
WHAT RESTS ON WHAT?
THE PROOF-THEORETIC ANALYSIS OF MATHEMATICS

SOLOMON FEFERMAN1

Whenever a subject is organized systematically for expository or foundational purposes (or
both), one must deal with the question: What rests on what? The way in which this is
answered in the case of mathematics depends on whether one is considering it informally or
formally, i.e. from the point of view of the mathematician or the logician, respectively. The
latter usually deals with the question in terms of what specifically follows from what in a
given logical/axiomatic setup. Proof theory provides technical notions and results which–
when successful–serve to give a more global kind of answer to this question, in terms of
reduction of one such system to another; moreover, these results provide a technical bridge
from mathematics to philosophy. The purpose of this paper is to give a picture of what is
accomplished in these various respects by reductive proof theory. My own approach to that
subject is outlined in §1, along with a brief comparison with a more standard account. This
is then followed in §2 by a description of some technical results that illustrate the general
approach. The paper concludes in §3 with a discussion of how reductive proof theory mediates
between mathematics and philosophy. A more technical and comprehensive exposition of
the material in §§1-2 has previously been given in my paper [Feferman 1988].

§1. What rests on what? Proof-theoretical and foundational reductions.
In the following we use the letters:

M, for an informal part of mathematics (such as number theory, analysis, algebra, etc.,
or a subdivision of such);

L, for a formal language for a part of mathematics (e.g. the language of elementary number
theory);

φ, ψ, . . . for well-formed formulas or statements of L;
T, for a formal axiomatic system in L (e.g. the system of first-order Peano Arithmetic PA

in the language of elementary number theory); and
F , for a general foundational framework (e.g. finitary, constructive, predicative, countable

infinitary, set-theoretical or uncountable infinitary, etc.).

These categories provide different senses in which we can deal with the question of what
rests on what from a logical point of view:

M rests on T, in the sense that M can be formalized in T;
φ rests on T, in the sense that φ is provable in T;
T rests on F , in the sense that T is justified by F ; and
T1 rests on T2, in the sense that T1 is reducible to T2.

With respect to the last of these, there are different technical notions of reducibility of
one axiomatic system to another. We want to contrast, in particular, the notion of T1

being interpretable (or translatable) in T2 with that of T1 being proof-theoretically reducible

1Invited lecture, 15th International Wittgenstein Symposium: Philosophy of Mathematics, held in Kirch-
berg/Wechsel, Austria, 16-23 August 1992.
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to T2, written T1 ≤ T2 (this will be defined in §2). In general, these move in opposite
directions from a foundational point of view, since we are mainly concerned with the relation
T1 ≤ T2 when T2 is a part of T1, either directly or by translation. In contrast, T2 tends to
be more comprehensive than T1 in the case of interpretations; a familiar example is that of
Peano Arithmetic PA (as T1) in Zermelo-Fraenkel set theory ZF (as T2), where the natural
numbers are interpreted as the finite ordinals. This is a conceptual reduction of number
theory to set theory, but not a foundational reduction, because the latter system is justified
only by an uncountable infinitary framework whereas the former is justified simply by a
countable infinitary framework.

The driving aim of the original Hilbert program (H.P.) was to provide a finitary justifi-
cation for the use of the “actual infinite” in mathematics. This was to be accomplished by
directly formalizing one body or another of infinitary mathematics M in a formal axiomatic
theory T1 and then demonstrating the consistency of T1 by purely finitary means; in prac-
tice, that would be established by a proof-theoretic reduction of T1 to a system T2 justified
on finitary grounds. It is generally acknowledged that H.P. as originally conceived could not
be carried through even for elementary number theory PA as the system T1, in consequence
of Gödel’s 1931 incompleteness theorems. This then gave rise to certain relativized forms
of H.P.; the history will be traced briefly below. In our approach, what the results of a
relativized H.P. should achieve are best expressed in the following way. ([Feferman 1988], p.
364):

A body of mathematics M is represented directly in a formal system T1 which is
justified by a foundational framework F1. T1 is reduced proof-theoretically to a
system T2 which is justified by another, more elementary such framework F2.

In Hilbert’s scheme, F1 was to be the infinitary framework of modern mathematics fea-
turing (i) the “completed” or “actual” infinite (both countable and uncountable) and (ii)
non-constructive reasoning, while F2 was to be the framework of finitary mathematics fea-
turing (i)′ only the “potential” infinite of finite combinatorial objects, and (ii)′ constructive
reasoning applied to quantifier-free statements (typically, equations). According to Hilbert,
already the system PA embodies (i) and (ii) by the use of quantified variables which are
supposed to range over the set N of natural numbers and the assumption of the Law of the
Excluded Middle, from which follows statements of the form (∀x)φ(x) ∨ (∃x)¬φ(x). Even
for decidable quantifier-free φ these require for their justification a survey of the totality of
natural numbers, by a kind of infinitary act of omniscience. 2

The general problem raised by Gödel’s incompleteness results [1931] for H.P. is that if
finitary mathematics is itself to count as a significant body of informal mathematics, it
must be formalizable in a consistent formal axiomatic theory T. Then by Gödel’s second
incompleteness theorem, the consistency of T would not be provable in T, hence could not
be finitarily provable, and so H.P. cannot be carried out for T. Just what T could serve this

2This view in the Hilbert school is revealed, for example, by the title of [Ackermann 1924–25]:
“Begründung des ‘tertium non datur’ mittels der Hilbertschen Theorie des Widerspruchsfreiheit”, and by
Hilbert’s reference to the axioms for quantification as the “transfinite axioms”.
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purpose was not analyzed in the Hilbert school. In fact, the kind of finitary reasoning that
had been employed by its workers in the 1920s could evidently be formalized in PA and even
in its quantifier-free fragment PRA (Primitive Recursive Arithmetic), and it would be hard
to imagine anything at all of the same character which could not be formalized in Zermelo set
theory or the equivalent finite theory of types P of [Gödel 1931].3 Nevertheless, Gödel was
cautious at the time about the significance of his second incompleteness theorem for H.P.: “I
wish to note expressly that [this theorem does] not contradict Hilbert’s formalistic viewpoint
. . . it is conceivable that there exist finitary proofs that cannot be expressed in the formalism
of P . . . ”.4 And, in his foreword to [Hilbert and Bernays 1934], Hilbert also (implicitly)
stressed this possibility, saying that the only consequence of Gödel’s incompleteness theorems
for his program was that one would have to work harder than anticipated in order to carry
it out.

Despite Hilbert’s continued optimism, the general feeling after 1931 was that Gödel’s
second incompleteness theorem doomed H.P. to failure, and that some essentially new idea
would be needed to carry out anything like it, even for PA. Yet another result of Gödel in his
paper [1933] (independently found by Bernays and Gentzen) forced a further reconsideration
of H.P.: This showed that PA could be translated in a simple way into the intuitionistic
system HA of Heyting’s arithmetic, which differs from PA only in omitting the Law of the
Excluded Middle from its basic logical principles. Thus, one specific goal of H.P. was achieved
in a single stroke (cf. ftn. 2 above). Moreover, the intuitionists argued that HA is justified
on a conception of the natural numbers as a potentially infinite set. From that point of view,
the result of Gödel’s translation of PA into HA was to eliminate the actual infinite in favor
of the potential infinite and thus to meet the main aim of H.P. at least for number theory.
However, by its free use of the language of first-order quantification theory, the system HA
is not thereby justified on the basis of the more strictly finitary forms of reasoning using
only quantifier-free formulas, as demanded by Hilbert. On the one hand, Gödel’s 1933 result
corrected a common tendency in the Hilbert school prior to 1933 to identify intuitionism
with finitism. On the other hand, his reduction of PA to HA fueled the growing search for
a wider conception of H.P. As reported by Bernays ([1967], p. 502) years later: “It thus
became apparent that the ‘finite Standpunkt’ is not the only alternative to classical ways
of reasoning and is not necessarily implied by the idea of proof theory. An enlarging of the
methods of proof theory was therefore suggested: instead of a reduction to finitist methods
of reasoning, it was required only that the arguments be of a constructive character, allowing
us to deal with more general forms of inference.” Here was the germ of a relativized form of
H.P.

One strikingly new specific way forward was provided by Gentzen in his paper [1936]
in which the consistency of PA was proved by transfinite induction up to Cantor’s ordinal

3The question of completely formalizing finitary mathematics has been addressed by [Kreisel 1958] and
[Tait 1981]; the former arrived at a system of the same strength as PA, while the latter restricted it much
more drastically to PRA.

4Cf. [Gödel 1986], pp. 138-139 and 195. Gödel later sharply revised this opinion in his paper [1958]: “[I]t
is necessary to go beyond the framework of what is, in Hilbert’s sense, finitary mathematics if one wants to
prove the consistency of classical mathematics, or even that of classical number theory.” (Cf. [Gödel 1990],
p. 241). There is evidence that he had arrived at that point of view long before 1958.

3



ε0 (TI(ε0)) applied only to decidable quantifier-free predicates and otherwise using only
finitary reasoning. Here the ordinals less than ε0 are represented in Cantor normal form ωα1+
. . .+ωαn (α1 ≥ . . . ≥ αn), and the ordering of these is isomorphic to an effective ordering of
the natural numbers by taking the sequence number pa1

1 . . . pan
n to correspond to ωα1+. . .+ωαn

when ai corresponds to αi. The principle TI(ε0) may itself be justified on constructive
grounds (though no longer clearly finitary grounds, even for decidable predicates). Gentzen
showed that his result was best possible by establishing each instance of TI(β) in PA for each
β < ε0. In modern terms, ε0 was thus identified as the “ordinal of PA”, in the sense of being
the least non-provably recursive well-ordering in PA. Gentzen’s consistency proof apparently
impelled Bernays’ acceptance of a further shift away from the original H.P., as is evidenced
by its inclusion in [Hilbert and Bernays 1939], under the section title: “Überschreitung des
bisherige methodischen Standpunktes der Beweistheorie”.5

In the post-war period, Gentzen-style consistency proofs and ordinal analysis of various
subsystems of analysis and set theory became the dominant approach in proof theory. These
have involved the construction of more and more complicated recursive well-orderings ≺ of
the natural numbers, obtained from notation systems for larger and larger ordinals α, in each
case identified as the least non-provably recursive well-ordering of the theory T in question;
furthermore, the consistency of T is proved by transfinite induction up to α,TI(α) (i.e.
on the corresponding recursive ≺ relation) applied to decidable predicates, while otherwise
using only finitary reasoning. Several modern texts which exposit this kind of extension
of the Gentzen approach are: [Schütte 1977], [Takeuti 1987] and [Girard 1987], as well as
the monograph [Pohlers 1990]. These texts are highly technical, and cannot be faulted
on mathematical grounds; on the contrary, they contain many deep results. But it is not
at all clear what they contribute to an extended H.P. in the sense envisioned by Bernays.
The crucial question is: In what sense is the assumption of TI(α) justified constructively
for the very large ordinals α used in these consistency proofs? Indeed, on the face of it,
the explanation of which ordinals α are used appeals to the very concepts and results of
infinitary set theory that one is trying to account for on constructive grounds. For example,
in Ch. IX of [Schütte 1977], a notation system is introduced which is defined in terms of
a hierarchy of normal functions on the set of ordinals less than the first fixed point of
ℵα = α. But this is only the beginning. In the still more advanced research of [Jäger
and Pohlers 1982], use is made of a notation system based on the ordinals less than the
first (set-theoretically) inaccessible cardinal, to establish the consistency of a moderately
strong subsystem of analysis. And [Rathjen 1991] has used notation systems based on
the ordinals less than the first Mahlo cardinal to prove the consistency of a subsystem of
set theory. The notation systems developed for these purposes are all countable, though
they name extremely large uncountable ordinals. Then, by means of an analysis of the
ordering relations, one shows in each case that the ordering of the notations is recursive.
Moreover, well-ordering proofs of a more or less constructive character can be given which
do not appeal to the fact that the notation systems are derived from hierarchies of functions
on very large ordinal number classes. However, the conviction that one is indeed dealing

5The preparation of [Hilbert and Bernays 1934 and 1939] had been placed by Hilbert entirely in the hands
of Bernays.
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with well-ordering relations derives from the latter and not from the well-ordering proofs
in which those traces have been obliterated. Finally, there is a prima facie anomaly in
the use of transfinite induction applied to orderings for enormous ordinals while insisting
on a restriction to finitary reasoning otherwise. Having given up the original H.P. in favor
of a reduction of classical infinitary mathematics to one part or another of constructive
mathematics, there seems to be no reason to retain its finitary vestiges.

One more feature of the extended Hilbert-Gentzen program deserves criticism, namely
the focus on consistency proofs: Hardly anyone nowadays doubts that Zermelo-Fraenkel set
theory is consistent or, to be much more moderate, that the system of analysis (full second-
order arithmetic) is consistent. And surely the number who doubt that PA is consistent is
vanishingly small. It is true that Takeuti ([1987], p. 100–101) and Schütte ([1977], p. 3) still
pay lip service to the goal of consistency proofs, but their followers have de-emphasized that
in favor of other goals, such as the ordinal analysis of formal systems (cf. [Pohlers 1990], pp.
5-6).

A more thoroughgoing reconsideration of H.P. was initiated by Kreisel in his paper “Math-
ematical significance of consistency proofs”([1958a]) and “Hilbert’s programme” ([1958b]).
The former emphasized the additional mathematical information that can be gained from
successful applications of proof-theoretical methods, by telling what more we know of a state-
ment, beyond its truth, if we know that it has been proved by specific methods. For example,
this may take the form of extracting bounds for existential results, or for the complexity of
provably recursive functions. The latter paper first suggested the idea of a “hierarchy” of
Hilbert programs; this was elaborated in [Kreisel 1968], which considered besides reductions
to finitary and constructive conceptions also reductions to semi-constructive (e.g. predica-
tive) conceptions, and within each a more refined analysis of what principles are needed for
various pieces of reductive work (op. cit. pp. 323-324).

My own approach in [Feferman 1988] to a relativized form of H.P. formulated as (∗)
above, is similar in this over-all respect to [Kreisel 1968] but (to repeat myself, op. cit. p.
367): “the details are different both as to the categorization of the conceptions to which the
foundational reductions are referred and as to the proof-theoretical work which exemplifies
these reductions. Concerning the latter, it is simply that most of the work surveyed has been
carried out in the last twenty years. And, with respect to the former, we have tried to seize
on the most obvious features of foundational conceptions [or frameworks] so that, insofar as
possible, what the work achieves will speak for itself.”

Some examples from my 1988 survey which illustrate the scheme (∗) are given in the
next section.
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§2. Hilbert’s program relativized: Proof-theoretical and foundational reductions.

2.1. Proof-theoretical reductions. All systems T considered in the following are assumed
to contain PRA (described in 2.3 below). The language LT of T and the axioms and rules
of inference of T are assumed to be specified by primitive recursive presentations via usual
Gödel numberings (coding) of expressions; we may identify expressions with their codes.
Thus the relation ProofT(x, y) which holds when y is (the code of) a proof in T of the formula
(with code) x, is primitive recursive. The metatheory of primitively recursively presented
axiomatic systems can be formalized directly in PA and even in a subsystem of PA which is
a conservative extension of PRA (described in 2.4 below); for details, cf. [Smoryński 1977]
or [Feferman 1989].

When considering a pair of systems T1, T2, we write Li for LTi (i = 1,2). Suppose Φ
is a primitive recursive class of formulas contained in both L1 and L2, which contains every
closed equation t1 = t2. The basic idea of a proof-theoretic reduction of T1 to T2 conserving
Φ is that we have an effective method of transforming each proof in T1 ending in a formula
φ of Φ into a proof of φ in T2; moreover, we should be able to establish that transformation
provably within T2. More precisely, we say that T1 is proof-theoretically reducible to T2 by
f , conservatively for Φ, and write

f : T1 ≤ T2 forΦ

if f is a partial recursive function such that

(1) whenever ProofT1 (x, y) and x is (the code of) a formula in Φ
then f(y) is defined and ProofT2 (x, f(y)),

and

(2) the formalization of (1) is provable in T2.

We write T1 ≤ T2 for Φ, if there is such an f satisfying (1) and (2). In practice, f may be
chosen to be primitive recursive and the formalization of (1) can be proved in PRA.

It is immediate that if T1 ≤ T2 for Φ, then T1 is conservative over T2 for Φ in the sense
that

(3) φ ∈ Φ and T1 � φ implies T2 � φ.

It then follows by the general assumption on Φ that

(4) if T2 is consistent then T1 is consistent,

since if T1 � 0 = 1 then T2 � 0 = 1. Moreover, by (2), the formalization ConT2 → ConT1 of
(4) is provable in T2 (and, in practice, already in PRA.)

Remark. It should be noted that we may have T1 conservative over T2 without there being
any possible proof-theoretic reduction of T1 to T2. For example, if Φ is the class of closed
equations t1 = t2 of the language of PRA and T1 is any consistent extension of PRA then
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T1 is conservative over PRA for Φ, because if T1 � t1 = t2 we must have PRA � t1 = t2, for
otherwise PRA � t1 �= t2. Now choose T1 to be any consistent system which proves ConPRA,
so it is not proof-theoretically reducible to PRA (e.g., to be extreme, T1 = ZF).

2.2. Foundational reductions. According to our general scheme(∗) of §1, a proof-
theoretical reduction T1 ≤ T2 provides a partial foundational reduction of a framework
F1 to F2, if T1 is justified directly by F1 and T2 by F2. The reason for the qualification
‘partial’ is that we may well have a system T1 which is directly justified by F1 but which
is not reducible to any T′

2 justified by F2. For example (to be extreme again), the system
ZF, which is justified by the uncountable infinitary framework of Cantorian set theory, is
not reducible to any finitarily justified system. On the other hand, it may also happen that
a system T1 which prima-facie requires for its justification an appeal to an infinitary frame-
work is proof-theoretically reducible to a finitarily justified T2; in that case we have a partial
reduction of the infinitary to the finitary.

In the sections 2.4 and 2.6-2.8 below we shall describe some results which exemplify
partial foundational reductions for the following pairs of frameworks:

F1 F2

Infinitary Finitary
Uncountable Infinitary Countable Infinitary
Impredicative Predicative
Non-constructive Constructive

Remarks.
(i) The pairs F1, F2 are not the only ones which might be considered in this respect (cf.
[Feferman 1988] p. 367).
(ii) In establishing proof-theoretical reductions which provide partial foundational reductions
we may well use results of Gentzen-Schütte-Takeuti style, but these appear behind the scenes.
The point is to apply such work to results which speak for themselves (unlike consistency
proofs by transfinite induction on very large ordinals).
(iii) The emphasis here on the use of proof theory for a form of relativized H.P. is not meant
to diminish other applications of proof theory – on the contrary. But the interest of such is
guided by quite different considerations.

2.3. The language and basic axioms of first-order arithmetic. In order to describe
the reductive results for several systems of arithmetic in the next section, we need some
syntactic and logical preliminaries. The language L0 is a type 0 (or first-order) single-sorted
formalism. It contains variables x, y, z, . . . , the constant symbol 0, the successor symbol ′

and symbols f0, f1, . . . for each primitive recursive function, beginning with f0(x,y) for x + y
and f1(x,y) for x · y. Terms t, t1, t2, . . . are built up from the variables and 0 by closing under
′ and the fi. The atomic formulas are equations t1 = t2 between terms. Formulas are built
up from these by closing under the propositional operations ( ¬,∧,∨,→) and quantification
(∀ x, ∃ x) with respect to any variable. A formula is said to be quantifer-free, or in the
class QF, if it contains no quantifiers. A formula is said to be in the class Σ0

n if it is given
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by n alternating quantifiers beginning with ‘∃’, followed by a QF matrix. For example,
(∃y)ψ ∈ Σ0

1 and (∃y1)(∀y2)ψ ∈ Σ0
2 when ψ ∈ QF. (The superscript in ‘Σ0

n’ indicates that
these are type 0 variables, and the ‘Σ’ tells us that the quantifier string starts with ‘∃’.)
Dually, φ is in the class Π0

n if it is given by n alternating quantifiers beginning with ‘∀’,
followed by a QF matrix. For example, (∀y)ψ ∈ Π0

1 and (∀y1)(∃y2)ψ ∈ Π0
2 when ψ ∈ QF.

Unless otherwise noted the underlying logic is that of the classical first-order predicate
calculus with equality. The basic non-logical axioms Ax0 of arithmetic are:

(1) x′ �= 0,
(2) x′ = y′ → x = y,
(3) x + 0 = x ∧ x + y′ = (x + y)′,
(4) x · 0 = 0 ∧ x · y′ = x · y + x,

and so on for each further fi (using its primitive recursive defining equations as axioms). To
Ax0 may be added certain instances of the Induction Axiom scheme:

IA φ(0) ∧ ∀x(φ(x) → φ(x′)) → ∀xφ(x),

for each formula φ(x) (with possible additional free variables). Φ-IA is used to denote both
this scheme restricted to φ ∈ Φ, and the system with axioms Ax0 plus Φ-IA. We use PA
(Peano Arithmetic) to denote the system with axioms Ax0 + IA where the full scheme is
used.6

The language of PRA (Primitive Recursive Arithmetic) is just the quantifier-free part of
L0. In place of IA it uses an Induction Rule:

IR
φ(0), φ(x) → φ(x′)

φ(x)
, for eachφ ∈ QF.

2.4. Reduction of the countable infinitary to the finitary. It is generally acknowl-
edged that PRA is a finitarily justified system, or to be more precise, that each theorem of
PRA is finitarily justified.7 On the other hand, as explained in §1 above, the use of classical
quantificational logic in any system containing the base axioms (1) x′ �= 0 and (2) x′ =y′ →
x = y of Ax0 implicitly requires assumption of the completed countable infinite. The first
result which established a partial reduction of the countable infinitary to finitary principles
was that the system QF-IA is proof-theoretically reducible PRA, obtained by Ackermann
[1924–25].8 Years later this was improved by Parsons [1970] to the following:

6By a result of [Gödel 1931] all primitive recursive functions are explicitly definable in terms of 0, ′, +,
and ·, and their recursive defining equations are derivable in the subsystem of PA obtained by restriction to
formulas in that sublanguage. However, it is more convenient here to take PA in the form described above,
so as to include PRA directly.

7According to Tait’s analysis [1981], finitary number theory coincides with PRA; if that account is ac-
cepted, a finitist would recognize each theorem of PRA as being finitarily justified, but not PRA as a whole.

8Actually, Ackermann thought he had accomplished much more, namely a consistency proof of analysis by
finitary means! His error was discovered by von Neumann [1927] and in essence this relatively modest result
was extracted. The situation was further clarified by Herbrand [1930], who gave useful sufficient conditions
for finitary consistency proofs.
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Theorem 1. Σ0
1-IA ≤ PRA.

The reduction here is conservative for Π0
2 formulas in the following sense:

If Σ0
1-IA � ∀ x ∃ y ψ(x,y) with ψ in QF then PRA � ψ(x,t(x)) for some term t(x).

Remarks. (i) Here, as below, only references are given in lieu of proofs. (ii) As measured
by the arithmetical hierarchy, Theorem 1 is best possible, since the system Σ0

2-IA proves the
consistency of Σ0

1-IA (cf. [Sieg 1985] pp. 46-47). However, in 2.6 below we shall describe a
stronger result obtained by passing to the language of analysis, which is taken up next.

2.5. The language and basic axioms of analysis. The language L1 of analysis, or
second-order arithmetic, is obtained from L0 by adjunction of variables for type 1 objects.
In some presentations, these are taken to be sets, in others, they are taken to be functions,
while in still others, both kinds of variables are taken to be basic. For simplicity, we shall
follow the first choice here, by adjoining to L0 set variables X, Y, Z, . . . and the binary
relation symbol ∈ between individuals and sets. Thus, the atomic formulas are expanded to
include t ∈ X for any term t and set variable X. (Equality between sets is considered to be
defined extensionally, i.e. by: X = Y ↔ ∀x[x ∈ X ↔ x ∈ Y].) Formulas are now built up
using the propositional operations, and the quantifiers applied both to individual variables
(∀x, ∃x) and set variables (∀ X, ∃X). The underlying logic is now that of classical two-sorted
predicate calculus with equality (in the first sort). The classes QF, Σ0

n and Π0
n are explained

in L1 just as for L0 in §2.3 above, but with the understanding that formulas in these classes
might contain set variables via the expanded class of atomic formulas. A formula is said
to be arithmetical if it contains no bound set variables, and we write Arith for the class of
all such formulas.9 In line with the definition of the classifications Σ0

n and Π0
n in §2.3, we

define classes Σ1
n and Π1

n as follows: A formula φ of L1 is said to be in Σ1
n if it is given

by n alternating set quantifiers beginning with ‘∃’, followed by an arithmetical matrix. For
example, (∃Y)ψ ∈ Σ1

1 and (∃Y1)(∀Y2)ψ ∈ Σ1
2 when ψ ∈ Arith. (Now the superscript in

‘Σ1
n ’ tells us that we are measuring the type 1 quantifier complexity of a formula φ.) Dually,

φ is in the class Π1
n if it is given by n alternating set quantifiers beginning with ‘∀’, followed

by an arithmetical matrix. For example, (∀Y)ψ ∈ Π1
1 and (∀Y1)(∃Y2)ψ ∈ Π1

2 when ψ ∈
Arith.

The general set existence axiom is given in L1 by the Comprehension Axiom scheme:

CA ∃X∀x [x ∈ X ↔ φ(x)]

where φ is a formula of L1 which does not contain the variable X free but may contain free
individual and set variables besides x. The Induction Axiom scheme IA of L1 is of the same
form as in L0, φ(0) ∧ ∀x (φ(x) → ∀φ(x′)) → ∀x φ(x), but where now φ may be any formula
of L1. There is another option for the statement of induction in L1, namely as the single
second-order statement:

I1 ∀X [0 ∈ X ∧∀x(x ∈ X → x′ ∈ X) → ∀x (x ∈ X)].

9Every formula φ of Arith is logically equivalent to a formula in the class
⋃

n Π0
n, also denoted Π0

∞.
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In the presence of full CA, IA is derivable from I1. The full system of analysis is given
by the axioms Ax0, CA and IA (or equivalently I1). We shall consider subsystems over
Ax0, based on various combinations Φ-CA and Ψ-IA where Φ,Ψ are classes of L1 formulas.
In particular, two extremes are given special attention in combination with a given Φ-CA,
namely adjunction of full IA or adjunction simply of I1. In the first case the system is
denoted Φ-CA and in the second case it is denoted Φ-CA� (for which the notation Φ-CA0

is also used in some presentations). However, in intermediate cases of adjunction Ψ-IA, the
system is designated Φ-CA + Ψ-IA.

The formulas Σ0
1 of L0 define the recursively enumerable sets in the standard model

(N , 0, ′,+, ·, . . .). The recursive sets S are exactly those which are recursively enumerable
and whose complement N − S is recursively enumerable, i.e. which are definable both by a
Σ0

1 formula and a Π0
1 formula. In L1, all this relativizes to the set variables of the formulas.

For example, if φ(x,X) is in Σ0
1 and ψ(x,X) is in Π0

1 in L1, and ∀x(φ(x,X)↔ ψ (x,X)) holds in
the standard model, then {x| φ (x,X)} denotes a set recursive in X, and all sets recursive in
X are definable in this way. Thus the (relatively) Recursive Comprehension Axiom scheme
is formulated in L1 by:

RCA ∀x[φ(x) ↔ ψ(x)] → ∃X∀x[x ∈ X ↔ φ(x)], for φ ∈ Σ0
1, ψ ∈ Π0

1

(and X not free in φ or ψ). RCA is also denoted ∆0
1-CA. This generalizes in the obvious way

to ∆0
n-CA by taking φ ∈ Σ0

n,Π
0
n. Similarly, we shall consider the scheme

∆1
1-CA ∀x[φ(x) ↔ ψ(x)] → ∃X∀x[x ∈ X ↔ φ(x)] for φ ∈ Σ1

1, ψ ∈ Π1
1

(and X not free in φ or ψ) and its obvious generalization to ∆1
n-CA. The classes ∆1

1 and
∆1

2 of sets definable in the standard model are very significant in higher recursion theory.
In particular, ∆1

1 coincides with the class of hyperarithmetic sets, obtained by iterating
relative arithmetical (or simply relative Π0

1) definitions through all recursive ordinals (cf.
[Sacks 1990]).

Remark. Second-order arithmetic is called analysis because the notion of being a real number
can be formally expressed in L1. First one uses a standard representation of the rational
numbers Q in terms of the natural numbers, and then real numbers may be defined as
Dedekind sections in Q, i.e. as certain subsets of Q and hence of N . Alternatively, taking
functions as the basic type 1 objects, one may formally represent real numbers as Cauchy
sequences of rational numbers. To develop a theory of functions of real numbers in general
one must proceed to a third-order language L2; however, many useful classes of functions,
such as the continuous functions of reals, may already be handled in L1. We shall discuss
the formalization of informal mathematical analysis in subsystems of CA in §3 below.

2.6. Reduction of the uncountable infinitary to the finitary. Cantor’s diagonal
argument for the uncountability of the collection of all subsets of the set of natural numbers
is easily carried out formally under very minimal assumptions about sets. First of all, a
countable sequence of sets X0, X1, . . ., Xi, . . . is taken to be represented by a single set X
for which y ∈ Xi ↔ 〈i, y〉 ∈ X (where 〈, 〉 is a primitive recursive pairing function). Then it
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follows from QF-CA that no countable sequence of sets includes all sets, i.e. that ∀X∃Y¬∃x∀y
[y ∈ Y ↔ 〈x, y〉 ∈ X], by taking y ∈ Y ↔ 〈y, y〉 /∈ X. Thus if one accepts the Hilbertian point
of view that classical quantificational logic over a domain of objects implicitly requires for its
justification treating that domain as a completed totality, then assumption of the principle
QF-CA (and even much less) requires the uncountable infinitary foundational framework
for its justification. Hence if a system T1 in L1 includes QF-CA and is proof-theoretically
reducible to a system T2 justified by a finitary framework, then we have a partial reduction
of the uncountable infinitary to the finitary. Just such a reduction is given by the following
result:

Theorem 2. RCA + Σ0
1-IA ≤ PRA.

The proof of this is motivated by the fact that RCA has an ω-model in the collection of all
recursive subsets of N . Formally, one first obtains a direct translation of RCA +Σ0

1-IA into
Σ0

1-IA considered as an L0 system, using the formalization of elementary recursion theory
there, and then applies Theorem 1. Once more, the reduction conserves Π0

2 formulas.

A very interesting strengthening of Theorem 2 has to do with a set existence principle
which cannot be realized recursively in this way, namely so-called Weak König’s Lemma
(WKL). König’s Lemma (KL) in general says that any finitely branching infinite tree must
contain some infinite path; WKL is its restriction to binary branching trees. The formal
statement of WKL in L1 takes the form:

WKL ∀X [BinTree(X) ∧ Inf(X) → ∃Y. Path (Y,X)]

It is well-known that there are infinite recursive binary trees which contain no recursive
paths, so the recursive sets do not form an ω-model of WKL.

Theorem 3. RCA + WKL + Σ0
1-IA ≤ PRA.

The conservation result which follows from this was first established by Friedman in 1977 by a
model-theoretic argument [cf. Simpson 1988]; the proof-theoretical reduction was established
in [Sieg 1985].10,11 This partial reduction of the uncountable infinitary to the finitary is a
significant contribution to the original H.P., as has been argued by Simpson [1988].

Remark. Extensions of Theorem 3 which provide partial reductions of the higher uncountable
infinitary to the finitary are described in [Feferman 1988], p. 375, using systems of analysis
with higher-type function(al) variables.

2.7. Reduction of the uncountable infinitary to the countable infinitary. As
was remarked in §2.4 above, Σ0

2−IA is not proof-theoretically reducible to PRA. Without
committing oneself to PRA as the limit of finitistically acceptable principles in arithmetic,

10A related earlier result was obtained by [Mints 1976].
11Model-theoretic arguments for conservation do not on their face provide proof-theoretical reductions.

Friedman has shown that certain forms of model-theoretic arguments can be transformed into such reduc-
tions, but this is by no means immediate. Cf. the discussion in [Feferman 1988] pp. 378-381.

11



it may still be said that we have no evident finitary justification (directly or by reduction)
for Σ0

2-IA or beyond. All instances of the first-order induction scheme as embodied in PA
are justified in the countable infinitary framework. We concern ourselves in this subsection
with results which establish a partial reduction of the uncountable infinitary to the countable
infinitary via results of the form T ≤ PA where T is a second-order system. The first of these
concerns the system ACA, which is taken to abbreviate Arith-CA. Recall our convention
that ACA uses full IA in L1, while ACA� uses only the restricted induction axiom I1. ACA�
contains PA since every arithmetical formula in L0 defines a set under Arith-CA.

Theorem 4. ACA� ≤ PA

Conservation is for all formulas of L0. This result is part of the folklore; the earliest reference
I’m aware of for a proof (of a more general, but similar) result is [Shoenfield 1954]; cf. also
[Feferman and Sieg 1981], p. 112.

Remarks. (i) It is essential here that ACA� uses only the second-order induction axiom
I1 and not the full induction scheme IA in L1, since ACA (with full IA) proves ConPA.
(ii) The arithmetically definable subsets of N form an ω-model of ACA, but by Remark (i)
this cannot be used for a translation argument to establish Theorem 4, as it was for Theorem
2. However, there is an easy model-theoretic proof of conservation, since every model M of
PA can be expanded to a model of ACA�, by taking the sets definable by L0 formulas from
elements of M .

While Theorem 4 may not be unexpected (though the matter is delicate as shown by
these remarks) the following is unexpected.

Theorem 5. ∆1
1-CA� ≤ PA.

Here conservation is again for arithmetic formulas. The original proof of the conservation
result is due to [Barwise and Schlipf 1975] and, independently [Friedman 1976], in both cases
by model-theoretic methods. A proof-theoretical reduction was sketched in [Feferman 1977]
p. 967; cf. [Feferman and Sieg 1981a] pp. 108-112 for a full proof.

In the next section we shall consider what can be said about the full system ∆1
1-CA,

which is much stronger than PA.

2.8. Reducing the impredicative to the predicative. A definition of a set S is said to
be predicative if, roughly speaking, all notions and the ranges of all variables occurring in it
are prior to S; otherwise it is called impredicative ([cf. Feferman 1964]). Thus, a definition
which singles S out from a totality of sets by reference via quantification to that totality is
prima facie impredicative. In particular, this holds for S = {x | φ(x)} where φ is a formula
of L1 which contains bound set variables; existence of S is given by CA. Thus Π1

1-CA (or
dually Σ1

1-CA) is justified only on the assumption of the meaningfulness of impredicative
definitions, and that in turn implicitly assumes that there is a well-determined totality of
subsets of the natural numbers which exists independently of any means of (human) definition
or construction.

12



An axiomatic characterization of what reasoning with sets of natural numbers is pred-
icatively acceptable has been given independently by [Feferman 1964] and [Schütte 1964].
One way of describing the characterization is that it allows iteration of the system based
on relative ACA through all ordinals below a certain recursive ordinal Γ0, giving a system
denoted as ACA<Γ0. It is not hard to show that Π1

1-CA proves the consistency of ACA<Γ0

(via a proof of the well-foundedness of a notation system for Γ0), hence cannot be reduced to
predicative principles under the above characterization. This leaves unsettled the status of
∆1

1-CA, which asserts the existence of {x| φ(x)} when φ is Π1
1 and we have ∀x(φ(x) ↔ ψ(x))

with ψ in Σ1
1, because that is still prima facie impredicative. The following theorem set-

tles the matter, since ∈0< Γ0 and so ACA<∈0 is a predicatively justified system; it thus
constitutes a partial reduction of the impredicative to the predicative.

Theorem 6. ∆1
1-CA ≤ ACA<∈0

The conservation part of this result (for Π1
2 formulas) was first proved by [Friedman 1970].

A proof-theoretical reduction was outlined in [Feferman 1971] (cf. [Feferman 1977] p. 965),
and a full proof by another method has been given in [Feferman and Sieg 1981], pp. 119ff.

2.9. Reducing the non-constructive to the constructive. We use T(i) to denote
the result of substituting intuitionistic logic for classical logic in an axiomatic theory T,
otherwise retaining the non-logical axioms and rules of T. (For a suitable formalization of
classical logic, this may simply be obtained by dropping the Law of the Excluded Middle.)
While intuitionistic logic is deemed to be justified on constructive grounds, this by no means
assures that any such T(i) is constructively acceptable; e.g. no constructive justification for
ZF(i) is known. Gödel’s 1933 translation of PA into HA provides an instance of a reduction
(by translation) of a system T to T(i). Since then, a great number of results of this form have
been obtained by an extension of Gödel’s translation; cf. the introductory note by Troelstra to
[Gödel 1933] in [Gödel 1986], pp. 286-287, for a comprehensive survey. Further considerations
are necessary in each case to see whether this translation constitutes a reduction of the
non-constructive to the constructive. Even so, not all such foundational reductions can be
obtained by this relatively simple method. As an example, we have the following result:

Theorem 7. ∆1
2-CA ≤ (Π1

1−CA)
(i)
<∈0

.

Here one has conservation for Π1
2 formulas, as first proved by [Friedman 1970]. The proof-

theoretic reduction, which actually establishes more, namely a reduction of ∆1
2-CA to a

constructive theory ID
(i)
<∈0

of iterated inductive definitions, was established in a series of
steps described in my introduction to [Buchholz et al. 1981], due to work of Pohlers, Sieg
and myself. For a survey of further such work, cf. [Feferman 1988], pp. 377-378.

Remark. It happens that Theorems 5–7 can be strengthened directly using forms of the
Axiom of Choice in L1:

AC ∀x∃Yφ(x,y)→ ∃X∀xφ(x,Xx).

We have Σ1
n-AC� ∆1

n-CA by a simple argument. Then ‘∆1
1-CA’ can be replaced by ‘Σ1

1-AC’
in Theorems 5 and 6 and ‘∆1

2-CA’ by ‘Σ1
2-AC’ in Theorem 7.
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2.10. What about full analysis, higher types and set theory? The original H.P. aimed
to conquer arithmetic, analysis and set theory, more or less in that order. The examples that
have been given in the preceding sections seem to fall far short of giving a foundationally
informative reduction of analysis, not to speak of a reduction to finitist principles. Indeed,
present day Gentzen-Schütte-Takeuti style proof-theoretical work on subsystems of analysis
has failed so far to provide an informative proof-theoretical reduction of Π1

2 -CA, though not
for lack of trying. Whether this is a temporary block is impossible to tell at this time. On
the one hand, it is quite possible that the kind of proof-theoretical reduction used here as
illustrations of the scheme (∗) simply cannot be extended to Π1

2-CA, let alone to full CA. On
the other hand, some new conceptual breakthrough might succeed in dealing with Π1

2-CA
and then open the way to tackle full analysis.

While the future in this direction is completely cloudy, it is possible to say something
useful about formal systems for analysis in higher finite types as well as in systems of set
theory. For example in [Feferman 1988], I described a system of finite types which includes
WKL and is proof-theoretically reducible to PRA (op. cit. p. 375, §4.3); this constitutes a
partial reduction of the higher uncountable infinite to the finitary. I also described a system
of finite types which includes the system ∆1

1−CA� and is proof-theoretically reducible to PA
(op. cit. p. 375, §5.3); this constitutes a partial reduction of the higher uncountable infinite
to the countable infinite. And in [Feferman 1985] I showed how to formulate a flexible
theory VTµ� of variable finite types12 which also includes ∆1

1−CA� and is proof-theoretically
reducible to PA. This is a theory of functions and classes which is directly interpretable
in Zermelo set theory, so the reduction VTµ� ≤ PA constitutes a partial reduction of the
set-theoretical infinitary to the countable infinitary.

One also obtains a partial reduction of the higher set-theoretical infinitary framework,
including transfinite number classes, to the constructive (and in some cases to the predica-
tive framework) through the results of [Jäger 1986]. These provide reductions of various
theories of iterated admissible sets, which are contained in ZF, to subsystems of ∆1

2-CA +
BI, where BI is the principle of bar induction.13 Though these theories lack the Power Set
Axiom, which is used in ZF with Replacement to establish the existence of the transfinite
(accessible) number classes, they build in the existence of such classes by axioms of iterated
admissibility.14 (Speaking in set-theoretical terms, one has the existence of the alephs, i.e.
the cardinals ℵα for α accessible in these theories, but not the beths, i.e. the cardinals �α

for which �α+1 = 2�α).

It would take us too far afield to try to describe the above systems of higher type, variable
type, and set theory in any detail, for which the interested reader should refer to the articles
mentioned in this section and in the footnotes.

12Denoted Res-VT +(µ), op. cit. ; cf. alternatively the closely related system W of [Feferman 1988a], §8.
13BI expresses that one can carry out transfinite induction on any well-founded orderings; ∆1

2-CA + BI is
weaker than Π1

2-CA.
14This direction of work has been pushed up to Mahlo cardinals by [Rathjen 1991]; what is not evident is

whether that gives a reduction to constructive principles.
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§3. From mathematics to philosophy via reductive proof theory.15

Two matters remain to be dealt with in this final section in order to fill out the scheme
(∗) of §1. The first is to say something about the passage by formalization from a body of
mathematics M to a formal theory T, especially with reference to the systems presented in
§2. The second is to indicate the philosophical significance of the kind of reduction of T1 to
T2 illustrated by the results in §2. We take these up in that order.

The scheme (∗) calls for M to have a direct formalization in T1; at the same time
we should expect that T1 does not go beyond M in any essential respects. It is worth
elaborating what is required, following the criteria for formalization set forth in [Feferman
1979] pp. 171–72, for any M and T, as follows.

(i) T is an adequate formalization of M if every concept, argument and result of M may
be represented by a (basic or defined) concept, proof and theorem, resp. of T.

(ii) T is in accordance with (or faithful to) M if every basic concept of T corresponds
to a basic concept of M and every axiom and rule of T corresponds to, or is implicit in,
the assumption and reasoning followed in M (in other words, if T does not go beyond M
conceptually or in principle).

The idea of T being directly adequate to, resp. directly in accordance with M is clear. We
would say that T is indirectly adequate to M if a theory directly adequate to M is reducible
to T in an elementary way (e.g. by a translation or proof-theoretic reduction) while it is
indirectly in accordance with M if T is reducible to a theory directly in accordance with
M. There is a second way in which a theory T may be indirectly adequate to M: that is
to reformulate the concepts, proofs and theorems of M informally in such a way that the
resulting M′ can be directly formalized in T.

Obviously these criteria are not precise and there may be reasonable differences of opinion
as to their application in specific cases. The idea, again, is to say what strikes us as a just
ascription on the basis of general experience. Detailed work of formalization may then lead
us to modify such an attribution. In particular, it is a common result of such work that a
system T which appears to us to provide an adequate and faithful formalization of a body
of mathematics M goes far beyond what is actually needed to represent M in practice.

Consider, first, elementary (non-analytic, non-algebraic) number theory M. At first
sight, this has PA as an adequate and faithful formalization in the way we have presented it in
the language L0 with symbols for all primitive recursive functions and (thence) relations. But
evidently in practice one makes use of only a small stock of these, e.g. +, ·, exp,Σ,Π, pi, <,
|,≡, etc. The fact from [Gödel 1931] that we can make do with only + and ·, shows the
indirect adequacy of that restricted version of PA to informal elementary number theory.
While the general principle of induction is in accordance with this body of mathematics,
detailed work of formalization shows that the complexity of inductive arguments used in

15With apologies to Hao Wang for borrowing the title of [Wang 1974], but with a different meaning.
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practice is very low and rarely goes beyond Σ0
2-IA (or, equivalently, Π0

2-IA), i.e. low parts
of PA are still directly adequate to M. Then for more specific results or groups of results
one can verify that the system Σ0

1-IA is adequate to a significant portion of M and hence,
by Theorem 1, that PRA is indirectly adequate to that part of elementary number theory.16

For recent case studies and extensive references to earlier work, cf. [Hájek and Pudlák 1993].

Turning next to analysis, we find a much more complicated picture, both as to the
categorization of mathematical practice and choice of related formal languages and systems.
One immediate way to break up practice so as to begin to make this more manageable,
is by means of the separation between concrete analysis, based on finite-dimensional real
and complex spaces, and abstract analysis, based on various kinds of general spaces such as
metric, Hilbert, Banach, etc.

In considering the direct formalization of concrete analysis, one must be able to deal
among other things with:

(i) the basic number systems (integers, rationals, reals, complexes),

(ii) finite and infinite sequences of numbers,

(iii) specific operations such as sum and product of finite and infinite sequences,

(iv) sets and functions of numbers (n-ary, for various n),

(v) specific operations on functions and infinite sequences of functions such as differenti-
ation and integration, and

(vi) specific operations on sets and infinite sequences of sets, such as complement, union
and intersection.

Taking first-order (type 0) arithmetic as basic, and considering real numbers to be repre-
sented as sets or sequences of rationals and thence (by reduction to N) as sets or sequences of
natural numbers, we need to consider reals as second-order (type 1) objects. Then functions
and sets of reals are located at the next type level (third-order or type 2 objects), and specific
operations on such are located at still one type higher. Thus for the direct representation of
concrete analysis, the language of functions and sets of finite type is adequate, but already
the part with first-, second- and third-order variables serves most purposes comfortably. The
question then is, what principles (axioms, rules) are appropriate for this formalization?

On the face of it, concrete analysis makes use of the ideas of “arbitrary”set and “arbitrary”
function (of n-tuples of numbers) and, for these, the general forms of the Comprehension
Axiom CA and the Axiom of Choice AC, would seem to be the appropriate set and function
existence principles. But what special forms of these principles are actually required for

16Dedicated finitists, beginning with [Skolem 1923], had made an effort to see what part of elementary
number theory could be directly formalized in PRA; cf. also [Goodstein 1957]. However, it is much easier to
work directly in Σ0

1-IA to see what can be justified by PRA.
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and/or in accord with practice is only revealed by closer attention to the details of formal-
ization. In fact, concrete analysis deals with relatively narrow classes of functions and sets,
such as piece-wise continuous functions (or, more generally, Lebesgue measurable functions)
and open and closed sets (or, more generally, Borel sets of finite level), whose properties are
individually determined by a countable amount of information. Such functions and sets may
then be represented or “coded” by second-order objects, and thus the second-order system
CA (or AC) is indirectly adequate to concrete analysis. The recognition of this is often
credited to [Hilbert and Bernays 1939], Supplement IV. However, it was already essentially
realized by Weyl in his monograph [1918] that far weaker assumptions about second-order
objects, given by arithmetical closure conditions, i.e. on the order of ACA, account at least
for the familiar (19th c.) concrete analysis of piece-wise continuous functions.17

Modern continuation of Weyl’s work has given muchmore precise information about what
can be done in ACA and related systems. Here we take note of the result that as formulated
with the second-order axiom of induction I1, ACA� is reducible to PA. Now [Feferman 1977]
and [Takeuti 1978] described theories of finite type extending ACA� which are still reducible
to PA, and in which the concrete analysis of piece-wise continuous functions and of more
general classes of functions (e.g. Lebesgue measurable) can be carried out directly. These
systems have not been described explicitly in §2 above, so we can’t plug them in as examples
for the scheme (∗); for that, cf. [Feferman 1988]. On the other hand, considerable detailed
work on the formalization of analysis in second-order systems has been carried out by Fried-
man and Simpson and their students within Friedman’s “Reverse Mathematics” program;
cf. [Simpson 1987] for a survey.18 This achieves its end by reformulating and/or coding
various higher-type notions in second-order terms and is thus an example of the second way
(described above) in which a theory T may be indirectly adequate to a body of mathematics.

The work of the Friedman-Simpson school gives quite precise information about what
principles are needed to prove various statements of concrete (and even abstract) analysis,
when these can be reformulated in second-order terms. Combined with the earlier work
mentioned above, the general conclusions are as follows.

(i) That part of concrete analysis which does not require set-theoretical (transfinite)
notions and constructions in any essential way can be comfortably formalized in systems like
ACA� which are reducible to PA.

(ii) Those parts of analysis that require essential use of transfinite ordinals such as “de-
scriptive” set theory of the reals (Borel and projective hierarchies, etc.) can be mostly carried
out in systems reducible to Π1

1-CA and at worst in ∆1
2-CA or ∆1

2-CA + BI.

17Cf. [Feferman 1988a] for an exegesis of the principles which underly Weyl’s work.
18Full details will become available in a book on subsystems of second-order arithmetic in preparation by

Simpson.
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On the other hand, a striking result of the work on the Reverse Mathematics program is
that:

(iii) A great deal of what can be done in ACA� can already be formalized in the system
RCA+WKL+Σ0

1-IA, which is reducible to PRA by Theorem 3 of §2.6.

Abstract analysis goes beyond concrete analysis by its use of arbitrary spaces of various
kinds, e.g. metric spaces, Banach spaces, Hilbert spaces, etc. Moreover, for functional analy-
sis, applications often involve spaces of functions such as the Lp spaces, and, more abstractly,
spaces of functions between give spaces. Thus the mathematics prima-facie requires variable
types X, Y, . . . to represent talk about arbitrary spaces (of the kinds indicated) and higher-
type constructions such as of the type X → Y of all functions from X to Y , from which
function spaces are constructed. It happens that for most of the applications of abstract
analysis one deals with separable spaces, i.e. those X for which there is a countable dense
subset X0 whose completion (under a suitable metric or norm) is X. Talk about such X
may informally be recast by talk about X0, and the latter, being countable, may be coded
as a subset of the natural numbers. It is in this way that parts of abstract analysis are
indirectly accounted for in the Friedman-Simpson approach. However, a direct formalization
requires something like the theories of variable finite type VTµ� or W described in §2.10,
again reducible to PA by [Feferman 1985]. More information about the part of concrete and
abstract analysis that is directly accounted for in this way is given in that paper and in
[Feferman 1988a]. There I conjectured that all of scientifically applicable mathematics can
be directly formalized in W; further discussion of this conjecture further discussion will be
found in the paper [Feferman 1993].

What, finally, is to be said about the philosophical significance of this work? It seems
to me that the information provided by the kind of case studies described here involving
the formalization of considerable tracts of everyday mathematics in appropriate systems, in
combination with the results of their proof-theoretical reductions such as those presented in
§2, must be taken into account in the continuing efforts to develop a relevant and sustain-
able philosophy of mathematics. To take just one example, the Quine-Putnam (scientific)
indispensability arguments for a form of mathematical realism ([cf. Maddy 1992]) are con-
siderably weakened when confronted with the kind of information described in the preceding
paragraphs.19 The question in consequence of that is whether the indispensability arguments
retain sufficient force to be maintained in the arsenal that has been mounted in defense of
realism in mathematics, as, for example, by [Maddy 1990].

In general, the kinds of results presented here serve to sharpen what is to be said in favor
of, or in opposition to, the various philosophies of mathematics such as finitism, predica-
tivism, constructivism and set-theoretical realism. Whether or not one takes one or another
of these philosophies seriously for ontological and/or epistemological reasons, it is important
to know which parts of mathematics are in the end justifiable on the basis of the respective
philosophies and which are not. The uninformed common view – that adopting one of the
non-platonistic positions means pretty much giving up mathematics as we know it – needs

19I argue this at greater length in [Feferman 1993].
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to be drastically corrected, and that should also no longer serve as the last-ditch stand of
set-theoretical realism. On the other hand, would-be non-platonists must recognize the now
clearly marked sacrifices required by such a commitment and should have well thought-out
reasons for making them. Though I personally believe that the kind of results described
here on the whole strengthen the case for a non-platonistic philosophy of mathematics and
further undermine the case for set-theoretical realism, they do not speak for themselves to
that extent, and it is at that point that well-informed critical philosophical discussion must
take over.
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[1958] Über eine bisher noch nicht benützte Erweiterung des finiten Standpunktes, Dialec-
tica, 12, 280–287 (reproduced, with English translation, in [Gödel 1990], 240–251).
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G. Jäger

[1986] Theories for Admissible Sets. A Unifying Approach to Proof Theory, Bib-
liopolis, Naples.
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