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Why a little bit goes a long way:
Logical foundations of scientifically applicable mathematics1

Solomon Feferman

1. Introduction.

Does science justify any part of mathematics and, if so, what part?  These questions are
related to the so-called indispensability arguments propounded, among others, by Quine
and Putnam.  The general idea of the arguments has been formulated (for critical
assessment ) by Penelope Maddy in a recent article as follows:

We have good reason to believe our best scientific theories, and
mathematical entities are indispensable to those theories, so we have good
reason to believe in mathematical entities.  Mathematics is thus on an
ontological par with natural science.  Furthermore, the evidence that
confirms scientific theories also confirms the required mathematics, so
mathematics and science are on an epistemological par as well. (Maddy
1992, p. 78)

If one accepts the indispensability arguments, there still remain two critical questions:

Q1.   Just which mathematical entities are indispensable to current scientific theories?,
and
Q2. Just what principles concerning those entities are needed for the required
mathematics?

Here we consider answers of an underlying character to these questions, i.e. from the
point of view of the foundations of mathematics.2  In this respect, both Quine and Putnam
were led to accept set-theoretical notions and principles to some significant extent or
other.  However, neither one relied on any detailed examination of just what is needed for
scientifically applicable mathematics in arriving at their positions.  Nor did they seem to
consider whether any of the alternative foundational schemes actively developed during
this century – namely those of predicativism, constructivism, and finitism – ought to be
preferred on philosophical grounds, particularly when natural science is given such
primacy.  On the face of it, scientific realism is at odds with the strong form of Platonic
realism required to justify set theory through its assumption of the independent existence
of abstract entities (such as sets of sets of sets... of unbounded infinite cardinality).
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The failure to consider other foundational approaches no doubt stems from the common
impression that – whatever their philosophical merits – these schemes are simply
inadequate to meet the needs of everyday mathematics by being too restrictive and too
foreign to practice.  This impression needs to be corrected:  there has been considerable
logical work in recent years which has established in some detail the unexpected
mathematical reach of each of these programs.  Moreover, one result of the work in
question is that surprisingly meager (in the proof-theoretical sense) predicatively justified
systems suffice for the direct formalization of almost all, if not all, scientifically
applicable mathematics.  It is my main purpose here to describe this result (with the
background leading to it) and, in its light, to re-examine the indispensability arguments.

In considering what mathematics is actually  used in science it suffices to restrict
attention to physics since, among all the sciences, that subject makes the heaviest use of
mathematics and there is hardly any branch of mathematics, that has some scientific
application, which is not applied there.  It would be foolish to claim detailed knowledge
of the vast body of mathematics that has been employed in mathematical physics.
However, in general terms one can say that it makes primary use of mathematical
analysis on Euclidean, complex, and Riemannian spaces, and of functional analysis on
various Hilbert and Banach spaces.  Any logical foundation for scientifically applicable
mathematics should, at a minimum, cover all of 19th century mathematical analysis of
(piece-wise) continuous functions on the former kind of spaces and should then go on to
cover the theory of (Lebesgue) measurable functions and basic parts of 20th century
functional analysis on the latter spaces.

We begin in the next section with  a brief review of the set-theoretical foundations of
analysis, followed in Section 3 by a discussion of the reasons for rejecting that
framework on philosophical grounds.  Section 4 then traces the historical development of
predicative foundations of analysis.  This leads in Section 5 to the description of a formal
theory W of variable finite types with the following properties: (i) W is proof-
theoretically reducible to the system  PA of Peano Arithmetic (the starting system for
predicativity), and (ii) almost all, if not all, of scientifically applicable mathematics, as
described above, can be formalized directly in W.  By way of comparison, Section 6 is
devoted to a brief description of results concerning the mathematical reach of
constructivist and finitist foundations.  We return in Section 7 to a discussion of the
significance of these results for the indispensability arguments, and conclude in Section 8
with some more speculative philosophical remarks.

2.  Set-theoretical foundations of analysis.

The real number system or continuum R is the basic system for analysis;  from it we
define directly the complex numbers C and various Euclidean and non-Euclidean
(Riemannian) spaces which figure in the applications.  Then in functional analysis one
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makes use of certain spaces of functions satisfying continuity, measurability or
integrability conditions (e.g. the Lp spaces).  Concretely, in the case of functions of one
variable, these are subspaces of the set R–>> R of all partial functions from R to R.
Abstractly, given any spaces X and Y of a certain kind, one will form subspaces of the set
X –>> Y of all partial functions from X to Y; functionals then act on one such space to
another.

The reals are characterized set-theoretically as the unique ordered field satisfying the
l.u.b. axiom or Dedekind's continuity axiom.  A specific realization of these axioms may
be constructed set-theoretically as the set  D of all lower Dedekind sections in the
rationals Q . Let P (X)  be the set of all subsets of X ; then D ⊆ P(Q).  Moreover,
D~P(Q)~P(N) where X~Y is the relation of equinumerosity (or set-theoretic equivalence)
and N={0,1,2,...} is the set of natural numbers.  Hence the cardinality of the reals is 2ℵ 0.

Alternatively, following Cantor, the reals may be represented as Cauchy sequences of
rationals, which are members of N→Q, under a suitable equivalence relation.

In set theory, functions are defined as sets of ordered pairs satisfying the many-one
condition and pairs are in turn defined by a set construction.  With the preceding, this
leads to a representation of the real numbers in the cumulative hierarchy 〈 〉 ∈Vn n(N) ω
over N, where
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By the above, R is located in Vω(N)  essentially at the level V1( ),N  R –>>  R  at level
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An alternative to the representation in the cumulative hierarchy over N is that in the pure
cumulative hierarchy defined by
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Using the von Neumann representation of ordinals, ω ω= ∈ +{ , , , . ..}0 1 2 1V    and thus

Vω ω+  includes Vω( )N  when we identify N with ω.  Vω ω+  is the "standard" model of the

system ZC of Zermelo set theory  with the Axiom of Choice.  Set theorists now
commonly accept  the much stronger system ZFC of  Zermelo-Fraenkel with Choice,
whose standard model is Vκ  for the first strongly inaccessible ordinal κ .  Indeed, most
working set theorists go far beyond ZFC in accepting various axioms of "large"
transfinite cardinals beyond κ .  One of the first to urge the plausibility of such extensions
of ZFC was Gödel (1947/1964).  In contrast, Quine's acceptance of some part of set
theory is moderated by his version of the indispensability argument.
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So much of mathematics as is wanted for use in empirical science is for
me on a par  with the rest of science.  Transfinite ramifications are on the
same footing insofar as they come of a simplificatory rounding out, but
anything further is on a par with uninterpreted systems. (Quine 1984, p.
788)

And, further:

I recognize indenumerable infinities only because they are forced on me
by the simplest known systematizations of more welcome matters.
Magnitudes in excess of such demands, e.g. Bethω [the cardinal number of
V Vω ω ω(  and of +N) ] or inaccessible numbers, I look upon only as

mathematical recreation and without ontological rights. (Quine 1986, p.
400)

It seems from these quotations that Quine would readily accept Zermelo set theory
because the power set operation P applied to N leads to R, and then its application once
more to R R→  etc.; "simplificatory rounding out" thus suggests acceptance of the Power
Set Axiom in general.

3.  What's wrong with set-theoretical foundations?

Philosophically, set theory – even in its "moderate" form given by Zermelo's axioms –
requires for its justification a strong form of Platonic realism.  This is not without its
defenders, most notably Gödel (1944 and 1947/1964) (cf. also (Maddy 1990)).  For its
critics, however, the following are highly problematic features of this philosophy:

(i)   abstract entities are assumed to exist independently of any means of human definition
      or construction;
(ii)  classical reasoning (leading to non-constructive existence results) is admitted, since
      the statements of set theory are supposed to be about such an independently existing
      reality and thus have a determinate truth value (true or false);
(iii) completed infinite totalities and, in particular, the totality of all subsets of any infinite
      set are assumed to exist;
(iv) in consequence of (iii) and the Axiom of Separation, impredicative definitions of sets
      are routinely admitted;
(v) the Axiom of Choice is assumed in order to carry through the Cantorian theory of
      transfinite cardinals.

The question of admissibility of impredicative definitions will be discussed in the next
section.  The Axiom of Choice has been the focus of much specific criticism, since
choice sets are not in general definable; however, it is entirely in keeping with the other
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assumptions (and it would not be coherent to accept (i) – (iv) and reject the Axiom of
Choice).

Quite surprisingly, Gödel at one time sided with the critics: in an unpublished lecture he
delivered to a meeting of the Mathematical Association of America in 1933, after
explaining the use of systems like ZFC for the axiomatic foundation of  "all of
mathematics", Gödel raised pointed objections to its features (ii), (iv) and (v) and went on
to say

The result of the preceding discussion is that our axioms [of set theory], if
interpreted as meaningful statements, necessarily presuppose a kind of
Platonism, which cannot satisfy any critical mind and which does not even
produce the conviction that they are consistent. (Gödel 1933, p. 19)3

In the present context for assessing the indispensability argument(s), one should also note
the ontological and epistemological anomalies in accepting set-theoretical foundations for
mathematics, first of all because highly infinitary abstract objects are put on an
ontological par with physical objects, and secondly because there is no observational
knowledge of abstract objects (either directly or indirectly).4

4.  The development of predicative foundations for analysis.5

4(a).  Poincaré and Russell.
In seeking ways to avoid the set-theoretical paradoxes while pursuing the logicist
program, Russell introduced the term predicative for properties which determine
legitimate classes, but he had no settled criterion for telling which those are.  Poincaré
saw the root of the paradoxes in the existence of a vicious circle, namely in the use of
definitions which purport to single out a member of a totality by reference to that totality.
Such apparent definitions are called impredicative.  There can be no objection to
impredicative definitions when the totality in question is regarded as having a clear and
determinate extent.  For example, if one accepts the totality N = { , , ,. ..}0 1 2  as definite,
there can be no objection to definitions singling out some natural numbers as the least n
satisfying a property ϕ(n) when ϕ refers, by quantification, to the totality of objects in N.
Poincaré regarded the natural number sequence and the principle of induction on it as an
irreducible basis of our mathematical intuition, and he argued that the attempts of the
logicists such as Frege and Russell to derive these from purely logical principles are
fundamentally misguided and question-begging.6  On the other hand, Poincaré thought all
other mathematical notions should be introduced by proper definitions; in particular sets
are to be defined only by reference to prior defined sets and notions, not by reference to
any presumed totality of sets.  The latter would thus constitute impredicative definitions;
Poincaré banned their use under his vicious-circle principle.  (For a useful recent analysis
of Poincaré's philosophy of mathematics, see (Folina 1992).)
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Russell adopted Poincaré's proscription of impredicative definitions in setting up the
Ramified Theory of Types (RTT) for the Principia Mathematica (1910–1913).  However,
he did not follow Poincaré in taking the natural number system for granted, but aimed to
construct that "logically" within RTT.  Each set variable of RTT is ranked, and the
Comprehension Axiom schema for existence of sets { : ( )}x xϕ  of a given rank is

restricted to ϕ with all bound variables of a smaller rank; membership is restricted to
successive ranks (the basic syntactic feature of typed theories of sets).  But Russell then
found that he was faced with a multiplicity of notions of natural number and could not
even derive the simplest closure principles by induction using ranked formulas.
Similarly, he  was faced with an unworkable theory of the continuum, since one could
only deal with real numbers of different ranks, for which the l.u.b. axiom would not hold
in any one rank.  For purely pragmatic reasons then, Russell introduced the so-called
Axiom of Reducibility which asserts that every set is co-extensive with a set of  lowest
rank.  This, in effect, completely compromised the predicative/impredicative distinction;
Russell recognized the objections to this "axiom", but thought it could somehow be
justified and in any case saw no alternative.  Later Ramsey pointed out that if one
dropped rankings but maintained the restriction of membership to successive types, thus
yielding the Simple Theory of Types (STT), no obvious set-theoretical paradoxes would
arise and some of the above problems would be avoided.  STT allows impredicative
definitions{ : ( )}x xϕ of sets of  objects x in any given type n, with { : ( )}x xϕ  in the next
type n+1.  Contrary to Poincaré's view, impredicativity is thus not an essential ingredient
of the paradoxes.

As with set theory, STT requires a Platonistic philosophy for its justification.  Its
"standard" model is given by

(1)     S S nn n+ = <1 P( ) ,  for ω

where S0 is a basic set of individuals.  In order to derive arithmetic in STT one must
assume that S0 is infinite; hence it is taken for granted that one accepts completed infinite
totalities, and that for any totality S one also has the totality P(S) of all subsets of S.
Impredicativity already appears at type 1, since in forming the type 1 set { : ( )}x xϕ  for x

of type 0, with bound variables in ϕ of type 1, one is implicitly assuming the existence of
the totality of sets of type 1.

4(b).  Weyl's approach.
The first steps, after Russell's aborted attempt, to see what part of analysis could be
developed in strictly predicative terms were made by Weyl in his monograph Das
Kontinuum (1918).  Like Poincaré, Weyl accepted the natural numbers and the associated
principles of proof by induction and definition by recursion as basic.  This simplified his
task in comparison with Russell's (modified) logicist program.  The main question was
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how to develop a workable theory of  real numbers, via an unramified yet predicatively
acceptable theory of sets of natural numbers.  His answer in essence was to restrict to
arithmetical definitions { : ( )}n A n of such sets, i.e. where A  contains no bound set
variables but may contain free set variables and free or bound numerical variables.
Relative arithmetic definitions determine functions F X n A n X( ) { : ( , )}=  under which the
arithmetically definable sets are closed.  Weyl's further principles have been analyzed in
modern terms in (Feferman 1988) and a certain ambiguity was revealed, leading to two
possible formal systems for his work.  The first of these turns out to be a conservative
extension of Peano Arithmetic, PA, and it suffices for all his applications.

Using a standard representation of the rational numbers in terms of the natural numbers,
Weyl defined the reals as lower Dedekind sections in Q.  And, though he was blocked
from inferring the l.u.b. axiom for sets of reals because that requires (impredicative)
quantification over "all" reals, he could obtain the l.u.b. for sequences of reals, since this
only requires quantification over N: for a sequence of lower sections 〈 〉 ∈Xn n N Q  in , we
have Un n nX x n x X∈ = ∃ ∈ ∈N N)({ :( )} as the l.u.b.  With continuous functions from

reals to reals treated via approximating functions from Q to Q, Weyl was then able to
sketch in his system a straightforward reconstruction of the whole of 19th c. analysis of
(piece-wise) continuous functions of a real variable.  He also suggested the possibility of
extension to more general classes of functions, including the Lebesgue measurable
functions, but gave no indications how this would be carried out.

4(c).  Modern developments.
Weyl did no more work with his system after 19187, and his program lay dormant until
the 1950s when the logical study of predicativity was taken up in a variety of ways by
Lorenzen, Kleene, Kreisel, Grzegorczyck, Wang, Spector and others (the development is
traced in (Feferman 1964) Part I).  In particular, Kreisel proposed a characterization of
predicativity in terms of a certain "autonomous" transfinite progression of ramified
second-order systems whose exact extent was determined independently by Schütte and
myself in 1964 to be given by a certain recursively described ordinal Γ0 (cf.op.cit. for
references).  Peano Arithmetic PA is contained in the base system for this sequence of
theories.

In order to develop analysis in a workable but still predicatively acceptable way, it was
necessary to follow Weyl's lead in setting up suitable unramified systems which would be
justified (at least indirectly) by reduction to the autonomous progression of ramified
theories.  This was achieved in my 1964 paper in a second-order unramified system,
followed by some improved versions in later papers.  However, higher types are called
for in order to have greater ease of development of analysis.  For this, (Feferman 1977)
and, independently (Takeuti 1978) introduced certain systems of finite type which are
conservative over PA by proof-theoretic arguments and, a fortiori, certainly predicatively
justifiable.  These permitted a direct development of 19th c. analysis and the beginnings
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of 20th c. analysis; but the latter called for an even more flexible and expressive
formalism.

5.  A flexible system W of variable finite types for the modern development of Weyl's
      program.

5(a). The formal system.
As indicated in Section 2 above, in order to represent the notions of modern analysis
directly and develop analysis flexibly it is necessary to have not only the set R of real
numbers but also for any set S, its definable subsets X x S x= { ∈ : ( )}ϕ , and for any sets X

and Y also the sets X × Y and X –>> Y, where the latter is understood to be the set of all
partial functions from X to Y.  Now if functions were defined as many-one relations as in
set theory, X –>> Y would simply be the set of all many-one Z X Y⊆ × , and this would
call on P(X  × Y ) for its definition; that route would, in effect, take us back to Zermelo's
set theory. The crucial first step toward a flexible, predicatively justifiable system is to
treat functions and classes as conceptually independent basic notions, i.e. with neither
explained in terms of the other.  A system taking this lead was worked out successively in
(Feferman 1975, 1985, and 1988).  We follow the last of these papers in describing the
system W (so designated in honor of Weyl) presented there in detail.

The language of W is two-sorted, with individual variables a, b, c, ..., x, y, z ranging over
a universe containing numbers, sets, functions, functionals, etc., and closed under pairing,
while the variables A, B, C, ...X, Y, Z range over classes or (variable) types.  Note the
terminological shift here: sets will be reserved for subclasses of a given class S which
have a characteristic function.  There are constants for specific individuals and functions
(indicated below); there are also binary operations 〈 〉x y x y, ( ) and , where the latter is
interpreted as the value of x at y  when x is a partial function and y is in its domain,
otherwise undefined.  Individual terms s,t,... are built up from individual variables by use
of the given constants and operations by closure under the general process of explicit
definition, including function definition ( ). ( ).λx S t x∈   Class terms S, T,... are built up

from class variables and the class constant N by closure under the operations: S × T,

S –>> T and { |x S∈ ϕ (x)} where ϕ  is a bounded predicative formula (explained below).
Formulas of W in general are built up from atomic formulas s t t t S= ↓ ∈,   and  by the
propositional operations and quantification with respect to both individual and class
variables; t ↓  is used to express that t is defined.  The bounded predicative formulas
admit no quantification over class variables, and individual quantifiers are restricted as:
( ) ( ) .∀ ∈ ∃ ∈x S x Sϕ ϕ  and    By definition, ( ) {S T z→ = ∈ (S –>> T ) | ( ) }.∀ ∈ ↓x S zx

The individual and function constants are 0 and Sc (for successor on N), and µ  (for the
non-constructive least number or search operator), P1 and P2 (for projections of pairing),
D (for definition by cases), and RcN (for definition by recursion on N).   The function
axioms of W follow these intended meanings together with usual axioms for explicit
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definition.  Taking 1 0 0 1= = →Sc( ), ( ) ( { , }) we write P S S for the class of subsets of S
regarded as the class of characteristic functions on S . Then for a S∈ P( )we write

x a a x∈ =  for ( ) 0.  In particular, the axiom for µ  is simply

( ) ) [( )( ) ( ) ]µ µ µ∈ → ∧ ∀ ∈ ∃ ∈ ⇒ ∈P( PN N N) a n n a a a(

The class axioms of W are the evident ones for SxT,  S –>> T  and { | ( )}x S x∈ ϕ .

Induction on N is taken as so-called set induction:

(IndSet ( )[0 (n) ( ( ) ) )].          Sc∀ ∈ ∈ ∧ ∀ ∈ ⇒ ∈ ⇒ ∀ ∈ ∈a a n n a n a n aP N N

A stronger natural principle to consider is class induction:

(IndClass)        Sc∀ ⊆ ∈ ∧ ∀ ∈ ⇒ ∈ ⇒ ⊆X X n n X n X XN N[ ( ( ) ) ];0

this is still predicative , but it leads us beyond PA, so is not included in W.

Using the µ  operator one shows in W that sets are closed under numerical
quantification, since ∃ ∈ ⇔ ∈ ⇔ =n n a a a a a( ) ( ) ( ( )) .µ µ 0   It follows that every
arithmetical formula defines a subset of N; then by IndSet, we  obtain the induction
scheme for arithmetical formulas.  The logic of W is assumed to be that of classical two-
sorted predicate calculus.  Hence the system PA of classical first-order arithmetic is
contained in W.  The main meta-theoretical result about W is the following:

Main Theorem  W is proof-theoretically reducible to PA and is a conservative extension
                            of PA.

The proof of this will appear in (Feferman and Jäger, forthcoming); for the proof of the
corresponding result for a precursor of W see (Feferman 1985).  It follows from this
theorem that W rests on entirely predicative grounds, though it has much of the
conceptual richness and flexibility of systems like Zermelo set theory.

5(b).  Analysis in W.
Space does not begin to permit the demonstration that all (or practically all) of the
necessary 19th and 20th c. analysis needed for scientific applications can be carried out
directly in W; indications are given in (Feferman 1985 and 1988).  To begin with, the
class R of real numbers may be introduced as the class of Dedekind sections in P(Q) or
alternatively as the class of Cauchy sequences in (N Q→ ). By closure under numerical
quantification, we obtain closure under l.u.b. of bounded sequences, just as in Weyl's
system.  Now instead of dealing with (partial) functions of a real variable by some
reduction or other to second-order functions, we treat them directly as members of
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R –>>  R.  Then the classes of continuous functions, measurable functions, etc. are
obtained as suitable subclasses of  R –>>  R8.   Given a function space S, functionals on
that space are simply members of S –>> R.  In this way, basic concepts and examples
from functional analysis are readily represented in W.  In that subject I have verified (in
unpublished notes) that such results as the Riesz Representation Theorem,  Hahn-Banach
Theorem, Uniform Boundedness Theorem and Open Mapping Theorem for separable
Banach and Hilbert spaces are derivable in W – and that, finally, one can obtain the
principal results of the spectral theory of bounded self-adjoint linear operators on a
separable Hilbert space.  Extension of this work to the case of unbounded self-adjoint
operators has been carried out in a preliminary way, using an approach to their spectral
theory via limits of bounded operators.

While there are clearly parts of theoretical analysis that cannot be carried out in W
because they make essential use of the l.u.b. axiom applied to sets rather than sequences,
or because they make essential use of transfinite ordinals or cardinals, or because they
deal with non-separable spaces, the working hypothesis that all of scientifically
applicable analysis can be developed in W has been verified in its core parts.  What
remains to be done is to examine results closer to the margin to see whether this
hypothesis indeed holds in full generality.

6.  Comparisons with the Reverse Mathematics program and constructivist and finitist
      foundations of analysis.

The Reverse Mathematics (R.M.) program was originated and initially developed by H.
Friedman (1975) and subsequently pursued in detail mainly by Simpson and his students
(cf. Simpson 1987 and 1988).  The main question addressed in that program is:  which
set-existence principles are necessary to establish the (known) propositions of ordinary
non-set-theoretical mathematics?  To fix matters, though, only results which can be
formulated (or reformulated) in the language of second-order arithmetic have been
considered.  The pattern of the work is to find for each mathematical theorem τ (which

can thus be expressed) a set-existence principle σ such that σ τ⇒  is provable in a system

based on principles weaker than σ;  the "reverse" part comes in showing that τ σ⇒  is

derivable (in the same system), so that σ is exactly necessary for τ.  A great number of
results from analysis (as well as in algebra and logic) have been examined successfully in
the R.M. program.9  Moreover, it has been found that five principles σ of increasing
strength come up repeatedly in this process: RCA0 (Recursive Comprehension Axiom),
WKL0 (Weak König's Lemma), ACA0 (Arithmetical Comprehension Axiom), ATR0
(Arithmetical Transfinite Recursion), and Π1

1-CA0  (Π1
1-Comprehension Axiom); the

subscript '0' indicates that IndSet is the only form of induction on N used with each set-
existence principle.  ATR0 is proof-theoretically equivalent to the full progression of
predicative systems referred to at the end of Section 4, while Π1

1-CA0  is the first patently
impredicative system beyond that; we have the full l.u.b. principle for sets of reals
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provable in Π1
1-CA0.  Going back down, ACA0 is contained in our system W and is also

conservative over PA.  On the other hand, both RCA0  and WKL0 are conservative over
the much weaker system PRA of Primitive Recursive Arithmetic.  All of the results
shown to be equivalent to RCA0, WKL0 or ACA0  are thus provable in W.

There are two main differences of the R.M. program from that described in Sec. 5 with
W.  The first is the R.M. restriction to statements in the language of second-order
arithmetic: this requires considerable coding once one moves beyond the 19th c. analysis
of continuous functions (and even the representation of the latter in second-order terms is
less than natural).  On the other hand, the equivalences established in R.M. of results τ
from ordinary mathematics with one of  RCA0,WKL0 or ACA0, are evidently sharper
than the fact that such τ are consequence of the principles of W.  In any case, the work
done on RCA0,WKL0 or ACA0 in analysis corroborates fully the development of all of
19th c. analysis and substantial tracts of 20th c. functional analysis within W as described
in the preceding section.
Further evidence comes from the development of constructive analysis in the hands of the
Bishop school (cf. Bishop and Bridges 1985).  Bishop and his followers found
constructive substitutes for considerable portions of classical analysis.  In general, with
each classical theorem τ for which this is successful is associated a constructive theorem

τ∗  such that LPO  implies τ τ∗ ⇒  where LPO is the "Limited Principle of Omniscience"
∀ = ∨∃ ≠ →n f n n f n f( ( ) , ( ( ) ) :0 0  for all  N N .  Evidently LPO is a special consequence
of the Law of Excluded Middle (LEM).  It was shown in (Feferman 1979) how all of
Bishop's development of constructive analysis (except for his theory of Borel sets which
Bishop had shown to be dispensable) could be formalized in a constructive theory of
variable finite types which is proof-theoretically reducible to HA (Heyting Arithmetic).
Indirectly, then, all of the classical analysis for which constructive substitutes were found
in the Bishop school are accounted for by principles reducible to PA(=HA + LEM).  This
again acts to corroborate the work described in Sec. 5 above.10

A word, finally, about finitist foundations of analysis.  Initial efforts in this direction were
made by Goodstein (1961), by considering which results of analysis can be accounted for
on the basis of PRA.  That is a quantifier-free system generally acknowledged to
represent part (if not all) of finitist constructions and arguments in number theory.  One
of the impressive results of the R.M. program is to show how much of 19th c. and 20th c.
analysis can be established in WKL0; since that is proof-theoretically reducible to PRA
(cf. Sieg 1985), an exceptional amount of analysis is already accounted for on
finitistically justifiable grounds.11  In view of this it would be worthwhile setting up a
subsystem of W conservative over PRA in which that same part of analysis can be
formalized more directly.

7.  Significance for the indispensability arguments.
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The questions Q1 and Q2 raised in Section 1 take the indispensability arguments for
granted.  Answers given in the past to these questions have been extremely broad, on the
order of:  mathematical analysis is indispensable to science, the real numbers and
functions and sets of reals are the basic objects of analysis, set theory provides our best
account of the real number continuum and of functions and sets in general, so the entities
and principles of set theory are justified by science.  This sweeping passage leaves
undetermined just which of those entities and principles are thereby justified, except
perhaps to say that the farther reaches of set theory are evidently unnecessary for science
and so may be disregarded.

The work described in the preceding two sections allows one to tell quite different and
much more specific stories in response to these questions.  In all of the indicated formal
systems one can speak within the language of these systems about arbitrary real numbers,
functions of real numbers, sets of real numbers, etc.  Only the existence principles
(closure conditions) concerning these objects are much more restricted than in the case of
systems of set theory like Zermelo's.  To be specific, let us concentrate on the system W.
Acceptance of W and the entities with which one can deal in its language does not
commit one to a Platonistic ontology of those entities, though the Platonist is free to
understand W in those terms.  By the fact of the proof-theoretical reduction of W to PA,
the only ontology it commits one to is that which justifies acceptance of PA.  But even
there, the answer to Q1 and thence to Q2, is underdetermined.  One view of PA is that it
is about the natural numbers as independently existing abstract objects;  that is again a
Platonistic view,  albeit an extremely moderate one.  Another view is that PA is about the
mental conception of the structure of natural numbers, which is of such clarity that
statements concerning these numbers have a determinable truth value and their
properties can be established in an indisputable intersubjective way; this is more or less
the predicativistic view.  Or one can make use of the fact that PA is reducible to HA to
justify it on the basis of a more constructive ontology.  In all these cases except the fully
Platonistic point of view concerning W, it is treated in an instrumental way, its entities
outside the natural numbers are regarded as "theoretical" entities, and the justification for
its use lies in whatever justification we give to the use of PA; but even there we do not
arrive at a unique ontology.

My conclusion from all this is that even if one accepts the indispensability arguments,
practically nothing philosophically definitive can be said of the entities which are then
supposed to have the same status – ontologically and epistemologically – as the entities
of natural science.  That being the case, what do the indispensability arguments amount
to?  As far as I'm concerned, they are completely vitiated.  This does not mean, however,
that questions Q1 and Q2 lose their interest.  Rather that is retained if one regards them
instead from a phenomenological point of view, and here the kind of logical work
described in Sections 5 and 6 above already has much to tell us.  This work needs, of
course, to be continued in order to make it fully conclusive, and here it will be necessary
to investigate questions at the margin, e.g. the possible essential use in physical
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applications of such objects as non-measurable sets or non-separable spaces, which are
not accounted for in systems like W.

8.  Final remarks.

As a complement to the preceding discussion one should mention Maddy's critical
examination (1992) of the indispensability arguments, whose conclusion (op.cit. p. 289)
is that they "do not provide a satisfactory approach to the ontology or the epistemology of
mathematics", for two reasons, quite different from those given here.  The first is that
"fundamental mathematized science is 'idealized' (i.e. literally false)", e.g. "the analysis
of water waves by assuming the water to be infinitely deep or the treatment of matter as
continuous in fluid dynamics or the treatment of energy as a continuously varying
quantity" (op.cit. p. 281), and hence that the mathematics involved cannot be regarded as
true, other than "true in the model" (my quote marks).  The second is that "[scientific]
indispensability cannot account for mathematics as it is actually done."

The first of these objections puts me in mind of the oft referred to article by Wigner on
"The unreasonable effectiveness of mathematics in natural science" (1960).  I agree with
Maddy completely about the extent to which mathematized science depends on highly
idealized models.  What is remarkable, then, is not the unreasonable effectiveness of
mathematics so much as the unreasonable effectiveness of (mathematized) natural
science.

In her second objection, Maddy has particularly in mind the mathematics carried on by
current set-theorists, but it is not  unjustly applied to the bulk of pure mathematics as it is
actually practiced.  Here one meets a different kind of indispensability argument,
stemming from Gödel, for the need of "higher" set theory to account for that body of
mathematical work.  But, again, appearances are deceiving, and logical results from
recent years have much to tell us about just what is needed to carry on all but the patently
set-theoretical reaches of modern mathematics.  It is not claimed that predicative systems
account for that, but it has been established that systems far weaker than Zermelo set
theory and even than second-order arithmetic suffice for the bulk of mathematical
practice.

Like most scientists, philosophers of science could simply take mathematics for granted
and not concern themselves with its foundations, as being irrelevant to their main
concerns.  But, as Hellman has emphasized in his introduction to his article in this
volume, debates like those discussed here as to realism vs. (e.g.) instrumentalism, and as
to the indispensability of highly theoretical concepts and principles, are equally central to
the philosophy of science.  Whether the kind of logical results described here will be
more directly relevant to those debates remains to be seen.  But as long as science takes
the real number system for granted, its philosophers must eventually engage the basic
foundational question of modern mathematics:  "What are the real numbers, really?"
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Notes

1. Invited lecture in the Symposium, "Is foundational work in mathematics relevant to
the philosophy of science?" at the meeting of the Philosophy of Science
Association, Chicago, Nov. 1, 1992.

2. Geoffrey Hellman's contribution to this symposium (this volume) is closely related
to our discussion of these questions at a number of points.

3. The complete text for Gödel's 1933 lecture was found in his Nachlass; it will be
reproduced in the forthcoming Vol. III of Kurt Gödel's Collected Works.

4. Maddy (1990) does attempt to advance a modified form of realism which would
root our knowledge of sets in everyday physical experience.  In my view, this is
convincing only for the most elementary parts of set theory, if at all.

5. For a more extensive survey of the development of predicativity see Part I of
(Feferman 1964).

6. Parsons (1983) has argued for the impredicativity of the induction principle on N.
Nelson (1986) (in evident agreement with this view) has developed an axiom system
for what he calls predicative arithmetic which drastically restricts the use of the
induction principle.  (The computational content of Nelson's system is related to the
feasibly computable functions in the sense of computer science.)  In contrast,
(Feferman and Hellman forthcoming) provide predicative foundations of full
arithmetic on the basis of rather weak and intuitively evident axioms for finite sets.
So one sees that it is reasonable to consider notions of predicativity relative to
various basic conceptions;  the one dealt with in the present text has come to be
called predicativity given the natural numbers.

7. For reasons explained in (Feferman 1988).

8. The notion of Lebesgue outer measure cannot be defined in W since it makes
essential use of the g. l. b. applied to sets, not sequences.  However, the measure of
measurable sets can be defined as the g.l.b. of measures of a sequence of
approximating open covers.  Incidentally, W does not prove the existence of non-
measurable sets of reals in the sense of Lebesgue, i.e. it is consistent with W to
assume that all sets of reals are measurable.
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9. Simpson is currently preparing a book on subsystems of second order arithmetic in
which many of these results will be presented in full.

10. Naturally, one may expect that many results τ of classical analysis are not
constructively provable as given; cf. e.g. (Pour-El and Richards 1989) and (Hellman
1993).  That doesn't imply that τ has no constructive substitute in Bishop's sense.

11. Cf., e.g., (Feferman 1977 and (forthcoming)) for surveys of work in this direction,
as well as (Simpson 1987).
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