the same as what we can infer from
just the description of Mendel’s experiments. Many formalisms for
concurrent events don’t have this property, but conjunctivity itself is
applicable to more than concurrent events.

To use logician’s language, the conjunction of the two theories should be
a conservative extension of each of the theories. Actually, we may settle
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for less. We only require that the inferrable sentences about Mendel (or
about Lincoln) in the conjunction are the same. The combined theory
may admit inferring other sentences in the language of the separate
theory that weren’t inferrable in the separate theories.

Learning Making computers learn presents two problems—epistemological

and heuristic. The epistemological problem is to define the space of
concepts that the program can learn. The heuristic problem is the
actual learning algorithm. The heuristic problem of algorithms for
learning has been much studied and the epistemological mostly ignored.
The designer of the learning system makes the program operate with a
fixed and limited set of concepts. Learning programs will never reach
human level of generality as long as this approach is followed. [McC59]
says, “A computer can’t learn what it can’t be told.” We might
correct this, as suggested by Murray Shanahan, to say that it can
only learn what can be expressed in the language we equip it with.
To learn many important concepts, it must have more than a set of
weights. [MR94] and [BM95] present some progress on learning within
a logical language. The many kinds of learning discussed in [Mit97]
are all, with the possible exception of inductive logic programming,
very limited in what they can represent—and hence can conceivably
learn. [McC99a] presents a challenge to machine learning problems and
discovery programs to learn or discovery the reality behind appearance.

Appearance and Reality One characteristic of the common sense infor-
matic situation is that reality has to be inferred from appearance. Thus
objects fall; appearances of objects don’t fall. The existence of an ob-
ject likely to fall has to be inferred from appearance—whether this
appearance be visual, auditory or touch. [McC99a] presents a ma-
nipulable applet asking the reader to determine the reality behind an
appearance consisting of a circle of 13 letters.

Representation of Physical Objects We aren’t close to having an epis-
temologically adequate language for this. What do I know about my
pocket knife that permits me to recognize it in my pocket or by sight
or to open its blades by feel or by feel and sight? What can I tell oth-
ers about that knife that will let them recognize it by feel, and what
information must a robot have in order to pick my pocket of it?
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Representation of Space and Shape We again have the problem of an
epistemologically adequate representation. Trying to match what a hu-
man can remember and reason about when out of sight of the scene
is more what we need than some pixel by pixel representation. Some
problems of this are discussed in [McC95a] which concerns the Lem-
mings computer games. One can think about a particular game and
decide how to solve it away from the display of the position, and this ob-
viously requires a compact representation of partial information about
a scene.

Discrimination, Recognition and Description Discrimination is the de-
ciding which category a stimulus belongs to among a fixed set of cate-
gories, e.g. decide which letter of the alphabet is depicted in an image.
Recognition involves deciding whether a stimulus belongs to the same
set, i.e. represents the same object, e.g. a person, as a previously seen
stimulus. Description involves describing an object in detail appropri-
ate to performing some action with it, e.g. picking it up by the handle
or some other designated part. Description is the most ambitious of
these operations and has been the forte of logic-based approaches.

Logical Robot [McC59] proposed that a robot be controlled by a program
that infers logically that a certain action will advance its goals and then
does that action. This approach was implemented in [Gre69b], but the
program was very slow. Shortly greater speed was obtained in systems
like STRIPS at the cost of limiting the generality of facts the robot
takes into account. See [Nil84], [LRL+97], and [Sha96].

Declarative Expression of Heuristics [McC59] proposes reasoning be con-
trolled by domain-dependent and problem-dependent heuristics expressed
declaratively. Expressing heuristics declaratively means that a sentence
about a heuristic can be the result of reasoning and not merely some-
thing put in from the outside by a person. Josefina Sierra [Sie98b],
[Sie98a], [Sie98c], [Sie99] has made some recent progress.

Logic programming Logic programming isolates a subdomain of first or-
der logic that has nice computational properties. When the facts are
described as a logic program, problems can often be solved by a stan-
dard program, e.g. a Prolog interpreter, using these facts as a program.
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Unfortunately, in general the facts about a domain and the problems
we would like computers to solve have that form only in special cases.

Useful Counterfactuals “If another car had come over the hill when you
passed that Mercedes, there would have been a head-on collision.”
One’s reaction to believing that counterfactual conditional sentence is
quite different from one’s reaction to the corresponding material con-
ditional. Machines need to represent such sentences in order to learn
from not-quite-experiences. See [CM98].

Formalized Contexts Any particular bit of thinking occurs in some con-
text. Humans often specialize the context to particular situations or
theories, and this makes the reasoning more definite, sometimes com-
pletely definite. Going the other way, we sometimes have to generalize
the context of our thoughts to take some phenomena into account.

It has been worthwhile to admit contexts as objects into the ontology of
logical AI. The prototype formula ist(c, p) asserts that the proposition
p is true in the context c. The formal theory is discussed in [McC93],
[MB98] and in papers by Saša Buvač, available in [Buv95].

Rich and Poor Entities A rich entity is one about which a person or ma-
chine can never learn all the facts. The state of the reader’s body is
a rich entity. The actual history of my going home this evening is a
rich entity, e.g. it includes the exact position of my body on foot and
in the car at each moment. While a system can never fully describe
a rich entity, it can learn facts about it and represent them by logical
sentences.

Poor entities occur in plans and formal theories and in accounts of
situations and events and can be fully prescribed. For example, my
plan for going home this evening is a poor entity, since it does not
contain more than a small, fixed amount of detail. Rich entities are
often approximated by poor entities. Indeed some rich entities may be
regarded as inverse limits of trees of poor entities. (The mathematical
notion of inverse limit may or may not turn out to be useful, although
I wouldn’t advise anyone to study the subject quite yet just for its
possible AI applications.)

Nonmonotonic Reasoning Both humans and machines must draw con-
clusions that are true in the “best” models of the facts being taken
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into account. Several concepts of best are used in different systems.
Many are based on minimizing something. When new facts are added,
some of the previous conclusions may no longer hold. This is why the
reasoning that reached these conclusions is called nonmonotonic.

Probabilistic Reasoning Probabilistic reasoning is a kind of nonmono-
tonic reasoning. If the probability of one sentence is changed, say
given the value 1, other sentences that previously had high probability
may now have low or even 0 probability. Setting up the probabilistic
models, i.e defining the sample space of “events” to which probabilities
are to be given often involves more general nonmonotonic reasoning,
but this is conventionally done by a person informally rather than by
a computer.

In the open common sense informatic situation, there isn’t any apparent
overall sample space. Probabilistic theories may formed by limiting the
space of events considered and then establishing a distribution. Lim-
iting the events considered should be done by whatever nonmonotonic
reasoning techniques are developed techniques for limiting the phenom-
ena taken into account. (You may take this as a confession that I don’t
know these techniques.) In forming distributions, there would seem to
be a default rule that two events e1 and e2 are to be taken as indepen-
dent unless there is a reason to do otherwise. e1 and e2 can’t be just
any events but have to be in some sense basic events.

Circumscription A method of nonmonotonic reasoning involving minimiz-
ing predicates (and sometimes domains). It was introduced in [McC77],
[McC80] and [McC86]. An up-to-date discussion, including numerous
variants, is [Lif94].

Default Logic A method of nonmonotonic reasoning introduced in [Rei80]
that is the main survivor along with circumscription.

Yale Shooting Problem This problem, introduced in [HM86], is a simple
Drosophila for nonmonotonic reasoning. The simplest formalizations
of causal reasoning using circumscription or default logic for doing the
nonmonotonic reasoning do not give the result that intuition demands.
Various more recent formalizations of events handle the problem ok.
The Yale shooting problem is likely to remain a benchmark problem
for formalizations of causality.

15



Design Stance Daniel Dennett’s idea [Den78] is to regard an entity in terms
of its function rather than in terms of its physical structure. For exam-
ple, a traveller using a hotel alarm clock need not notice whether the
clock is controlled by a mechanical escapement, the 60 cycle power line
or by an internal crystal. We formalize it in terms of (a) the fact that
it can be used to wake the traveller, and (b) setting it and the noise it
makes at the time for which it is set.

Physical Stance We consider an object in terms of its physical structure.
This is needed for actually building it or repairing it but is often un-
necessary in making decisions about how to use it.

Intentional Stance Dennett proposes that sometimes we consider the be-
havior of a person, animal or machine by ascribing to it belief, desires
and intentions. This is discussed in [Den71] and [Den78] and also in
[McC79].

Relation between logic and calculation and various data structures

Murray Shanahan recommends putting in something about this.

Creativity Humans are sometimes creative—perhaps rarely in the life of
an individual and among people. What is creativity? We consider
creativity as an aspect of the solution to a problem rather than as
attribute of a person (or computer program).

A creative solution to a problem contains a concept not present in
the functions and predicates in terms of which the problem is posed.
[McC64] and [McC99b]discuss the mutilated checkerboard problem.

The problem is to determine whether a checkerboard with two diago-
nally opposite squares can be removed can be covered with dominoes,
each of which covers two rectilinearly adjacent squares. The standard
proof that this can’t be done is creative relative to the statement of the
problem. It notes that a domino covers two squares of opposite color,
but there are 32 squares of one color and 30 of the other color to be
colored.

Colors are not mentioned in the statement of the problem, and their
introduction is a creative step relative to this statement. For a mathe-
matician of moderate experience (and for many other people), this bit
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of creativity is not difficult. We must, therefore, separate the concept
of creativity from the concept of difficulty.

Before we can have creativity we must have some elaboration tolerance2.
Namely, in the simple languagge of A tough nut . . ., the colors of the
squares cannot even be expressed. A program confined to this language
could not even be told the solution. As discussed in [McC96b], Zermelo-
Frankel set theory is an adequate language. In general, set theory, in
a form allowing definitions may have enough elaboration tolerance in
general. Regard this as a conjecture that requires more study.

How it happened Consider an action like buying a pack of cigarettes on a
particular occasion and the subactions thereof. It would be a mistake
to regard the relation between the action and its subactions as like
that between a program and its subroutines. On one occasion I might
have bought the cigarettes from a machine. on a second occasion at a
supermarket, and on a third occasion from a cigarettelegger, cigarettes
having become illegal.

3 Alphabetical Index

Ambiguity Tolerance
Approximate Concepts
Approximate Theories
Bounded Informatic Situation
Causal Reasoning
Circumscription
Common Sense Informatic Situation
Common Sense Knowledge of the World
Common Sense Physics
Concurrrent Events
Conjunctivity
Consciousness, awareness and introspection
Continuous Processes
Creativity
Declarative Expression of Heuristics
Default Logic
Design Stance
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Discrete processes
Discrimination, Recognition and Description
Elaboration Tolerance
Epistemologically Adequate Languages
Epistemology and Heuristics
Expert Systems
Fluents
Formalized Contexts
Frame Problem
How it happened
Intention to do something
Intentional Stance
Knowledge Level
Learning
Logic programming
Logical Robot
Mental situation calculus
Narrative
Non-deterministic events
Nonmonotonic Reasoning
Ontology
Physical Stance
Planning
Probabilistic Reasoning
Projection
Qualification Problem
Qualitative Reasoning
Ramification Problem
Reification
Relation between logic and calculation and various data structures
Representation of Physical Objects
Representation of Space and Shape
Rich and Poor Entities
Robotic Free Will
Situation Calculus
Understanding
Useful Counterfactuals
Yale Shooting Problem

18



4 REMARKS
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