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Abstract

IRON FILE SYSTEMS
Vijayan Prabhakaran

Disk drives are widely used as a primary medium for storing information.
While commodity file systems trust disks to either work or fail completely, modern
disks exhibit complex failure modes such as latent sector faults and block corrup-
tions, where only portions of a disk fail.

In this thesis, we focus on understanding the failure policies of file systems and
improving their robustness to disk failures. We suggest a new fail-partial failure
modelfor disks, which incorporates realistic localized faults such as latent sector
faults and block corruption. We then develop and apply a novel semantic failure
analysistechnique, which uses file systemblock typeknowledge andtransactional
semantics, to inject interesting faults and investigate how commodity file systems
react to a range of more realistic disk failures.

We apply our technique to five important journaling file systems: Linux ext3,
ReiserFS, JFS, XFS, and Windows NTFS. We classify their failure policies in a new
taxonomy that measures theirInternal RObustNess (IRON), which includes both
failure detection and recovery techniques. Our analysis results show that commod-
ity file systems store little or no redundant information, and contain failure policies
that are often inconsistent, sometimes buggy, and generally inadequate in their abil-
ity to recover from partial disk failures.

We remedy the reliability short comings in commodity file systems by address-
ing two issues. First, we design new low-level redundancy techniques that a file
system can use to handle disk faults. We begin by qualitatively and quantitatively
evaluating various redundancy information such as checksum, parity, and replica,
Then, in order to account for spatially correlated faults, we propose a new prob-
abilistic model that can be used to construct redundancy sets Finally, we describe
two update strategies: a overwrite and no-overwrite approach that a file system can
use to update its data and parity blocks atomically without NVRAM support. Over-
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all, we show that low-level redundant information can greatly enhance file system
robustness while incurring modest time and space overheads.

Second, to remedy the problem of failure handling diffusion, we develop a mod-
ified ext3 that unifies all failure handling in aCentralized Failure Handler(CFH).
We then showcase the power of centralized failure handling in ext3c, a modified
IRON version of ext3 that uses CFH by demonstrating its support for flexible, con-
sistent, and fine-grained policies. By carefully separating policy from mechanism,
ext3c demonstrates how a file system can provide a thorough, comprehensive, and
easily understandable failure-handling policy.
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Chapter 1

Introduction

The importance of building dependable systems cannot be overstated. One of the
fundamental requirements in computer systems is to store and retrieve informa-
tion reliably. Disk drives have been widely used as a primarystorage medium for
several decades in many systems including but not limited to, personal computers
(desktops, laptops), distributed file systems, database systems, high end storage
arrays, archival systems, and mobile devices.

Unfortunately, disk failures can occur. Traditionally, systems have been built
with the assumption that disks operate in a “fail stop” manner [99]; within this
classic model, the disks either are working perfectly, or fail absolutely and in an
easily detectable manner. Based on this assumption, storage systems such as RAID
arrays have been built to tolerate whole disk failures [81].For example, a file
system or database system can store its data on a RAID array and withstand failure
of an entire disk drive.

The fault model presented by modern disk drives, however, ismuch more com-
plex. For example, modern drives can exhibitlatent sector faults[14, 28, 45, 60,
100], where a block or set of blocks are inaccessible. Under latent sector fault,
the sector fault occurs sometime in the past but the fault is detected only when the
sector is accessed for storing or retrieving information [59]. Blocks sometimes be-
comecorrupted[16] and worse, this can happensilentlywithout the disk being able
to detect it [47, 74, 126]. Finally, disks sometimes exhibittransientperformance
problems [11, 115].

There are several reasons for these complex disk failure modes. First, a trend
that is common in the drive industry is to pack more bits per square inch (BPS)
as the areal densities of disk drives are growing at a rapid rate [48]. As density
increases, errors such as bit spillovers on adjacent tracksmay occur and the effects
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of such errors become larger at higher areal densities as they can corrupt more
bits [4]. In addition, increased density can also increase the complexity of the
logic, that is the firmware that manages the data [7], which can result in increased
number of bugs. For example, buggy firmwares are known to issue misdirected
writes [126], where correct data is placed on disk but in the wrong location.

Second, increased use of low-end desktop drives such as the IDE/ATA drives
worsens the reliability problem. Low cost dominates the design of personal storage
drives [7] and therefore, they are less tested and have less machinery to handle
disk errors [56]. It is important we consider the ATA drives here because they
are not only used in our laptops and desktops but also in high-end storage arrays
such as EMC Centera [36, 50] and large-scale internet clusters like Google [40].
While personal storage drives are designed for active use only several hours per
day, they are less likely to perform reliably under operational stresses of enterprise
systems [7].

Finally, amount of software used on the storage stack has increased. Firmware
on a desktop drive contains about 400 thousand lines of code [33]. Moreover,
the storage stack consists of several layers of low-level device driver code that
have been considered to have more bugs than the rest of the operating system
code [38, 113]. As Jim Gray points out in his study of Tandem Availability, “As the
other components of the system become increasingly reliable, software necessarily
becomes the dominant cause of outages” [44].

Developers of high-end systems have realized the nature of these disk faults
and built mechanisms into their systems to handle them. For example, many redun-
dant storage systems incorporate a backgrounddisk scrubbingprocess [59, 100] to
proactively detect and subsequently correct latent sectorfaults by creating a new
copy of inaccessible blocks (although, auditing the disk for latent sector faults can
itself increase the rate of visible or latent faults [14]); some recent storage arrays in-
corporate extra levels of redundancy to lessen the potential damage of undiscovered
latent faults [28]. Finally, highly-reliable systems (e.g., Tandem NonStop) utilize
end-to-end checksums to detect when block corruption occurs [16].

The above said failure characteristics (latent sector faults and block corruption),
trends (e.g., increased use of cheap drives), and our knowledge about reliable high-
end systems raise the question:how do commodity file systems handle disk failures?
We derived the answer to the above question from our file system analysis and it
led us to the second question:how can we improve the robustness of commodity file
systems?Our research efforts to answer the above two questions form two broad
parts of this dissertation. We discuss more about each of these parts in the following
sections.
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1.1 Analysis of File System Robustness

In this dissertation, the first question we pose is: how do modern commodity file
systems react to failures that are common in modern disks? Although the same
question is applicable to other data management systems such as databases, dis-
tributed file systems, and even RAID storage arrays, we focusand limit the scope
of the thesis to local file systems that we run on our personal computers for three
reasons. First, commodity file systems are important; they are not only pervasive in
the home environment, storing valuable (and often non-archived) user data such as
photos, home movies, and tax returns, but also used in high end storage arrays such
as EMC Centera [36, 50] and within distributed file systems such as NFS [95]. Un-
derstanding how commodity file systems handle disk failuresand improving their
robustness will shed light into the robustness of other complex systems that use
commodity file systems. Second, commodity file systems, specifically open source
file systems, may often be designed and developed by inexperienced and free lance
programmers, who might not be aware of complex disk failure modes. Therefore, it
is necessary to analyze these file systems to unearth the bugs, design flaws, and as-
sumptions made by the developer. Finally, commodity file systems are often used
with cheap hardware devices without any hardware redundancy such as multiple
disks or expensive hardware support such as NVRAM (both of which are usually
available in high-end systems), and this raises new challenges that have not been
addressed before. Among the commodity file systems, our analysis centers around
journaling file systems because most modern file systems suchas Linux ext3 [121],
ReiserFS [89], JFS [19], XFS [112], and Windows NTFS [109] implement journal-
ing in order to maintain file system integrity.

As a first step to understand disk failure handling in file system, we aggregate
knowledge from the research literature, industry, and fieldexperience to form a
new model for disk failure. We label our model thefail-partial failure modelto
emphasize that portions of the disk can fail, either throughblock errors or data
corruption.

With the model in place, we develop and apply an automatedfailure-policy fin-
gerprinting framework, to inject more realistic disk faults beneath a file system.
The goal of fingerprinting is to unearth the failure policy ofeach system: how it
detects and recovers from disk failures. Instead of injecting faults randomly in
file system traffic, we develop and apply a uniqueSemantic Failure Analysis (SFA)
technique wherein we fail particular file system blocks based on their typesand
transactional states. Specifically, for write failure analysis, we develop a novel
transactional state specificfault-injection technique, wherein we build an abstract
model of file system update behavior (e.g., how it orders writes to disk to maintain
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file system consistency). By using such a model, we can injectfaults at various
“interesting” points during a file system transaction, and thus monitor how the
system reacts to such failures. For read failure analysis, we simply fail different
block types. Our semantic failure analysis approach leverages gray-box knowledge
[9, 108] of file system data structures to meticulously exercise file system access
paths to disk across a wide range of about 30 different workloads.

To better characterize failure policy, we develop anInternal RObustNess (IRON)
taxonomy, which catalogs a broad range of detection and recovery techniques that a
file system can use to handle disk failures. For example, a filesystem can use error
codes from lower layers to detect if its read request has completed successfully and
use redundant information such as a replica to recover from the failure. The output
of our fingerprinting tool is a broad categorization of whichIRON techniques a file
system uses across its constituent data structures.

Our study focuses on four important and substantially different open-source file
systems, ext3 [121], ReiserFS [89], IBM’s JFS [19], and XFS [112] and one closed-
source file system, Windows NTFS [109]. From our analysis results, we find that
the technology used by high-end systems (e.g., checksumming, disk scrubbing, and
so on) has not filtered down to the realm of commodity file systems. Across all plat-
forms, we findad hocfailure handling and a great deal ofillogical inconsistencyin
failure policy, often due to thediffusionof failure handling code through the kernel;
such inconsistency leads to substantially different detection and recovery strate-
gies under similar fault scenarios, resulting in unpredictable and often undesirable
fault-handling strategies. Moreover, failure handling diffusion makes it difficult to
examine any one or few portions of the code and determine how failure handling
is supposed to behave. Diffusion also implies that failure handling is inflexible;
policies that are spread across so many locations within thecode base are hard to
change. In addition, we observe that failure handling is quite coarse-grained; it is
challenging to implement nuanced policies in the current system.

We also discover that most systems implement portions of their failure policy
incorrectly; the presence of bugs in the implementations demonstrates the difficulty
and complexity of correctly handling certain classes of disk failure. We observe
little tolerance to transient failures; most file systems assume a single temporarily-
inaccessible block indicates a fatal whole-disk failure. We show that none of the file
systems can recover from partial disk failures, due to a lackof in-disk redundancy.

Finally, in addition to fingerprinting the failure policy, our analysis also helps us
find several bugs within file systems that can catastrophically affect on-disk data.
For example, under certain write failures, all the analyzedfile systems commit
failed transactions to disk; doing so can lead to serious problems, including an
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unmountable file system.

1.2 Building Robust File Systems

This behavior under realistic disk failures led us to our second question: how can
we change file systems to better handle modern disk failures?The file system
should not view the disk as an utterly reliable component. For example, if blocks
can become corrupt, the file system should apply measures to both detect and re-
cover from such corruption, even when running on a single disk. Our approach is
an instance of the end-to-end argument [94]: at the top of thestorage stack, the file
system (or other data management system) is fundamentally responsible for reli-
able management of its data and metadata. In this thesis, we present a number of
techniques (some of which are already implemented in high-end systems) that we
design, implement, and evaluate in a commodity file system (i.e., Linux ext3). The
challenge in building such a file system is that one has to use the limited resources
available on a typical desktop to implement the various techniques and not to overly
reduce the performance which could make the system less attractive.

There are two main challenges in building a robust file system. First, it is
important to design and implement thelow-level redundancy machineryefficiently
such that the overheads are not prohibitive. Second, even ifthe necessary redundant
information is present, it is harder to incorporate them in the current file system
framework due to the diffused failure handling. To solve thefirst problem, we
design new redundancy techniques that can be implemented efficiently on a low-
end system. To handle the second problem, we rearchitect commodity file systems
with a centralized failure handling framework that unifies the low-level redundancy
machinery with high-level failure policies.

In our initial efforts, we develop a family of prototype IRONfile systems, all
of which are robust variants of the Linux ext3 file system. Within our IRON ext3
(ixt3), we investigate the costs of using checksums to detect data corruption, repli-
cation to provide redundancy for metadata structures, and asimple parity protec-
tion for user data. We show that these techniques incur modest space and time
overheads while greatly increasing the robustness of the file system to latent sec-
tor faults and data corruption. By implementing detection and recovery techniques
from the IRON taxonomy, a system can implement a well-definedfailure policy and
subsequently provide vigorous protection against the broader range of disk failures.

Our next step in building robust file systems is to address twospecific problems
that arise in the realm of personal computers with single disk drives:spatially local
sector errors[59] andlack of hardware supportlike non-volatile RAM (NVRAM).
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In this context, we design, implement, and evaluate new techniques to store redun-
dant information on disk, focusing primarily on parity as the redundant information
due to its simplicity and wide-spread use.

First, we address the problem of spatially local errors by proposing a probabilis-
tic disk failure model that characterizes disk block errorswith spatial correlation
and use this model to layout blocks such that the probabilityof two or more errors
affecting related blocks is low. Second, we address the lackof NVRAM support
in low-end systems by developing new parity update techniques. Specifically, we
design two block update techniques where one technique updates the data blocks
in the traditional fashion byoverwriting the old contents while the other radical
approach, calledno-overwrite, issues writes to different locations on the disk and
changes the block pointers to point to the new locations.

We evaluate the validity of the probabilistic model by comparing it with results
from fault injection experiments. The probability of multiple failures as predicted
by the failure model matches closely with the results from the fault injection exper-
iments. We also evaluate the performance overheads of parity update techniques
and show that both overwrite and no-overwrite techniques incur performance over-
head when compared to ext3 and the cost varies from less than 1percent for read-
only workloads to about 50 percent for highly synchronous, write intensive work-
loads. Also, no-overwrite technique can fragment a file and therefore running a
de-fragmenter periodically can improve performance.

In the last part of this dissertation, we seek to improve the state of the art of
failure-handling in modern file systems by solving the following problem we no-
ticed from our analysis: failure handling in commodity file systems is diffused
resulting in ad hoc, inconsistent, and coarse-grained failure policies. Our approach
here begins with the age-old wisdom of separating policy andmechanism [66],
which we achieve with the design and implementation of aCentralized Failure
Handler (CFH). All important failure-handling decisions are routed through the
CFH, which is thus responsible for enforcing the specific failure-handling policy of
the system. All relevant information is also made availablewithin the CFH, hence
enabling the construction of the desired failure-handlingpolicies.

We demonstrate the power of centralized failure handling ina modified version
of the Linux ext3 file system (ext3c). We first show how ext3c is flexibleby imple-
menting a broad range of vastly different policies. For example, we show how ext3c
can mimic the failure-handling behavior of different file systems such as ReiserFS
and NTFS, all with changes to only a few lines of code. We also demonstrate that
ext3c is inherentlyconsistent; because policies are specified within a single lo-
calized portion of the code, the desired failure handling isenacted. Because of the
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presence of block-type information within the CFH, ext3c also enablesfine-grained
policiesto be developed. For example, we show that ext3c can implement a highly
paranoid policy for its own metadata while passing user dataerrors onto the appli-
cation. The end result is a file system that handles disk failures in a comprehensive,
thorough, and easily understood fashion; as a result, ext3c reacts in the expected
manner even when an unexpected disk failure occurs.

1.3 Contributions

The contributions of this dissertation are as follows:

• We aggregate knowledge from various sources and define a morerealistic
failure model for modern disks, which we call the fail-partial model. We
also formalize the techniques that a file system can use to detect and recover
from disk errors under the IRON taxonomy.

• We develop a fingerprinting framework to determine the failure policy of a
file system. This framework is useful both for academic studyof said file
systems as well as to developers who could apply it to test their systems and
improve their robustness. We use this framework to analyze five popular
commodity file systems to discover how they handle disk errors.

• We explore effectiveness and cost of different redundant information such as
checksums, parity, and replica by building a prototype version of an IRON
file system (ixt3). We apply redundancy to both file system data and metadata
in various combinations and analyze the file system robustness to disk failure
and its performance characteristics.

• We propose a probabilistic disk block failure model that considers spatial
correlation in block errors to derive the probability of 2 ormore failures. We
use this model to separate redundant information in block layouts to avoid
spatially local errors.

• We develop two different data update approaches, overwriteand no-overwrite,
that differ in the location of block writes and their interaction with the file
system journaling.

• We design a centralized failure handler (CFH) to unify failure handling in
file system. We evaluate CFH and show that it enables flexible,consistent,
and fine-grained failure policies in file system.
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1.4 Outline

The rest of this dissertation is organized as follows. In Chapter 2, we present the
common causes of disk failures following it with a discussion on fail-partial model
and IRON taxonomy. In Chapter 3, we give a brief introductionto journaling file
systems and different commodity file systems we analyze. Chapter 4 explains our
failure policy analysis. where we discuss our semantic failure analysis methodol-
ogy and results. In Chapter 5, we present the details of building a robust file system.
We start with a broad exploration of different redundant information followed by
a discussion of the system evaluation. Then, we explain our techniques to address
spatially correlated errors and lack of hardware support. Chapter 6 presents our
centralized failure handler for file systems. Related work is discussed in Chapter 7,
and conclusion and future directions are presented in Chapter 8.
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Chapter 2

Fail-Partial Failure Model

In order to understand how commodity file systems handle diskfailures, first, we
must understand the storage system architecture and the ways it can fail. Second,
we need a standard taxonomy of various detection and recovery techniques that a
file system can use to handle disk failures in order to classify their failure handling
policies.

In this chapter, we first explain the components of a storage stack, which is a
complex layered collection of electrical, mechanical, firmware and software com-
ponents (Section 2.2). There are many reasons that the file system may see faults
in the storage system below and we discuss common causes of disk failures (Sec-
tion 2.3). We then present a new, more realisticfail-partial model for disks and
discuss various aspects of this model (Section 2.4). We follow this with a discus-
sion about the techniques that an IRON file system can use to detect and recover
from disk errors (Section 2.5). Finally, we conclude the chapter by reasoning why
failure handling must be performed at the file system (Section 2.5.4) and why RAID
is not a complete solution to improve storage reliability (Section 2.5.5).

2.1 Terminology

Before we proceed to the details, we will clarify certain terminologies in order
to make the following discussion unambiguous and easy to follow. We follow
the IEEE Standard Software Engineering Terminology [22] and use the following
definitions forerror, fault, andfailure.

• Error: 1. The difference between a computed, observed, or measuredvalue
or condition and the true, specified, or theoretically correct value or condi-
tion. 2. An incorrect step, process, or data definition. 3. Anincorrect result.
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Figure 2.1:The Storage Stack.We present a schematic of the entire storage stack. At the
top is the file system; beneath are the many layers of the storage subsystem. Gray shading
implies software or firmware, whereas white (unshaded) is hardware.

• Fault: 1. A defect in a hardware device or componente.g., a defective disk
sector. 2. An incorrect step, process, or data definition in acomputer program
(e.g., software bugs). In common usage, the terms “error” and “bug” are used
to express the same meaning as “fault” [22]. In the context ofthis thesis, we
use the terms “error” and “fault” interchangeably.

• Failure: The inability of a system or component to perform its required
functions within specified performance requirements. Simply put, the result
of a fault is a failure. For example, a disk failure occurs if the storage stack
is unable to recover a faulty sector.

As we mentioned in Section 1.1, in this thesis we focus and limit our scope
only to local file systems. For the rest of the thesis unless otherwise stated, we use
the term “file system” to refer to a specific file system on top ofthe storage stack
(i.e., the end-point on the storage stack).

2.2 The Storage Subsystem

Figure 2.1 presents a typical layered storage subsystem below the file system (sim-
ilar and perhaps, more complex layered storage architectures are used by other data
management systems like databases and distributed file systems). The storage stack
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consists of three main layers: the host, the transport layer, and the disk. An error
can occur in any of these layers and propagate itself to the file system above.

At the bottom of the “storage stack” is the disk itself; beyond the magnetic stor-
age media, there are mechanical (e.g., the motor and arm assembly), electrical com-
ponents (e.g., buses), and cache. A particularly important component is firmware
– the code embedded within the drive to control most of its higher-level functions,
including caching, disk scheduling, and error handling. This firmware code is of-
ten substantial and complex (e.g., a modern Seagate drive contains roughly 400,000
lines of code [33]).

Connecting the drive to the host is the transport. In low-endsystems, the trans-
port medium is often a bus (e.g., SCSI), whereas networks are common in higher-
end systems (e.g., FibreChannel). If a hardware RAID is used instead of a single
disk, an additional layer of RAID controller is added between the transport layer
and disk drives. A hardware RAID controller manages multiple disk drives and
exports a standard interface (e.g., SCSI) to the transport layer.

At the top of the stack is the host. Herein there is a hardware controller that
communicates with the device, and above it a software devicedriver that controls
the hardware. Block-level software forms the next layer, providing a generic device
interface and implementing various optimizations (e.g., request reordering). Mod-
ern operating systems such as Windows and Linux provide support to stack multiple
layers of software components such as volume managers or software RAID layers
beneath the file system and above the device specific drivers,resulting in a more
complex storage stack.

Above all other software is the file system. This layer is often split into two
pieces: a high-level component common to all file systems, and a specific com-
ponent that maps generic operations onto the data structures of the particular file
system. A standard interface (e.g., Vnode/VFS [63]) is positioned between the two.

2.3 Why Disks Fail?

To motivate our failure model, we first describe how errors inthe layers of the
storage stack can cause failures. In our discussion, we begin at the bottom of the
stack and work our way up to the file system.
Media: There are two primary errors that occur in the magnetic media. First, the
classic problem of “bit rot” occurs when the magnetism of a single bit or a few
bits is flipped. This type of problem can often (but not always) be detected and
corrected with low-level ECC embedded in the drive. Second,physical damage
can occur on the media. The quintessential “head crash” is one culprit, where the



12

drive head contacts the surface momentarily. A media scratch can also occur when
a particle is trapped between the drive head and the media [100]. Thermal asperity
is a spike in the read signal caused by disk asperities or contaminant particles,
which can cause the disk heads to lose their reading capabilities temporarily [124].
Such dangers are well-known to drive manufacturers, and hence modern disks park
the drive head when the drive is not in use to reduce the numberof head crashes;
SCSI disks sometimes include filters to remove particles [7]. Media errors most
often lead to permanent failure or corruption of individualdisk blocks.

Mechanical: “Wear and tear” eventually leads to failure of moving parts.A drive
motor can spin irregularly or fail completely. Erratic arm movements can cause
head crashes and media flaws; inaccurate arm movement can misposition the drive
head during writes, leaving blocks inaccessible or corrupted upon subsequent reads.

Electrical: A power spike or surge can damage in-drive circuits and hencelead to
drive failure [116]. Thus, electrical problems can lead to entire disk failure.

Drive firmware: Interesting errors arise in the drive controller, which consists of
many thousands of lines of real-time, concurrent firmware. For example, disks
have been known to return correct data but circularly shifted by a byte [67] or have
memory leaks that lead to intermittent failures [116]. Other firmware problems
can lead to poor drive performance [97]. Drive manufacturers often introduce new
firmware versions to fix existing problems on production drives and such fixes can
inadvertently increase the failure rates of the drive [103]. Some firmware bugs
are well-enough known in the field that they have specific names; for example,
misdirectedwrites are writes that place the correct data on the disk but in the wrong
location, andphantomwrites are writes that the drive reports as completed but
that never reach the media [126]. Phantom writes can be caused by a buggy or
even misconfigured cache (i.e., write-back caching is enabled). In summary, drive
firmware errors often lead to sticky or transient block corruption but can also lead
to performance problems.

Transport: The transport connecting the drive and host can also be problematic.
For example, a study of a large disk farm [115] reveals that most of the systems
tested had interconnect problems, such as bus timeouts. Parity errors also occurred
with some frequency, either causing requests to succeed (slowly) or fail altogether.
Thus, the transport often causes transient errors for the entire drive.

Bus controller: The main bus controller can also be problematic. For example, the
EIDE controller on a particular series of motherboards incorrectly indicates com-
pletion of a disk request before the data has reached the mainmemory of the host,
leading to data corruption [125]. A similar problem causes some other controllers
to return status bits as data if the floppy drive is in use at thesame time as the hard
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drive [47]. Others have also observed IDE protocol version problems that yield cor-
rupt data [40]. In summary, controller problems can lead to transient block failure
and data corruption.
Low-level drivers: Recent research has shown that device driver code is more
likely to contain bugs than the rest of the operating system [27, 38, 113]. While
some of these bugs will likely crash the operating system, others can issue disk
requests with bad parameters, data, or both, resulting in data corruption.

2.4 The Fail-Partial Failure Model

From our discussion of the many root causes for failure, we are now ready to put
forth a more realistic model of disk failure. In our model, failures manifest them-
selves in three ways:

• Entire disk failure: The entire disk is no longer accessible. If permanent, this
is the classic “fail-stop” failure.

• Block failure: One or more blocks are not accessible; often referred to aslatent
sector faults[59, 60].

• Block corruption: The data within individual blocks is altered. Corruption is
particularly insidious because it is silent – the storage subsystem simply returns
“bad” data upon a read.

We term this model theFail-Partial Failure Model, to emphasize that pieces
of the storage subsystem can fail. We now discuss some other key elements of the
fail-partial model, including the transience, locality, and frequency of failures, and
then discuss how technology and market trends will impact disk failures over time.

2.4.1 Transience of Failures

In our model, failures can be “sticky” (permanent) or “transient” (temporary).
Which behavior manifests itself depends upon the root causeof the problem. For
example, a low-level media problem portends the failure of subsequent requests. In
contrast, a transport or higher-level software issue mightat first cause block failure
or corruption; however, the operation could succeed if retried.

2.4.2 Locality of Failures

Because multiple blocks of a disk can fail, one must considerwhether such block
failures are dependent. The root causes of block failure suggest that some forms
of block failure do indeed exhibit spatial locality [60]. For example, a scratched
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surface or thermal asperity can render a number of contiguous blocks inaccessible.
However, all failures do not exhibit locality; for example,a corruption due to a
misdirected write may impact only a single block.

2.4.3 Frequency of Failures

Block failures and corruptions do occur – as one commercial storage system de-
veloper succinctly stated, “Disks break a lot – all guarantees are fiction” [52].
However, one must also consider how frequently such errors occur, particularly
when modeling overall reliability and deciding which failures are most important
to handle. Unfortunately, as Talagala and Patterson point out [115], disk drive man-
ufacturers are loathe to provide information on disk failures; indeed, people within
the industry refer to an implicit industry-wide agreement to not publicize such de-
tails [5]. Not surprisingly, the actual frequency of drive errors, especially errors
that do not cause the whole disk to fail, is not well-known in the literature. Pre-
vious work on latent sector faults indicates that such errors occur more commonly
than absolute disk failure [60], and a related research workestimates that such er-
rors may occur five times more often than absolute disk failures [100]. Recently,
more efforts have been made to quantify the disk error rates.Specifically, Grayet
al. measure about 30 uncorrectable bit errors at the file system while moving about
2 petabytes of data [45].

In terms of relative frequency, block failures are more likely to occur on reads
than writes, due to internal error handling common in most disk drives. For exam-
ple, failed writes to a given sector are often remapped to another (distant) sector,
allowing the drive to transparently handle such problems [56]. However, remap-
ping does not imply that writes cannot fail. A failure in a component above the
media (e.g., a stuttering transport), can lead to an unsuccessful writeattempt; the
move to network-attached storage [42] serves to increase the frequency of this class
of failures. Also, for remapping to succeed, free blocks must be available; a large
scratch could render many blocks unwritable and quickly useup reserved space.
Reads are more problematic: if the media is unreadable, the drive has no choice but
to return an error.

2.4.4 Trends

In many other areas (e.g., processor performance), technology and market trends
combine to improve different aspects of computer systems. In contrast, we believe
that technology trends and market forces may combine to makestorage system
failures occurmorefrequently over time, for the following three reasons.
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Level Technique Comment
DZero No detection Assumes disk works
DErrorCode Check return codes Assumes lower level

from lower levels can detect errors
DSanity Check data structures May require extra

for consistency space per block
DRedundancy Redundancy over Detect corruption

one or more blocks in end-to-end way

Table 2.1:The Levels of the IRON Detection Taxonomy.

First, reliability is a greater challenge when drives are made increasingly more
dense; as more bits are packed into smaller spaces, drive logic (and hence complex-
ity) increases [7].

Second, at the low-end of the drive market, cost-per-byte dominates, and hence
many corners are cut to save pennies in IDE/ATA drives [7]. Low-cost “PC class”
drives tend to be tested less and have less internal machinery to prevent failures
from occurring [56]. The result, in the field, is that ATA drives are observably less
reliable [115]; however, cost pressures serve to increase their usage, even in server
environments [40].

Finally, the amount of software is increasing in storage systems and, as others
have noted, software is often the root cause of errors [44]. In the storage system,
hundreds of thousands of lines of software are present in thelower-level drivers
and firmware. This low-level code is generally the type of code that is difficult to
write and debug [38, 113] – hence a likely source of increasederrors in the storage
stack.

2.5 The IRON Taxonomy

In this section, we outline strategies for developing an IRON file system,i.e., a file
system that detects and recovers from a range of modern disk failures. Our main
focus is to develop different strategies, notacrossdisks as is common in storage
arrays, butwithin a single disk. Such Internal RObustNess (IRON) provides much
of the needed protection within a file system.

To cope with the failures in modern disks, an IRON file system includes ma-
chinery to bothdetect(Level D) partial faults andrecover(Level R) from them.
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Level Technique Comment
RZero No recovery Assumes disk works
RPropagate Propagate error Informs user
RStop Stop activity Limit amount

(crash, prevent writes) of damage
RGuess Return “guess” at Could be wrong;

block contents failure hidden
RRetry Retry read or write Handles failures

that are transient
RRepair Repair data structs Could lose data
RRemap Remaps block or file Assumes disk informs

to different locale FS of failures
RRedundancy Block replication Enables recovery

or other forms from loss/corruption

Table 2.2:The Levels of the IRON Recovery Taxonomy.

Tables 2.1 and 2.2 present our IRON detection and recovery taxonomies, respec-
tively. Note that the taxonomy is by no means complete. Many other techniques
are likely to exist, just as many different RAID variations have been proposed over
the years [3, 127].

The detection and recovery mechanisms employed by a file system define its
failure policy. Currently, it is difficult to discuss the failure policy of asystem. With
the IRON taxonomy, one can describe the failure policy of a file system, much as
one can already describe a cache replacement or a file-layoutpolicy.

2.5.1 Levels of Detection

LevelD techniques are used by a file system to detect that a problem has occurred
(i.e., that a block cannot currently be accessed or has been corrupted).

• Zero: The simplest detection strategy is none at all; the file system assumes the
disk works and does not check return codes. As we will see in Section 4.3, this
approach is surprisingly common (although often it is applied unintentionally).

• ErrorCode: A more pragmatic detection strategy that a file system can imple-
ment is to check return codes provided by the lower levels of the storage system.

• Sanity: With sanity checks, the file system verifies that its data structures are
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consistent. This check can be performed either within a single block or across
blocks.

When checking a single block, the file system can either verify individual fields
(e.g., that pointers are within valid ranges) or verify thetype of the block. For
example, most file system superblocks include a “magic number” and some older
file systems such as Pilot even include a header per data block[88]. By checking
whether a block has the correct type information, a file system can guard against
some forms of block corruption.

Checking across blocks can involve verifying only a few blocks (e.g., that a
bitmap corresponds to allocated blocks) or can involve periodically scanning all
structures to determine if they are intact and consistent (e.g., similar tofsck [72]).
Even journaling file systems can benefit from periodic full-scan integrity checks.
For example, a buggy journaling file system could unknowingly corrupt its on-disk
structures; runningfsck in the background could detect and recover from such
problems.

• Redundancy: The final level of the detection taxonomy is redundancy. Many
forms of redundancy can be used to detect block corruption. For example,check-
summinghas been used in reliable systems for years to detect corruption [16] and
has recently been applied to improve security as well [79, 110]. Checksums are use-
ful for a number of reasons. First, they assist in detecting classic “bit rot”, where
the bits of the media have been flipped. However, in-media ECCoften catches and
corrects such errors. Checksums are therefore particularly well-suited for detecting
corruption in higher levels of the storage system stack (e.g., a buggy controller that
“misdirects” disk updates to the wrong location or does not write a given block to
disk at all). However, checksums must be carefully implemented to detect these
problems [16, 126]; specifically, a checksum that is stored along with the data it
checksums will not detect such misdirected or phantom writes.

Higher levels of redundancy, such as block mirroring [20], parity [78, 81] and
other error-correction codes [69], can also detect corruption. For example, a file
system could keep three copies of each block, reading and comparing all three to
determine if one has been corrupted. However, such techniques are truly designed
for correction (as discussed below); they often assume the presence of a lower-
overhead detection mechanism [81].

2.5.2 Detection Frequency

All detection techniques discussed above can be appliedlazily, upon block access,
or eagerly, perhaps scanning the disk during idle time. We believe IRONfile sys-
tems should contain some form of lazy detection and should additionally consider
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eager methods.
For example,disk scrubbingis a classic eager technique used by RAID sys-

tems to scan a disk and thereby discover latent sector faults[60]. Disk scrubbing
is particularly valuable if a means for recovery is available, that is, if a replica
exists to repair the now-unavailable block. To detect whether an error occurred,
scrubbing typically leverages the return codes explicitlyprovided by the disk and
hence discovers block failure but not corruption. If combined with other detection
techniques (such as checksums), scrubbing can discover block corruption as well.

2.5.3 Levels of Recovery

Level R of the IRON taxonomy facilitates recovery from block failure within a
single disk drive. These techniques handle both latent sector faults and block cor-
ruptions.

• Zero: Again, the simplest approach is to implement no recovery strategy at all,
not even notifying clients that a failure has occurred.

• Propagate: A straightforward recovery strategy is to propagate errors up through
the file system; the file system informs the application that an error occurred and
assumes the client program or user will respond appropriately to the problem.

• Stop: One way to recover from a disk failure is to stop the current file system
activity. This action can be taken at many different levels of granularity. At the
coarsest level, one can crash the entire machine. One positive feature is that this
recovery mechanism turns alldetecteddisk failures into fail-stop failures and likely
preserves file system integrity. However, crashing assumesthe problem is transient;
if the faulty block contains repeatedly-accessed data (e.g., a script run during ini-
tialization), the system may repeatedly reboot, attempt toaccess the unavailable
data, and crash again. At an intermediate level, one can killonly the process that
triggered the disk fault and subsequently mount the file system in a read-only mode.
This approach is advantageous in that it does not take down the entire system and
thus allows other processes to continue. At the finest level,a journaling file system
can abort only the current transaction. This approach is likely to lead to the most
available system, but may be more complex to implement.

• Guess: As recently suggested by Rinardet al. [91], another possible reaction
to a failed block read would be to manufacture a response, perhaps allowing the
system to keep running in spite of a failure. Such failure oblivious computing has
received attention from other researchers as well. For example, Qinet al.use simi-
lar techniques to transparently recover from software failures [87]. The negative is
that an artificial response may be less desirable than failing.
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• Retry: A simple response to failure is to retry the failed operation and recent
work shows that file systems do recover from most number of disk errors by sim-
ply retrying [45]. Retry can appropriately handle transient errors, but wastes time
retrying if the failure is indeed permanent.

• Repair: If an IRON file system can detect an inconsistency in its internal data
structures, it can likely repair them, just asfsck would. For example, a block
that is not pointed to, but is marked as allocated in a bitmap,could be freed. As
discussed above, such techniques are useful even in the context of journaling file
systems, as bugs may lead to corruption of file system integrity.

• Remap: IRON file systems can perform block remapping. This technique can
be used to fix errors that occur when writing a block, but cannot recover failed
reads. Specifically, when a write to a given block fails, the file system could choose
to simply write the block to another location. More sophisticated strategies could
remap an entire “semantic unit” at a time (e.g., a user file), thus preserving logical
contiguity.

• Redundancy: Finally, redundancy (in its many forms) can be used to recover
from block loss. The simplest form isreplication, in which a given block has
two (or more) copies in different locations within a disk. Another redundancy
approach employs parity to facilitate error correction. Similar to RAID 4/5 [81], by
adding a parity block per block group, a file system can tolerate the unavailability
or corruption of one block in each such group. More complex encodings (e.g.,
Tornado codes [69]) could also be used, a subject worthy of future exploration.

However, redundancy within a disk can have negative consequences. First,
replicas must account for the spatial locality of failure (e.g., a surface scratch that
corrupts a sequence of neighboring blocks); hence, copies should be allocated
across remote parts of the disk, which can lower performance. Second, in-disk
redundancy techniques can incur a high space cost; however,in many desktop set-
tings, drives have sufficient available free space [32].

2.5.4 Why IRON in the File System?

One natural question to ask is: why should the file system implement detection and
recovery instead of the disk? Perhaps modern disks, with their internal mechanisms
for detecting and recovering from errors, are sufficient.

In our view, the primary reason for detection and recovery within the file system
is found in the end-to-end argument [94]; even if the lower-levels of the system
implement some forms of fault tolerance, the file system mustimplement them as
well to guard against all forms of failure. For example, the file system is theonly
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place that can detect corruption of data in higher levels of the storage stack (e.g.,
within the device driver or drive controller).

A second reason for implementing detection and recovery in the file system
is that the file system has exact knowledge of how blocks are currently being
used. Thus, the file system can apply detection and recovery intelligently across
different block types. For example, the file system can provide a higher level
of replication for its own metadata, perhaps leaving failure detection and correc-
tion of user data to applications (indeed, this is one specific solution that we ex-
plore in Section 5.2). Similarly, the file system can providemachinery to enable
application-controlled replication of important data, thus enabling an explicit per-
formance/reliability trade-off.

A third reason is performance: file systems and storage systems have an “un-
written contract” [98] that allows the file system to lay out blocks to achieve high
bandwidth. For example, the unwritten contract stipulatesthat adjacent blocks in
the logical disk address space are physically proximate. Disk-level recovery mech-
anisms, such as remapping, break this unwritten contract and cause performance
problems. If the file system instead assumes this responsibility, it can itself remap
logically-related blocks (e.g., a file) and hence avoid such problems.

However, there are some complexities to placing IRON functionality in the
file system. First, some of these techniques require new persistent data structures
(e.g., to track where redundant copies or parity blocks are located). Second, some
mechanisms require control of the underlying drive mechanisms. For example, to
recover on-disk data, modern drives will attempt differentpositioning and reading
strategies [7]; no interface exists to control these different low-level strategies in
current systems. Third, a file system may not know the exact disk geometry, which
makes it harder to place redundant copies such that they tolerate spatially local
errors.

2.5.5 Doesn’t RAID Make Storage Reliable?

Another question that must be answered is: can’t we simply use RAID techniques
[81] to provide reliable and robust storage? We believe thatwhile RAID can indeed
improve storage reliability, it is not a complete solution,for the following three
reasons.

First, not all systems incorporate more than one disk, thesine qua nonof redun-
dant storage systems. For example, desktop PCs currently ship with a single disk
included; because cost is a driving force in the marketplace, adding a $100 disk to
a $300 PC solely for the sake of redundancy is not a palatable solution.

Second, RAID alone does not protect against failures higherin the storage
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stack, as shown in Figure 2.1. Because many layers exist between the storage
subsystem and the file system, and errors can occur in these layers as well, the file
system must ultimately be responsible for detecting and perhaps recovering from
such errors. Ironically, a complex RAID controller can consist of millions of lines
of code [127], and hence be a source of faults itself.

Third, depending on the particular RAID system employed, not all types of
disk faults may be handled. For example, lower-end RAID controller cards do not
use checksums to detect data corruption, and only recently have some companies
included machinery to cope with latent sector faults [28].

Hence, we believe that IRON techniques within a file system are useful for
all single-disk systems, and even when multiple drives are used in a RAID-like
manner. Although we focus on single-disk systems in this paper, we believe there
is a rich space left for exploration between IRON file systemsand redundant storage
arrays.
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Chapter 3

Background

Our failure policy analysis entirely focuses on journalingfile systems as most mod-
ern file systems perform journaling. To understand the analysis methodology, it is
necessary that we understand the general concepts of journaling, transaction, and
checkpointing and some specific file system details like how the on-disk structures
are updated.

Journaling file systems, in order to maintain the file system integrity, use the
concept of transactions [46] and follow certain write ordering constraints when
they issue their updates. Depending upon the file system, transactions may be
composed of whole file system blocks or only modified records.In our analysis, we
examine five different journaling file systems. Four of them are open source: Linux
ext3 [121], ReiserFS [89], JFS [19], and XFS [112] and Windows NTFS [109] is
closed source. There are two reasons for selecting these filesystems. First, they are
widely used being default file systems in several operating system configurations
(e.g., ext3 is the default file system in Red Hat Linux, ReiserFS in SuSE Linux
distribution, and NTFS in Windows NT, 2000, and XP). Second,in addition to
being used in personal computers, they are also used in high-end storage arrays [36,
50].

In this chapter, first we give a general introduction to journaling file systems
(Section 3.1) and then briefly discuss different commodity journaling file systems
(Sections 3.1.1 to 3.1.5).

3.1 Journaling File Systems

When a file system update takes place, a set of blocks is written to the disk. Un-
fortunately, if the system crashes in the middle of the sequence of writes, the file
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Figure 3.1:Journaling Modes. The diagram depicts the three different journaling modes
supported in modern file systems: writeback, ordered, and data. In the diagram, time flows
downward. Boxes represent updates to the file system, e.g., “Journal (Inode)” implies the
write of an inode to the journal; the other destination for writes is labeled “Fixed”, which
is a write to the fixed in-place ext2 structures. An arrow labeled with a “Sync” implies that
the two blocks are written out in immediate succession synchronously, hence guaranteeing
the first completes before the second. A curved arrow indicates ordering but not immediate
succession; hence, the second write will happen at some later time. Finally, for writeback
mode, the dashed box around the “Fixed (Data)” block indicates that it may happen at any
time in the sequence. In this example, we consider a data block write and its inode as the
updates that need to be propagated to the file system; the diagrams show how the data flow
is different for each of the journaling modes.

system is left in an inconsistent state. To repair the inconsistency, earlier systems
such as FFS [71] and ext2 [26] scan the entire file system and perform integrity
checks using fsck [72] before mounting the file system again.This scan is a time-
consuming process and can take several hours for large file systems.

Journaling file systems avoid this expensive integrity check by recording some
extra information on the disk in the form of a write-ahead logor a journal [46].
By forcing journal updates to diskbeforeupdating complex file system structures,
this write-ahead logging technique enables efficient crashrecovery; a simple scan
of the journal and a redo of any incomplete committed operations bring the file
system to a consistent state. During normal operation, the journal is treated as a
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circular buffer; once the necessary information has been propagated to its fixed
location structures, journal space can be reclaimed.

Journaling Modes: Modern journaling file systems such as ext3 and ReiserFS
present three flavors of journaling:writeback mode, ordered mode, anddata jour-
naling mode; Figure 3.1 illustrates the differences between these modes. The
choice of mode is made at mount time and can be changed via a remount.

In writeback mode, only file system metadata is journaled; data blocks are writ-
ten directly to their fixed location. This mode does not enforce any ordering be-
tween the journal and fixed-location data writes, and because of this, writeback
mode has the weakest integrity and consistency semantics ofthe three modes. Al-
though it guarantees integrity and consistency for file system metadata, it does not
provide any corresponding guarantees to the data blocks.

For example, assume a process appends a block to a file; internally, the file
system allocates a new pointer within the inodeI and a new data block at address
D to hold the data. In writeback mode, the file system is free to write D at any
time, but is quite careful in how it updatesI. Specifically, it will force a journal
record to disk containingI, followed by a commit block. Once the commit block is
written, the file system knows it can safely recover from a crash, and at some time
later will write I to its fixed location structures. However, ifI makes it to the log
successfully, and a crash happensbeforeD gets to disk, upon recoveryI will point
to D but the contents ofD will not be correct.

In ordered journaling mode, again only metadata writes are journaled; however,
data writes to their fixed location are orderedbeforethe journal writes of the meta-
data. In contrast to writeback mode, this mode provides moresensible integrity
semantics where a metadata block is guaranteed not to point to a block that does
not belong to the file.

In continuing from our example above,D will be forced to its fixed location
beforeI is written to the journal. Thus, even with an untimely crash,the file system
will recover in a reasonable manner.

However, in ordered journaling mode, consistency between metadata and data
might be affected. For example, if a data block is overwritten and the system
crashes before writing the inode block to the journal, afterrecovery, the file sys-
tem inode timestamps will be inconsistent with the recency of the data.

In full data journaling mode, the file system logsboth metadata and data to
the journal. This decision implies that when a process writes a data block, it will
typically be written out to disktwice: once to the journal, and then later to its fixed
location. Data journaling mode provides the strongest integrity and consistency
guarantees; however, it has different performance characteristics, in some cases
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worse, and surprisingly, in some cases, better [84].

Transactions: Journaling file systems write their updates as part of a transaction
to disk. However, instead of considering each file system update as a separate
transaction, most modern file systems group many updates into a singlecompound
transactionthat is periodically committed to disk. This approach is relatively sim-
ple to implement [121]. Compound transactions may have better performance than
more fine-grained transactions when the same structure is frequently updated in a
short period of time (e.g., a free space bitmap or an inode of a file that is constantly
being extended) [51].

When file systems write their updates to the journal, they either write a full
block, calledphysical journalingor write only the modified portion of the block,
called logical journaling. Physical journaling incurs more journal traffic because
even if a single bit is modified in a metadata block, the entireblock is written to
the journal. On the other hand, logical journaling carefully writes only modified
records of file system structures and therefore, use the journal more efficiently.
However, fixed-location structures can become corrupt, forexample, if the file sys-
tem is checkpointing the metadata at the precise moment whenthe power goes
down (memory is more sensitive to power failures and can sendgarbages to disk
if the power fails while data is being DMA’ed to the disk). Physical journaling
has the advantage that if the fixed-location structures become corrupt, they can be
recovered by simply scanning and replaying the successfully committed transac-
tions [119].

Checkpointing: The process of writing journaled metadata and data to their fixed-
locations is known ascheckpointing. Checkpointing is triggered when various
thresholds are crossed,e.g., when file system buffer space is low, when there is
little free space left in the journal, or when a timer expires.

Crash Recovery: Crash recovery is straightforward in many journaling file sys-
tems; a basic form ofredo loggingis used. Because new updates (whether to data
or just metadata) are written to the log, the process of restoring in-place file system
structures is easy. During recovery, the file system scans the log for committed
complete transactions; incomplete transactions are discarded. Each update in a
completed transaction is simply replayed into the fixed-place structures.

3.1.1 Ext3

Linux ext3 [121, 122] is the default journaling file system inseveral distributions of
Linux (e.g., Red Hat), and it is built as an extension to the ext2 file system. In ext3,
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Figure 3.2:Ext3 Layout. The picture shows the layout of an ext3 file system. The disk
address space is broken down into a series of block groups (akin to FFS cylinder groups),
each of which has bitmaps to track allocations and regions for inodes and data blocks.
The ext3 journal is depicted here as a file within the first block group of the file system;
it contains a superblock, various descriptor blocks to describe its contents, and commit
blocks to denote the ends of transactions.

data and metadata are eventually placed into the standard ext2 structures, which
are the fixed-location structures. In this organization (which is loosely based on
FFS [71]), the disk is split into a number ofblock groups; within each block group
are bitmaps, inode blocks, and data blocks. The ext3 journal(or log) is commonly
stored as a file within the file system, although it can be stored on a separate device
or partition. Figure 3.2 depicts the ext3 on-disk layout.

Ext3 Journal Structure: Ext3 supports all the three journaling modes and uses
additional metadata structures to track the list of journaled blocks. Thejournal
superblocktracks summary information for the journal, such as the block size and
head and tail pointers. Ajournal descriptor blockmarks the beginning of a trans-
action and describes the subsequent journaled blocks, including their final fixed
on-disk location. In data journaling mode, the descriptor block is followed by the
data and metadata blocks; in ordered and writeback mode, thedescriptor block
is followed by the metadata blocks. In all modes, ext3 logs full blocks (physical
journaling), as opposed to differences from old versions; thus, even a single bit
change in a bitmap results in the entire bitmap block being logged. Depending
upon the size of the transaction, multiple descriptor blocks each followed by the
corresponding data and metadata blocks may be logged. Finally, a journal commit
block is written to the journal at the end of the transaction; once the commit block
is written, the journaled data can be recovered without loss.

Ext3 Transactions: Ext3 maintains a single, system-wide, compound transac-
tion into which all the file system updates are added and committed. Although
group commit improves performance, it can potentially result in combining unre-
lated updates, which can lead to a tangled synchrony betweenasynchronous and
synchronous traffic in the file system [84]. Ext3 commits and checkpoints trans-
actions under the influence of three factors: application initiated synchronization
calls, journal size, and commit timer settings.
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3.1.2 ReiserFS

ReiserFS [89] is the default journaling file system under certain distributions of
Linux such as SuSE. The general behavior of ReiserFS is similar to ext3. For exam-
ple, both file systems support all the three journaling modes, both have compound
transactions, and both perform physical journaling. However, ReiserFS differs from
ext3 in three primary ways.

First, the two file systems use different on-disk structuresto track their fixed-
location data. Ext3 uses the same structures as ext2; for improved scalability, Reis-
erFS uses a B+ tree, in which data is stored on the leaves of thetree and the metadata
is stored on the internal nodes. Since the impact of the fixed-location data structures
is not the focus of this thesis, this difference is largely irrelevant.

Second, the format of the journal is slightly different. In ext3, the journal can
be a file, which may be anywhere in the partition and may not be contiguous. The
ReiserFS journal is not a file and is instead a contiguous sequence of blocks at
the beginning of the file system; as in ext3, the ReiserFS journal can be put on a
different device. Further, ReiserFS limits the journal to amaximum of 32 MB.

Third, ext3 and ReiserFS differ slightly in their journal contents. In ReiserFS,
the fixed locations for the blocks in the transaction are stored not only in the de-
scriptor block but also in the commit block. Also, unlike ext3, ReiserFS uses only
one descriptor block in every compound transaction, which limits the number of
blocks that can be grouped in a transaction.

3.1.3 JFS

JFS is a journaling file system developed by IBM, which was designed with the
journaling support fully integrated from the start rather than adding it later. The
journal is located, by default, at the end of the partition and is treated as a contigu-
ous sequence of blocks [18]. One cannot specify any journaling mode during the
file system mount.

In a previous work, we infer that JFS uses ordered journalingmode [84]. Due to
the small amount of traffic to the journal, it was obvious thatit was not employing
data journaling. To differentiate between writeback and ordered modes, we observe
that the ordering of writes matched that of ordered mode. That is, when a data block
is written by the application, JFS orders the write such thatthe data block is written
successfully before the metadata writes are issued.

JFS does logging at the record level (logical journaling). That is, whenever an
inode, index tree, or directory tree structure changes, only that structure is logged
instead of the entire block containing the structure. As a result, JFS writes fewer
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journal blocks than ext3 and ReiserFS for the same operations.
JFS does not by default group concurrent updates into a single compound trans-

action although, there are circumstances in which transactions are grouped: for
example, if the write commit records are on the same log page.

Finally, there are no commit timers in JFS and the fixed-location writes happen
whenever the Linux kernel timer (i.e., the kupdate daemon) expires. However,
the journal writes are never triggered by the timer: journalwrites are indefinitely
postponed until there is another trigger such as memory pressure or an unmount
operation. Thisinfinite write delaycan limit reliability, as a crash can result in data
loss even for data that was written minutes or hours before.

3.1.4 XFS

XFS is a 64-bit journaling file system developed by SGI. XFS supports only ordered
journaling mode and data/writeback journaling modes are not present [112]. Sim-
ilar to JFS, XFS journals only records in the log instead of writing whole blocks.
Since only records are logged, XFS has no separate journal commit block; a jour-
nal block contains different types of records and a commit record is one of them.
Also, there is no separate journal super block. Usually, thejournal super block
(or its equivalent) stores the ‘dirty’ state of the journal,which is used to determine
whether the journal has to be replayed on a mount. In XFS, on every mount, the log
is searched to find any transaction that needs to be replayed.On a clean unmount,
XFS writes an ‘unmount’ record into the journal to mark the journal as clean.

The fixed-location structures of XFS consist of allocation groups where each
allocation group manages its own inodes and free space. Since each allocation
group is, in effective, an independent entity, the kernel can interact with multiple
groups simultaneously. Internally, each allocation groupuses B+ trees to keep track
of data and metadata.

3.1.5 NTFS

Microsoft’s NTFS is a widely used (and default) journaling file system on Win-
dows operating systems such as NT, 2000, and XP. Although thesource code or
documentation of NTFS is not publicly available, tools for finding the NTFS file
layout exist [2].

Every object in NTFS is a file. Even metadata is stored in termsof files. The
journal itself is a file and is located almost at the center of the file system. In a
related work, we find that NTFS does not implement data journaling [84]. We
find that NTFS, similar to JFS and XFS, does logical journaling, where it journals
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metadata in terms of records. We also infer that NTFS performs ordered journaling
by introducing artificial delays on data writes and noting the corresponding delays
on metadata writes as well.

File Journaling Mode Granularity
System Data Ordered Writeback
Ext3

√ √ √
Physical

ReiserFS
√ √ √

Physical
JFS

√
Logical

XFS
√

Logical
NTFS

√
Logical

Table 3.1:Journaling File Systems Summary. This table gives a summary of the journal-
ing properties of commodity journaling file systems. Although ext3 and ReiserFS support
all the three journaling modes, ordered journaling mode is the default one.

3.1.6 File System Summary

The Table 3.1 summarizes the salient features of various journaling file systems.
Although, ext3 and ReiserFS support all the three journaling modes, ordered jour-
naling is the default mode in both the file systems.
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Chapter 4

Failure Policy Analysis and
Results

In this chapter, we describe the file system failure policy analysis. Broadly, there
are two ways to unearth the failure policies. One, by examining the source code
to understand what detection and recovery techniques are used by a file system
under different failure scenarios. Two, by injecting failures and monitoring how
failures are handled. The first approach is time consuming and error prone due to
the large code base consisting of several thousands (even hundreds of thousands for
commercial file systems) of lines of intricate code involving lots of low-level calls.
Instead, we use a uniqueSemantic Failure Analysis (SFA)technique, wherein we
use block type information and transactional semantics to fail particular blocks in
order to understand how file systems handle different block failures.

We analyze five different journaling file systems (Linux ext3, ReiserFS, JFS,
XFS, and Windows NTFS) and from our analysis we draw the following main
conclusions: (a) Commodity file systems store little or no redundant information
on disk. As a result, they are not able to recover when portions of a disk fail. (b) We
find illogical inconsistency in file system failure handlingpolicies. (c) Finally, we
find several bugs in failure handling routines, which show that it is hard to handle
block failures in a logically consistent manner.

We begin by explaining the failure analysis, which uses semantic block level
information (Section 4.1), followed by a description of ouranalysis methodology
(Section 4.2), and finally present the results (Section 4.3).
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4.1 Semantic Block-level Information

The concept of using semantic block-level information is quite simple: use file
system level semantic knowledge about block types along with low-level block I/O
to perform file system performance and failure analysis. This builds on our previous
work on “semantically-smart” disk systems [10, 12, 105, 106, 108]. We use a
pseudo-device driver to interpose on the file system traffic to disk and apply file
system semantics to block I/Os. We discuss how we use the semantic information
in detail below.

Semantic Block Analysis: File systems have traditionally been evaluated using
one of two approaches; either one applies synthetic or real workloads and measures
the resulting file system performance [23, 61, 73, 75, 76] or one collects traces to
understand how file systems are used [8, 13, 77, 92, 123, 131].However, perform-
ing each in isolation misses an interesting opportunity: bycorrelating the observed
disk traffic with the running workload and with performance,one can often answer
whya given workload behaves as it does.

Block-level tracing of disk traffic allows one to analyze a number of interesting
properties of the file system and workload. First, at the coarsest granularity, one
can record thequantity of disk traffic and how it is divided between reads and
writes; for example, such information is useful for understanding how file system
caching and write buffering affect performance. Second, ata more detailed level,
one can track theblock numberof each block that is read or written; by analyzing
the block numbers, one can see the extent to which traffic is sequential or random.
Finally, one can analyze thetimingof each block; with timing information, one can
understand when the file system initiates a burst of traffic.

By combining block-level analysis withsemanticinformation about those blocks,
one can infer much more about the behavior of the file system and we call this ap-
proachSemantic Block Analysis(SBA) [84]. For example, by simply quantifying
the journal traffic under various journal sizes and measuring the application band-
width, one can understand the role played by journal sizes onjournal commit pol-
icy [84]. The main difference between SBA and more standard block-level tracing
is that SBA understands the on-disk format of the file system under test.

Semantic Failure Analysis: In addition to understanding the performance behav-
iors, block type information can also be used for fault injection purposes. Many
standard fault injectors [24, 104] fail disk blocks in atype obliviousmanner; that
is, a block is failed regardless of how it is being used by the file system. However,
repeatedly injecting faults into random blocks and waitingto uncover new aspects
of the failure policy would be a laborious and time-consuming process, likely yield-



33

ing little insight.
The key idea that allows us to test a file system in a relativelyefficient and

thorough manner is Semantic Failure Analysis (SFA). In semantic failure analysis,
instead of failing blocks obliviously, we fail blocks of a specific type (e.g., inode
block) or at a particular transactional state (e.g., ordered data block). Semantic
information is crucial in reverse-engineering failure policy, allowing us to discern
the different strategies that a file system applies for its different data structures. The
disadvantage of our approach is that the fault injector mustbe tailored to each file
system tested and requires a solid understanding of on-diskstructures. However,
we believe that the benefits of SFA clearly outweigh these complexities.

4.1.1 Alternative Techniques

One might believe that directly instrumenting a file system to obtain timing infor-
mation, disk traces, and inject faults would be equivalent or superior to SBA and
SFA that use a pseudo-device driver. We believe this is not the case for several rea-
sons. First, to directly instrument the file system, one needs source code for that file
system and one must re-instrument new versions as they are released; in contrast,
SBA and SFA do not require file system source, and much of the driver code can
be reused across file systems and versions (Section 4.2.5). Second, when directly
instrumenting the file system, one may accidentally miss some of the conditions
for which disk blocks are written; however, the pseudo-device driver is guaranteed
to see all disk traffic. Finally, instrumenting existing code may accidentally change
the behavior of that code [129]; an efficient driver will likely have no impact on file
system behavior (Section 4.2.5).

In summary, semantic block-level information can be used for various pur-
poses: to understand performance problems, fingerprint filesystem parameters,
uncover design flaws or correctness bugs, and perform failure policy analysis using
type-aware fault injection. In the following sections, we focus only on the failure
policy aspect of the technique.

4.2 Failure Policy Analysis Methodology

Next, we describe the overall methodology we use for analyzing the failure policies
of journaling file systems. Our basic approach is quite simple: we inject “disk
faults” beneath the file system at certain key points during its operation and observe
its resultant behavior.
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4.2.1 Failure Policy Fingerprinting

Our main objective infailure-policy fingerprintingis to determine which detection
and recovery techniques each file system uses and the assumptions each makes
about how the underlying storage system can fail. By comparing the failure poli-
cies across file systems, we can learn not only which file systems are the most
robust to disk failures, but also suggest improvements for each. Our analysis will
also be helpful for inferring which IRON techniques can be implemented the most
effectively.

Our approach is to inject faults just beneath the file system and observe how
the file system reacts. We follow slightly different methodology for write and read
failure analysis. To inject write failures, we first construct an analytical model of
the transaction update process in journaling file systems and inject faults at various
points in the model. Specifically, in order to maintain the file system consistency,
journaling file systems update their file system structures following certain order-
ing constraints. That is, file system updates are first written to the journal as part
of a transaction, which are followed by a commit write to markthe transaction as
complete. Once the transaction is successfully written, the fixed-location structures
are modified at a later point in time. We model this ordering using a simple analyt-
ical model and inject failures at specific points in the model. In addition to unearth
the failure policy, this approach also enables us to evaluate if a file system follows
journaling semantics in the presence of errors. However, file systems issue reads
without any ordering constraints as they do not change the on-disk state. Therefore,
for read failure and block corruption analysis, we simply fail (or corrupt) different
file system block type reads.

If the fault policy is entirely consistent within a file system, this could be done
quite simply; we could run any workload, fail one of the blocks that is accessed,
and conclude that the reaction to this block failure fully demonstrates the failure
policy of the system. However, file systems are in practice more complex: they
employ different techniques depending upon the operation performed and the type
of the faulty block.

Therefore, to extract the failure policy of a system, we musttrigger as many
interesting cases as possible. Our challenge is to coerce the file system down its
different code paths to observe how each path handles failure. This requires that we
run workloads exercising all relevant code paths in combination with induced faults
on all file system data structures. Although we do not claim tostress every code
path, we do strive to execute as many of the interesting internal cases as possible.

Overall, our failure policy analysis consists of three major steps: create the
right workload, inject faults, and deduce failure policy. We describe each of these
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Workload Purpose
Singlets:
access, chdir, chroot,
stat, statfs, lstat, open,
utimes, read, readlink, Exercise the
getdirentries,creat, Posix API
link, mkdir, rename, chown,
symlink, write, truncate,
rmdir, unlink, mount,
chmod, fsync, sync, umount

Generics:
Path traversal Traverse hierarchy
Recovery Invoke recovery
Log writes Update journal

Table 4.1:Workloads. The table presents the workloads applied to the file systems under
test. The first set of workloads each stresses a single systemcall, whereas the second group
invokes general operations that span many of the calls (e.g., path traversal).

steps in detail.

4.2.2 Applied Workload

Our workload suite contains two sets of programs that run on UNIX -based file
systems (fingerprinting NTFS requires a different set of similar programs). The
first set of programs, calledsinglets, each focus upon a single call in the file system
API (e.g., mkdir). The second set,generics, stresses functionality common across
the API (e.g., path traversal). Table 4.1 summarizes the test suite.

Certain workload requires an already existing file, directory or a symbolic link
as its parameter. For example, thestat POSIX call takes a file path as an input,
searches the parent directories, and returns information about the specified file.
Before running such workloads, we must first create the files and directories that
are necessary. In case of injecting read faults, it is necessary to clear the file system
buffer cache so that the on-disk copy will be read by the workload.

Each file system under test also introduces special cases that must be stressed.
For example, the ext3 inode uses an imbalanced tree with indirect, doubly-indirect,
and triply-indirect pointers, to support large files; hence, our workloads ensure that
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Ext3 Structures Purpose
inode Info about files and directories
directory List of files in directory
data bitmap Tracks data blocks per group
inode bitmap Tracks inodes per group
indirect Allows for large files to exist
data Holds user data
super Contains info about file system
group descriptor Holds info about each block group
journal super Describes journal
journal revoke Tracks blocks that will not be replayed
journal descriptor Describes contents of transaction
journal commit Marks the end of a transaction
journal data Contains blocks that are journaled

Table 4.2:Ext3 Data Structures. The table presents the data structures of interest in ext3
file system. In the table, we list the names of the major structures and their purpose.

sufficiently large files are created to access these structures. Other file systems
have similar peculiarities that we make sure to exercise (e.g., the B+-tree balanc-
ing code of ReiserFS). The block types of the file systems we test are listed in
Tables 4.2, 4.3, 4.4, 4.5, and 4.6.

4.2.3 Fault Injection

Our second step is to inject faults that emulate a disk adhering to the fail-partial
failure model. We use type aware fault injection technique to inject faults in the
disk traffic. We discuss the error model and fault injection framework used in the
following sections.

Error Model

In our error model, we assume that the latent faults or block corruption originate
from any of the layers of the storage stack. These errors can be accurately mod-
eled through software-based fault injection because in Linux, all detected low-level
errors are reported to the file system in a uniform manner as “I/O errors” at the
device-driver layer.
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ReiserFS Structures Purpose
leaf node Contains items of various kinds
stat item Info about files and directories
directory item List of files in directory
direct item Holds small files or tail of file
indirect item Allows for large files to exist

data bitmap Tracks data blocks
data Holds user data
super Contains info about tree and file system
journal header Describes journal
journal descriptor Describes contents of transaction
journal commit Marks end of transaction
journal data Contains blocks that are journaled
root/internal node Used for tree traversal

Table 4.3:ReiserFS Data Structures.The table presents the ReiserFS data structures of
interest and their purpose.

JFS Structures Purpose
inode Info about files and directories
directory List of files in directory
block alloc map Tracks data blocks per group
inode alloc map Tracks inodes per group
internal Allows for large files to exist
data Holds user data
super Contains info about file system
journal super Describes journal
journal data Contains records of transactions
aggregate inode Contains info about disk partition
bmap descriptor Describes block allocation map
imap control Summary info about imaps

Table 4.4:JFS Data Structures.The table presents the JFS data structures of interest and
their purpose.
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XFS Structures Purpose
super Contains info about file system
journal record header Marks a journal record
start transaction Records the beginning of a transaction
journal commit record Marks the end of a transaction
unmount record Marks the journal as clean

data Holds user data

Table 4.5:XFS Data Structures. The table presents the XFS data structures of interest
and their purpose.

NTFS Structures Purpose
MFT record Info about files/directories
directory List of files in directory
volume bitmap Tracks free logical clusters
MFT bitmap Tracks unused MFT records
logfile The transaction log file
data Holds user data
boot file Contains info about NTFS volume

Table 4.6:NTFS Data Structures.The table presents the NTFS data structures of interest
and their purpose.
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The errors we inject into the block write stream have three different attributes,
similar to the classification of faults injected into the Linux kernel by Guet al.[49].
The fault specification consists of the following attributes:
Failure Type: This specifies whether a read or write must be failed. If it is aread
error, one can specify either a latent sector fault or block corruption. Additional
information such as whether the system must be crashed before or after certain
block failure can also be specified.
Block Type: This attribute specifies the file system and block type to be failed.
The request to be failed can be a dynamically-typed one (likea directory block) or
a statically typed one (like a super block). Specific parameters can also be passed
such as an inode number of an inode to be corrupted or a particular block number
to be failed.
Transience: This determines whether the fault that is injected is a transient error
(i.e., fails for the nextN requests, but then succeeds), or a permanent one (i.e., fails
upon all subsequent requests).

Fault Injection Framework

Our testing framework is shown in Figure 4.1(a). It consistsof two main com-
ponents; a device driver called thefault-injection driverand a user-level process
labeled thecoordinator. The driver is positioned between the file system and the
disk and is used to observe I/O traffic from the file system and to inject faults at
certain points in the I/O stream. The coordinator monitors and controls the entire
process by informing the driver as to which specific fault to insert, running work-
loads on top of the file system, and then observing the resultant behavior. We use
a similar fault injection framework for NTFS in Windows, where a filter driver is
used to interpose on the file system traffic.

A flow diagram of the benchmarking process is shown in Figure 4.1(b). We
now describe the entire process in detail.

The Fault-Injection Driver: The fault-injection driver (or just “driver”) is a pseudo-
device driver, and hence appears as a typical block device tothe file system. It is
placed in the Linux kernel and associated with a real disk. The file system of inter-
est is mounted on top of the pseudo-device and the driver simply interposes upon
all I/O requests to the real underlying disk. As the driver passes the traffic to and
from the disk, it also efficiently tracks each request and response by storing a small
record in a fixed-sized circular buffer.

The driver has three main roles in our system. First, it must classify each block
that is written to disk based on itstype (i.e., what specific file-system data struc-
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Figure 4.1: Benchmarking Framework and Algorithm Flow. Figure (a) shows the
benchmarking framework we use to measure the fault tolerance of journaling file systems
to I/O failures. The two main components in the figure are the user level process that issues
the fault and the fault-injection driver that classifies blocks and injects faults. Figure (b)
shows a simplified flowchart of our benchmarking algorithm that is implemented by the
fault-injection driver.

ture this write represents). For example, one must interpret the contents of the
journal to infer the type of journal block (e.g., a descriptor or commit block) and
one must interpret the journal descriptor block to know which data blocks are jour-
naled. Therefore, it is necessary that we interpret the semantics online so that block
failures can be injected correctly. We explain the complexity and overhead of this
classification in Sections 4.2.5 and 4.2.5.

Second, the driver must “model” what the journaling file system above is doing.
Specifically, for write failures, such a model represents the correct sequence of
states that a transaction must go through in committing to disk. For read failures, it
is sufficient to correctly interpret the file system block types. By inserting failures
for specific block types and transactional states, we can observe how the file system
handles different types of faults and better judge if it correctly handles the faults
we have injected.

Third, the driver is used to inject faults into the system. This layer injects both
block faults (on reads or writes) and block corruption (on reads). To emulate a block
fault, we simply return the appropriate error code and do notissue the operation to
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the underlying disk. To emulate corruption, we change bits within the block before
returning the data; in some cases we inject random noise, whereas in other cases
we use a block similar to the expected one but with one or more corrupted fields.
The software layer also models both transient and sticky faults.

By injecting failures just below the file system, we emulate faults that could be
caused by any of the layers in the storage subsystem. Therefore, unlike approaches
that emulate faulty disks using additional hardware [24], we can imitate faults in-
troduced by buggy device drivers and controllers. A drawback of our approach
is that it does not discern how lower layers handle disk faults; for example, some
SCSI drivers retry commands after a failure [90]. However, given that we are char-
acterizing how file systems react to faults, we believe this is the correct layer for
fault injection.

The Coordinator: The coordinator monitors the entire benchmarking process.It
first inserts the fault-injection driver into the Linux kernel. Then, the coordinator
constructs the file system, passes a fault specification to the driver, spawns a child
process to run the workload, and looks for errors. The driverand the coordinator
communicate through the Linuxioctl interface to exchange information such as
the fault specification and disk traffic observed by the driver.

Errors can manifest themselves in numerous locales, so we must log all such
errors and have the coordinator collate them. Specifically,the child process may
receive errors from the file system, the driver may observe errors in the sequence of
state transitions, and the coordinator itself must look through system logs to look
for other errors reported by the file system but not reflected to the calling child
process.

Each of our fault injection experiment proceeds as follows:the file system
to be tested is freshly created and mounted in one of the threejournaling modes.
For write failure analysis, the journaling mode information is passed to the driver,
which then selects the appropriate analytical model internally. After specifying
the journaling mode, the files and directories needed for thetesting are created in
the clean file system. Depending on the type of the block to fail, the coordinator
constructs a fault specification (which contains the attributes described in§4.2.3)
and passes it to the fault-injection driver. Then, the coordinator runs a controlled
workload (e.g., creating a file or directory) as a child process that would generate
the block write to be failed. For write failure analysis, based on the journaling mode
and the blocks written by the file system, the driver moves internally from one state
to another in its journaling model. When the expected block is read or written by
the file system, the driver injects the fault by failing or corrupting that block I/O.
The driver also records any file system I/O that violate the journaling model. Once
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the fault is injected, the coordinator collects the error logs from the child process,
system log, and the driver.

4.2.4 Failure Policy Inference

After running a workload and injecting a fault, the final stepis to determine how the
file system behaved. To determine how a fault affected the filesystem, we compare
the results of running with and without the fault. We performthis comparison
across all observable outputs from the system: the error codes and data returned
by the file system API, the contents of the system log, and the low-level I/O traces
recorded by the fault-injection layer. Currently, this is the most human-intensive
part of the process, as it requires manual inspection of the visible outputs.

In certain cases, if we identify an anomaly in the failure policy, we check the
source code to verify specific conclusions; however, given its complexity, it is not
feasible to infer failure policy only through code inspection.

We collect large volumes of results in terms of traces and error logs for each
fault injection experiment we run. Due to the sheer volume ofexperimental data, it
is difficult to present all results for the reader’s inspection. We represent file system
failure policies using a unique representation calledfailure policy graphs, which is
similar to the one shown in Figure 4.2.

In Figure 4.2, we plot the different workloads on x-axis and the file system data
structures on y-axis. If applicable, each<row, column> entry presents the IRON
detection or recovery technique used by a file system. If not applicable (i.e., if the
workload does not generate the particular block type traffic), a gray box is used.
The symbols are superimposed when multiple mechanisms are employed by a file
system.

Next, we explain how the entries in Figure 4.2 must be interpreted by walking
through an example. Specifically, consider the entry for workload “W1” and “D5”
data structure. It has three symbols superimposed: retry (RRetry), error propagation
(RPropagate) and finally, a file system stop (RStop). This means that whenever an
I/O to “D5” fails during workload “W1”, the file system first retries and if that fails,
stops and propagates the error to the application.

We use failure policy graphs not only to present our analysisresults but also
throughout this thesis to represent the failure policies ofdifferent versions of IRON
file systems we build.
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Figure 4.3:Journaling Models. This figure shows the models that we use for verifying
the different journaling modes. Each model is built based ona regular expression and then
the stateS3, which represents the state that is reached on any write failure, is added to it.
In the above models,J represents journal writes,D represents data writes,C represents
journal commit writes,K represents checkpoint writes,S represents journal super block
writes, andF represents any write failure.

4.2.5 Journaling Models

We now describe how we model journaling file systems for writefailures. As ex-
plained in Section 3.1, there are three different journaling modes. Each of these
journaling modes differs from the other by the type of data itjournals and the order
in which it writes the blocks. We build a model for each of the journaling modes
based on its functionality. The models represent the journaling modes by specify-
ing the type of data they accept and the order in which the datamust be written. For
example, the model for ordered journaling mode specifies that ordered data must
be written before the metadata is committed to the log.

We build the models as follows. First, we construct a regularexpression for
each journaling mode. We use regular expressions because they can represent the
journaling modes concisely and they are easy to construct and understand. Then,
we build a model based on the regular expression. Figure 4.3 shows the models
for each journaling mode. The journaling models consist of different states. These
states represent the state of on-disk file system. The on-disk file system moves from
one state to another based on the type of write it receives from the file system. We
keep track of this state change by moving correspondingly inthe model.

We explain briefly the regular expression for each journaling mode. Let,J rep-
resent journal writes,D represent data writes,C represent journal commit writes,
S represent journal super block writes,K represent checkpoint data writes andF
represent any write failures.
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Data Journaling: Data journaling can be expressed by the following regular
expression:

((J+C)+(K∗S∗)∗)+.

In data journaling mode, all the file system writes are journaled (represented byJ)
and there are no ordered or unordered writes. After writing one or more journal
blocks, a commit block (represented byC) is written by the file system to mark the
end of the transaction. The file system could write one or moresuch transactions
to the log. Once the transactions are committed, the file system might write the
checkpoint blocks (represented byK) to their fixed locations or the journal super
block (represented byS) to mark the new head and tail of the journal. We convert
this regular expression to a state diagram as shown in Figure4.3(a) and add the
failure stateS3 to it.

Ordered Journaling: Ordered journaling can be expressed by the following reg-
ular expression:

(((D∗J+D∗)+C)+(K∗S∗)∗)+.

In ordered mode, data (D) must be written before metadata blocks arecommitted
to the journal. Note that the data blocks can be issued in parallel with the journal
writes (J) but all of those writes must be complete before the commit block (C) is
written. Once the commit block is written, the transaction is over. There could be
one or more such transactions. Similar to data journaling, the file system can write
the checkpoint blocks (K) or the journal super block (S) after the transactions. This
regular expression is converted into a state diagram and a failure stateS3 is added
to it as shown in Figure 4.3(b).

Writeback Journaling: Writeback journaling is given by the following regular
expression:

(((D∗J+D∗)+C)+(K∗D∗S∗)∗)+.

In writeback journaling mode, the data (D) can be written at any time by the file
system. It can be written before the journal writes (J) or after them. Once the
journal writes are complete, a commit block (C) is written. After the transaction is
committed, the file system can write the journal super block (S) or the checkpoint
blocks (K) or the unordered writes (D). The writeback journaling model in Fig-
ure 4.3(c) is obtained by taking this regular expression andadding the stateS3 to
it.
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Code Detailed Analysis Preliminary Analysis
Ext3 ReiserFS JFS XFS NTFS

SBA Generic 1940 1940 1940 1940 448
SBA FS Specific 463 358 509 450 179

SBA Total 2403 2298 2449 2390 627

Table 4.7:Code Size of Fault Injection Drivers.The number of C statements (counted as
the number of semicolons) needed to perform a thorough failure policy analysis for ext3,
ReiserFS, and JFS and a preliminary analysis for XFS and NTFS. Our XFS and NTFS
analysis are preliminary because we do not run all the workloads and fail all the data
structures in these file systems.

Complexity of Fault Injection Driver

The fault injection driver is customized to the file system under test. One concern
is the amount of information that must be embedded within thedriver for each file
system. Given that the focus is on understanding all the block types, our drivers
are embedded with enough information to interpret the placement and contents of
journal, metadata, and data blocks. We now analyze the complexity of the driver
for four Linux journaling file systems, ext3, ReiserFS, JFS and XFS, and Windows
NTFS.

Journaling file systems have both a journal, where transactions are temporarily
recorded, and fixed-location data structures, where data permanently reside. Our
SBA driver distinguishes between the traffic sent to the journal and to the fixed-
location data structures. This traffic is simple to distinguish in ReiserFS, JFS, XFS,
and NTFS because the journal is a set of contiguous blocks, separate from the rest
of the file system. However, to be backward compatible with ext2, ext3 can treat
the journal as a regular file. Thus, to determine which blocksbelong to the journal,
fault injection driver uses its knowledge of inodes and indirect blocks; given that the
journal does not change location after it has been created, this classification remains
efficient at run-time. The driver is also able to classify thedifferent types of journal
blocks such as the descriptor block, journal data block, andcommit block.

To perform useful analysis of journaling file systems, the driver does not have
to understand any of the in-core data structures of the file systems. Moreover, the
driver does not know anything about the policies or parameters of the file system.

Table 4.7 reports the number of C statements required to implement the fault
injection driver. These numbers show that most of the code inthe driver (i.e., 1940
statements for Linux and 448 statements for Windows) is for general infrastructure;
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only between approximately 350 and 500 statements are needed to support different
journaling file systems.

Overhead of Fault Injection

In this section, we describe the overheads of classifying the file system traffic into
different block types as incurred by the driver. The processing and memory over-
heads due to the driver are minimal. For every I/O request, the following operations
are performed by the driver:

• A block number comparison to find out certain file system blocktypes. First,
block numbers can be used to identify whether a block belongsto the journal or
fixed-location. Journaling file systems typically allocatethe journal as a contigu-
ous set of blocks on disk in order to improve the sequential write performance.
Therefore, a simple boundary check can classify journal traffic from fixed-location
traffic. However, since journal is created as a file in ext3, the driver compares the
I/O block number with the block numbers of the journal file to distinguish journal
traffic from others. This comparison is performed efficiently by using hash tables
within the driver. Second, the block number comparison can also give information
about certain statically assigned block types. For example, in ext3, inode block lo-
cations are statically assigned during file system creation. By comparing the block
number with the static inode table on disk, the driver can findif a request is issued
to an inode block.

• Verifying the contents of the block to understand other file system block
types. For example in ext3, the driver checks for certain magic number on the
journal blocks to distinguish journal metadata from journal data. The driver also
uses the contents to identify other block types such as directories whose locations
are dynamically allocated at run time by the file system.

The fault injection driver also stores a small trace of records for each I/O with
details like read or write, block number, block type, time ofissue and completion,
and whether the fault is injected for that block. Each trace record takes about 50
bytes and is stored in an internal circular buffer. After fault injection experiments,
the coordinator collects the block-level trace for furtheranalysis.

We run the fault injection experiments on a relatively smallfile system size
(about 250 MB). Note that even with a small file system, it is possible to exercise
certain data structures such as the triple indirect block inext3, which is created
only for large file sizes. We do this by creating a file with lotsof “holes” and
only few actual blocks in it. Therefore, recreating the file system for each new
testing does not take much time and each fault injection experiment takes only a
few seconds. However, when a system crash is induced to analyze the file system
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Figure 4.4:Fault Injection Example. This figure shows the sequence of steps followed
by the fault-injection driver to track transaction writes in ordered journaling mode and fail
the commit block write.

recovery properties, the fault injection can take up to a fewminutes if the system
needs to be rebooted. Since a system crash is caused only on few experiments, it
did not add much overhead to the analysis.

4.2.6 Putting it All Together:
An Example of Fault Injection

We conclude this methodology section with an example of how afault is injected
using the journaling model. Figure 4.4 shows the sequence ofsteps followed by the
fault-injection driver to track the file system writes and inject the fault. In this exam-
ple, we consider failing a commit block write of a transaction in ordered journaling
mode. Each step in the figure captures a transition to a different state. Initially,
the transaction starts with a set of ordered data writes (Figure 4.4a). After the data
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writes, the journal blocks are logged (Figure 4.4b). The commit block is written
after all the data and journal writes are complete and it is failed (Figure 4.4c). The
file system can be oblivious to this commit block failure and continue to check-
point the journaled blocks (Figure 4.4d). Or, the file systemcan recognize this
failure and take steps to prevent file system corruption by moving to stateS3 (Fig-
ure 4.4e). In stateS3, the file system could abort the failed transaction, or do bad
block remapping, or remount itself read-only, or crash the system.

From the example, we can see that it is not sufficient to know just the block
types to inject faults in file system requests. Without the model, the fault-injection
driver cannot determine if the requests following a write failure belong to the failed
transaction or to new transactions from the file system. By keeping track of the
writes using the journaling model, the fault-injection driver can explainwhya par-
ticular block write failure leads to certain file system errors.

4.2.7 Summary

We have developed a three-step fingerprinting methodology to determine file sys-
tem failure policy. We believe our approach strikes a good balance: it is straight-
forward to run and yet exercises the file system under test quite thoroughly. Our
workload suite contains roughly 30 programs, each file system has on the order of
10 to 20 different block types, and each block can be failed ona read or a write or
have its data corrupted. For each file system, this amounts toroughly 400 relevant
tests.

4.3 Failure Policy Analysis Results

We now present the results of our failure policy analysis forfive commodity file
systems: ext3, ReiserFS (version 3), IBM’s JFS, and XFS on Linux and NTFS on
Windows. For each file system, we discuss the general failurepolicy we uncovered
along with bugs and illogical inconsistencies; where appropriate and available, we
also look at source code to better explain the problems we discover.

For each file system that we studied in depth, we present failure policy graphs
of our results, showing for each workload/block type pair how a given detection or
recovery technique is used. Figures 4.5, 4.6, and 4.7 present a (complex) graphical
depiction of our results. Totally, there are six graphs in each figure, three each
for detection and recovery policies. Among the three graphs, one graph each is
plotted for read failures, write failures, and block corruption results. Under certain
columns, we collapse multiple workloads into a single entryif the disk traffic and
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failure handling by the file system is same for all those workloads. We now provide
a qualitative summary of the results that are presented within the figure.

4.3.1 Linux ext3

Key for Detection Key for Recovery
© DZero © RZero

− DErrorCode / RRetry

| DSanity − RPropagate

\ RRedundancy

| RStop

Table 4.8:Keys for Detection and Recovery.The table presents the keys we use to repre-
sent the detection and recovery policies in file systems.

Detection

To detect read failures, ext3 primarily uses error codes (DErrorCode). However,
when a write fails, ext3 does not record the error code (DZero); hence, write errors
are often ignored, potentially leading to serious file system problems (e.g., when
checkpointing a transaction to its final location). Ext3 also performs a fair amount
of sanity checking (DSanity). For example, ext3 explicitly performs type checks
for certain blocks such as the superblock and many of its journal blocks. However,
little type checking is done for many important blocks, suchas directories, bitmap
blocks, and indirect blocks. Ext3 also performs numerous other sanity checks (e.g.,
when the file-size field of an inode contains an overly-large value,open detects
this and reports an error).

Recovery

For most detected errors, ext3 propagates the error to the user (RPropagate). For
read failures, ext3 also often aborts the journal (RStop); aborting the journal usually
leads to a read-only remount of the file system, preventing future updates without
explicit administrator interaction. Ext3 also uses retry (RRetry), although spar-
ingly; when a prefetch read fails, ext3 retries only the originally requested block.
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Figure 4.5: Ext3 Failure Policies. The failure policy graphs plot detection and re-
covery policies of ext3 for read, write, and corruption faults injected for each block
type across a range of workloads. The workloads area: path traversal b: ac-
cess,chdir,chroot,stat,statfs,lstat,openc: chmod,chown,utimesd: reade: readlink f: getdi-
rentriesg: creath: link i: mkdir j: renamek: symlinkl: write m: truncaten: rmdir o: unlink
p: mountq: fysnc,syncr: umounts: FS recoveryt: log write operations. A gray box in-
dicates that the workload is not applicable for the block type. If multiple mechanisms are
observed, the symbols are superimposed. The keys for detection and recovery are presented
in Table 4.8.
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Bugs and Inconsistencies

We found a number of bugs and inconsistencies in the ext3 failure policy. First,
errors are not always propagated to the user (e.g., truncate andrmdir fail
silently). Second, ext3 does not always perform sanity checking; for example,
unlink does not check thelinkscount field before modifying it and therefore
a corrupted value can lead to a system crash. Third, althoughext3 has redundant
copies of the superblock (RRedundancy), these copies are never updated after file
system creation and hence are not useful. Finally, there areimportant cases when
ext3 violates the journaling semantics, committing or checkpointing invalid trans-
actions. We discuss each such cases below.
Committing Failed Transactions: When a write in a transaction fails, ext3 con-
tinues to write the transaction to the log and commits it. This can affect file system
integrity. For example, when an ordered data write fails in ordered journaling mode,
we expect the file system to abort the transaction, because ifit commits the trans-
action, the metadata blocks will end up pointing to wrong or old data contents on
the disk. This problem occurs in ext3 where failure of an ordered write can cause
data corruption.
Checkpointing Failed Transactions: When a write in a transaction fails, the file
system must not checkpoint the blocks that were journaled aspart of that transac-
tion, because during checkpointing if a crash occurs, the file system cannot recover
the failed transaction. This can result in a corrupted file system. Ext3 commits a
transaction even after a transaction write fails. After committing the failed transac-
tion, ext3 checkpoints the blocks that were journaled in that transaction. Depending
on the journaling mode, the checkpointing can be either partial or complete as de-
scribed below.
• Partial Checkpointing: In certain cases, ext3 only checkpoints some of the blocks
from a failed transaction. This happens in data journaling mode when a journal
descriptor block or journal commit block write fails. In these cases, during check-
pointing,only the file system metadata blocks of the transaction are checkpointed
and the data blocks are not checkpointed. For example, in data journaling mode,
when a file is created with some data blocks, if the transaction’s descriptor block
fails, then only the metadata blocks like the file’s inode, data bitmap, inode bitmap,
directory data, and directory inode blocks are written to their fixed locations. The
data blocks of the file, which are also journaled in data journaling mode, are not
written. Since the data blocks are not written to their fixed locations, the metadata
blocks of the file end up pointing to old or incorrect contentson the disk.
• Complete Checkpointing: In ordered and writeback journaling mode, only file
system metadata blocks are journaled and no data blocks are written to the log. In
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these modes, ext3 checkpoints all the journaled blocks evenfrom a failed transac-
tion. Below we describe a generic case where it can cause file system corruption.

Let there be two transactionsT1 andT2, whereT1 is committed first followed
by T2. Let blockB1 be journaled inT1 and blocksB1 andB2 be journaled inT2.
Assume transactionT2 fails and that the file system continues to checkpoint blocks
B1 andB2 of the failed transactionT2. If a crash occurs after writing blocksB1

andB2 to their fixed locations, the file system log recovery runs during next mount.
During the recovery only transactionT1 will be recovered becauseT2 is a failed
transaction. WhenT1 is recovered, the contents of blockB1 will be overwritten by
old contents fromT1. After the recovery, the file system will be in an inconsistent
state where blockB1 is from transactionT1 and blockB2 is from transactionT2.

The above explained problem can occur in ext3 when the write of a journal
metadata block like descriptor block, revoke block, or commit block fails. This can
lead to file system corruptions resulting in loss of files, inaccessible directories and
so on.

Not Replaying Failed Checkpoint Writes: Checkpointing is the process of writ-
ing the journaled blocks from the log to their fixed locations. When a checkpoint
write fails, the file system must either attempt to write again or mark the journal
such that the checkpoint write will happen again during the next log replay. Ext3
does not replay failed checkpoint writes. This can cause data corruption, data loss,
or loss of files and directories.

Not Replaying Transactions: Journaling file systems maintain a state variable to
mark the log as dirty or clean. When the file system is mounted,if the log is dirty,
the transactions from the log are replayed to their fixed locations. Usually jour-
naling file systems update this state variable before starting a transaction and after
checkpointing the transaction. If the write to update this state variable fails, two
things can possibly happen; one, the file system might replaya transaction that
need not be replayed; two, it might fail to replay a transaction that needs recovery.
Replaying the same transaction again does not cause any integrity problems. But
the second possibility (i.e., not replaying the journal contents) can lead to corrup-
tion, or loss of data.

Ext3 maintains its journal state in the journal super block.Ext3 clears this field
and writes the journal super block to indicate a clean journal. To mark the journal
as dirty, the journal super block is written with a non-zero value in this field. When
the journal super block write fails, ext3 does not attempt towrite it again or save the
super block in other locations. Moreover, even after the journal super block failure,
ext3 continues to commit transactions to the log. If the journal super block written
to mark the journal as dirty is failed, the journal appears clean on next mount. If
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any transaction needs replay due to a previous crash, ext3 fails to replay them. This
can result in lost files and directories.

Replaying Failed Transactions:When a journal data block write fails, that trans-
action must be aborted and not replayed. If the transaction is replayed, journal data
blocks with invalid contents might be read and written to thefixed location. If not
handled properly, this can lead to serious file system errors. As said earlier, ext3
does not abort failed transactions. It continues to commit them to the log. Therefore
during recovery, it can write invalid contents to file systemfixed location blocks.
This can corrupt important file system metadata and even result in an unmountable
file system.

4.3.2 ReiserFS

Detection

Our analysis reveals that ReiserFS pays close attention to error codes across reads
and writes (DErrorCode). ReiserFS also performs a great deal of internal sanity
checking (DSanity). For example, all internal and leaf nodes in the balanced tree
have a block header containing information about the level of the block in the tree,
the number of items, and the available free space; the super block and journal
metadata blocks have “magic numbers” which identify them asvalid; the jour-
nal descriptor and commit blocks also have additional information; finally, inodes
and directory blocks have known formats. ReiserFS checks whether each of these
blocks has the expected values in the appropriate fields. However, not all blocks
are checked this carefully. For example, bitmaps and data blocks do not have asso-
ciated type information and hence are never type-checked.

Recovery

The most prominent aspect of the recovery policy of ReiserFSis its tendency to
panic the system upon detection of virtually any write failure (RStop). When
ReiserFS callspanic, the file system crashes, usually leading to a reboot and
recovery sequence. By doing so, ReiserFS attempts to ensurethat its on-disk struc-
tures are not corrupted. ReiserFS recovers from read and write failures differently.
For most read failures, ReiserFS propagates the error to theuser (RPropagate) and
sometimes performs a single retry (RRetry) (e.g., when a data block read fails, or
when an indirect block read fails duringunlink, truncate, andwrite opera-
tions). However, ReiserFS never retries upon a write failure.
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Figure 4.6: ReiserFS Failure Policy. The failure policy graphs plot detection and re-
covery policies of ReiserFS for read, write, and corruptionfaults injected for each block
type across different workloads. The workloads are varied across the columns of the
figure, and the different block types of the ReiserFS file system are varied across the
rows. The workloads area: path traversalb: access,chdir,chroot,stat,statfs,lstat,open
c: chmod,chown,utimesd: reade: readlink f: getdirentriesg: creath: link i: mkdir j: re-
namek: symlinkl: write m: truncaten: rmdir o: unlink p: mountq: fysnc,syncr: umount
s: FS recoveryt: log write operations. A gray box indicates that the workloadis not ap-
plicable for the block type. For multiple mechanisms, the symbols are superimposed. The
keys for detection and recovery are presented in Table 4.8.
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Bugs and Inconsistencies:

ReiserFS also exhibits inconsistencies and bugs. First, while dealing with indi-
rect blocks, ReiserFS detects but ignores a read failure; hence, on atruncate or
unlink, it updates the bitmaps and super block incorrectly, leaking space. Sec-
ond, ReiserFS sometimes callspanic on failing a sanity check, instead of simply
returning an error code. Third, there is no sanity or type checking to detect corrupt
journal data; therefore, replaying a corrupted journal block can make the file sys-
tem unusable (e.g., the block is written as the super block). Finally, ReiserFSalso
violates journaling semantics during certain write failures. We explain the details
below.

Committing, Checkpointing, and Replaying Failed Transactions: On certain
write failures, ReiserFS does not crash but continues to commit and checkpoint the
failed transaction. In ordered journaling mode, when an ordered data block write
fails, ReiserFS journals the transaction and commits it without handling the write
error. This can result in corrupted data blocks because on such failed transactions
the metadata blocks of the file system will end up pointing to invalid data contents.
ReiserFS does not have a uniform failure handling policy; itcrashes on some write
failures and not on others. File system corruption would have been prevented if
ReiserFS was crashing the system even on ordered write failures. ReiserFS also
replays failed transaction on ordered data write errors.

4.3.3 IBM JFS

Detection

Error codes (DErrorCode) are used to detect read failures, but, like ext3, most write
errors are ignored (DZero), with the exception of journal superblock writes. JFS
employs only minimal type checking; the superblock and journal superblock have
magic and version numbers that are checked. Other sanity checks (DSanity) are
used for different block types. For example, internal tree blocks, directory blocks,
and inode blocks contain the number of entries (pointers) inthe block; JFS checks
to make sure this number is less than the maximum possible foreach block type.
As another example, an equality check on a field is performed for block allocation
maps to verify that the block is not corrupted.

Recovery

The recovery strategies of JFS vary dramatically dependingon the block type.
For example, when an error occurs during a journal superblock write, JFS crashes
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Figure 4.7:JFS Failure Policy. The tables plot detection and recovery policies of JFS
for read, write, and corruption faults. The workloads are varied across the columns, and
the different block types are varied across the rows. The workloads area: path traver-
sal b: access,chdir,chroot,stat,statfs,lstat,openc: chmod,chown,utimesd: reade: readlink
f: getdirentriesg: creath: link i: mkdir j: renamek: symlinkl: write m: truncaten: rmdir
o: unlink p: mountq: fysnc,syncr: umounts: FS recoveryt: log write operations. A gray
box indicates that the workload is not applicable for the block type. For multiple mecha-
nisms, the symbols are superimposed. The keys for detectionand recovery are presented in
Table 4.8.
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the system (RStop); however, other write errors are ignored entirely (RZero). On
a block read failure to the primary superblock, JFS accessesthe alternate copy
(RRedundancy) to complete the mount operation; however, a corrupt primary results
in a mount failure (RStop). Explicit crashes (RStop) are used when a block allo-
cation map or inode allocation map read fails. Error codes for all metadata reads
are handled by generic file system code called by JFS; this generic code attempts
to recover from read errors by retrying the read a single time(RRetry). Finally, the
reaction for a failed sanity check is to propagate the error (RPropagate) and remount
the file system as read-only (RStop); during journal replay, a sanity-check failure
causes the replay to abort (RStop).

Bugs and Inconsistencies

We also found problems with the JFS failure policy. First, while JFS has some
built-in redundancy, it does not always use it as one would expect; for example,
JFS does not use its secondary copies of aggregate inode tables (special inodes used
to describe the file system) when an error code is returned foran aggregate inode
read. Second, a blank page is sometimes returned to the user (RGuess), although
we believe this is not by design (i.e., it is a bug); for example, this occurs when
a read to an internal tree block does not pass its sanity check. Third, some bugs
limit the utility of JFS recovery; for example, although generic code detects read
errors and retries, a bug in the JFS implementation leads to ignoring the error and
corrupting the file system. Finally, we present the cases of journaling semantics
violations during write failures in JFS.

Not Replaying Failed Checkpoint Writes: When a checkpoint write fails, JFS
does not rewrite it or mark the transaction for a replay. JFS simply ignores this
error, which can lead to a corrupted file system. This behavior is similar to that
of ext3. Since both these file systems do not record failed checkpoint writes, they
have no way of identifying which transactions must be replayed again.

Committing, Checkpointing, and Replaying Failed Transactions: We find that
all the five journaling file systems commit and checkpoint a transaction on an or-
dered block write failure. JFS does not notify the application of an ordered write
failure and commits the transaction. This can lead to data corruption.

Failing to Recover: When a journal block write fails, JFS does not abort the failed
transaction but commits it. If a crash happens after a journal write failure, the
logredo routine of JFS fails because of unrecognized log record type. This can
lead to unmountable file system.
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4.3.4 XFS

We perform a preliminary analysis of failure policy for write failures in XFS. We
fail the writes of the following block types in XFS: ordered data, journal blocks
containing both the metadata and commit records, journal blocks with unmount
records, and checkpoint blocks.

Detection

XFS detects most write failures using the error code (DErrorCode), including the
asynchronous checkpoint write errors, which are ignored byext3 and JFS. XFS
does not always handle write failures correctly. We find a flawthat we found in
ext3, ReiserFS, and JFS as well. That is, when an ordered datablock write fails,
XFS continues to log the failed transaction to the journal resulting in data corrup-
tion.

Recovery

XFS takes different recovery techniques under different block failures. It retries
checkpoint write (which are asynchronous) failures repeatedly without any bounds
(RRetry). If the block error is a transient one, the repeated retry successfully writes
the block. On permanent errors, the failed block write is repeated infinitely. If one
unmounts the system to rectify the write error, XFS crashes (RStop). On journal
write failures, XFS reacts immediately by stopping the file system (RStop).

4.3.5 Windows NTFS

NTFS [2, 109] is the only non-UNIX file system in our study. Because our analysis
requires detailed knowledge of on-disk structures, we do not yet have a complete
analysis as in Figures 4.5, 4.6, and 4.7.

We find that NTFS uses error codes (DErrorCode) to detect both block read and
write failures. Similar to ext3 and JFS, when a data write fails, NTFS records the
error code but does not use it (DZero), which can corrupt the file system.

NTFS performs strong sanity checking (DSanity) on metadata blocks; the file
system becomes unmountable if any of its metadata blocks (except the journal)
are corrupted. NTFS surprisingly does not always perform sanity checking; for
example, a corrupted block pointer can point to important system structures and
hence corrupt them when the block pointed to is updated.

In most cases, NTFS propagates errors (RPropagate). NTFS aggressively uses
retry (RRetry) when operations fail (e.g., up to seven times under read failures).



60

Level ext3 ReiserFS JFS
DZero

√√ √ √√√

DErrorCode

√√√√ √√√√ √√

DSanity

√√√ √√√√ √√√

DRedundancy

RZero

√√ √ √√

RPropagate

√√√ √√ √√

RStop

√√ √√√ √√

RGuess

√

RRetry

√ √√

RRepair

RRemap

RRedundancy

√

Table 4.9:IRON Techniques Summary. The table depicts a summary of the IRON tech-
niques used by the file systems under test. More check marks (

√
) indicate a higher relative

frequency of usage of the given technique.

Ext3 ReiserFS IBM JFS XFS
Committing Failed Transactions × × × ×
Checkpointing Failed Transactions × × × ×
Not Replaying Failed Checkpoint Writes× ×
Not Replaying Transactions ×
Replaying Failed Transactions × × × ×
Crashing File System × × ×

Table 4.10:File System Bugs. This table gives a summary of the bugs we identified in
ext3, ReiserFS, IBM JFS, and XFS.

With writes, the number of retries varies (e.g., three times for data blocks, two
times for MFT blocks).

4.3.6 File System Summary

We now present a qualitative summary of each of the file systems we tested. Ta-
ble 4.9 presents a summary of the techniques that each file system employs (ex-
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cluding XFS and NTFS) and Table 4.10 lists the bugs we found inour file system
analysis.

• Ext3: Overall simplicity. Ext3 implements a simple and mostly reliable failure
policy, matching the design philosophy found in the ext family of file systems. It
checks error codes, uses a modest level of sanity checking, and recovers by prop-
agating errors and aborting operations. The main problem with ext3 is its failure
handling for write errors, which are ignored and cause serious problems including
possible file system corruption.

• ReiserFS: First, do no harm. ReiserFS is the most concerned about disk fail-
ure. This concern is particularly evident upon write failures, which often induce a
panic; ReiserFS takes this action to ensure that the file system is not corrupted.
ReiserFS also uses a great deal of sanity and type checking. These behaviors com-
bine to form a Hippocratic failure policy: first, do no harm.

• JFS: The kitchen sink. JFS is the least consistent and most diverse in its failure
detection and recovery techniques. For detection, JFS sometimes uses sanity, some-
times checks error codes, and sometimes does nothing at all.For recovery, JFS
sometimes uses available redundancy, sometimes crashes the system, and some-
times retries operations, depending on the block type that fails, the error detection
and the API that was called.

• XFS: Simple and well-defined.From our preliminary analysis, we find that XFS
has a simple and well-defined failure policy to handle write failures. It checks error
codes and on synchronous write failures, XFS stops the file system and propagates
errors. On asynchronous write failures, the failed write isretried persistently.

• NTFS: Persistence is a virtue.Compared to several Linux file systems, NTFS is
more persistent, retrying failed requests many times before giving up. It also seems
to propagate errors to the user quite reliably. However, more thorough testing of
NTFS is needed in order to broaden these conclusions (a part of our ongoing work).

4.3.7 Technique Summary

Finally, we present a broad analysis of the techniques applied by all of the file
systems to detect and recover from disk failures. We concentrate upon techniques
that are underused, overused, or used in an inappropriate manner.

• Detection and Recovery: Illogical inconsistency is common. We found a high
degree ofillogical inconsistencyin failure policy across all file systems (observable
in the patterns in Figures 4.5, 4.6, and 4.7). For example, ReiserFS performs a great
deal of sanity checking; however, in one important case it does not (journal replay),
and the result is that a single corrupted block in the journalcan corrupt the entire
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file system. JFS is the most illogically inconsistent, employing different techniques
in scenarios that are quite similar.

We note that inconsistency in and of itself is not problematic [37]; for example,
it would be logically inconsistent (and a good idea, perhaps) for a file system to
provide a higher level of redundancy to data structures it deems more important,
such as the root directory [106]. What we are criticizing areinconsistencies that
are undesirable (and likely unintentional); for example, JFS will attempt to read the
alternate superblock if a read failure occurs when reading the primary superblock,
but it does not attempt to read the alternate if it deems the primary corrupted.

In our estimation, the root cause of illogical inconsistency is failure policy dif-
fusion; the code that implements the failure policy is spread throughout the kernel.
Indeed, the diffusion is encouraged by some architectural features of modern file
systems, such as the split between generic and specific file systems. Further, we
have observed some cases where different developers implement different portions
of the code and hence implement different failure policies (e.g., one of the few cases
in which ReiserFS doesnot panic on write failure arises due to this); perhaps this
inconsistency is indicative of the lack of attention paid tofailure policy. We pay
attention to this problem and design a centralized failure handler for file systems,
which we discuss in Chapter 6.

• Detection and Recovery: Bugs are common.We also found numerous bugs
across the file systems we tested, some of which are serious, and many of which
are not found by other sophisticated techniques [129]. We believe this is generally
indicative of the difficulty of implementing a correct failure policy; it certainly hints
that more effort needs to be put into testing and debugging ofsuch code. One sug-
gestion in the literature that could be helpful would be to periodically inject faults
in normal operation as part of a “fire drill” [80]. Our method reveals that testing
needs to be broad and cover as many code paths as possible; forexample, only by
testing the indirect-block handling of ReiserFS did we observe certain classes of
fault mishandling.

• Detection: Error codes are sometimes ignored.Amazingly (to us), error codes
were sometimes clearly ignored by the file system. This was most common in JFS,
but found occasionally in the other file systems. Perhaps a testing framework such
as ours should be a part of the file system developer’s toolkit; with such tools, this
class of error is easily discovered.

• Detection: Sanity checking is of limited utility. Many of the file systems use
sanity checking to ensure that the metadata they are about touse meets the expec-
tations of the code. However, modern disk failure modes suchas misdirected and
phantom writes lead to cases where the file system could receive a properly for-
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matted (but incorrect) block; the bad block thus passes sanity checks, is used, and
can corrupt the file system. Indeed, all file systems we testedexhibit this behavior.
Hence, we believe stronger tests (such as checksums) shouldbe used.

• Recovery: Stop is useful – if used correctly.Most file systems employed some
form of RStop in order to limit damage to the file system when some types of errors
arose; ReiserFS is the best example of this, as it callspanic on virtually any
write error to prevent corruption of its structures. However, one has to be careful
with such techniques. For example, upon a write failure, ext3 tries to abort the
transaction, but does not correctly squelch all writes to the file system, leading to
corruption. Perhaps this indicates that fine-grained rebooting is difficult to apply in
practice [25].

• Recovery: Stop should not be overused.One downside to halting file system
activity in reaction to failure is the inconvenience it causes: recovery takes time and
often requires administrative involvement to fix. However,all of the file systems
used some form ofRStop when something as innocuous as a read failure occurred;
instead of simply returning an error to the requesting process, the entire system
stops. Such draconian reactions to possibly temporary failures should be avoided.

• Recovery: Retry is underutilized. Most of the file systems assume that failures
are not transient, or that lower layers of the system handle such failures, and hence
do not retry requests at a later time. The systems that employretry generally assume
read retry is useful, but write retry is not; however, transient faults due to device
drivers or transport issues are equally likely to occur on reads and writes. Hence,
retry should be applied more uniformly. NTFS is the lone file system that embraces
retry; it is willing to issue a much higher number of requestswhen a block failure
is observed.

• Recovery: Automatic repair is rare. Automatic repair is used rarely by the file
systems; instead, after using anRStop technique, most of the file systems require
manual intervention to attempt to fix the observed problem (i.e., running fsck).

• Detection and Recovery: Redundancy is not used.Finally, and perhaps most
importantly, while virtually all file systems include some machinery to detect disk
failures, none of them applyredundancyto enable recovery from such failures. The
lone exception is the minimal amount of superblock redundancy found in JFS; even
this redundancy is used inconsistently. Also, JFS places the copies in close proxim-
ity, making them vulnerable to spatially-local errors. As it is the least explored and
potentially most useful in handling the failures common in drives today, we next
investigate the inclusion of various forms of redundancy into the failure policy of a
file system.



64

4.4 Conclusion

Commodity file systems use a variety of detection and recovery techniques to han-
dle disk sector errors. In this chapter, we explain the process of semantic failure
analysis, wherein we apply our knowledge about file system block types and trans-
actional semantics to unearth the failure policies. From our analysis, we find that
commodity file systems are built mostly with the assumption that disk fails in fail-
stop manner and therefore, store little or no redundant information on disk. We also
find that the failure policies enacted by a file system are often ad hoc, inconsistent,
and buggy. We conclude that it is time we rearchitect the file systems with more re-
dundant information to handle partial disk errors and a framework that can support
well-defined failure policies.



65

Chapter 5

Building Low-level Redundancy
Machinery

As we mention in the Introduction (Section 1.2), there are two challenges in build-
ing a robust file system. First, we must design low-level redundancy machinery to
detect and recover from partial disk errors. Second, we needa new failure handling
framework to unify the different low-level machineries with various partial disk er-
rors and failure policies. In this chapter, we focus on the first problem, and design
and implement new redundancy techniques within a single disk drive (the second
problem is addressed in the next chapter). Note that the challenge of building cost
effective low-level machinery is especially important in the context of commodity
file systems because currently they store little or no redundant information on disk.

A well-known technique in building reliable systems is to use redundant com-
ponents and specialized hardware mechanisms, not only to improve reliability but
also to keep the performance from degrading [16]. However, commodity systems
such as desktops and laptops may not be able to afford redundant components such
as extra disk drives or special hardware support like NVRAM (both of which are
usually available in high-end systems) as they will result in an increased system
cost, system size, and heat dissipation. Therefore, we specifically focus on stor-
ing redundant information within a single disk drive with noadditional hardware
support.

Redundant information can be stored and used in various ways, where each
technique has its own merits and demerits. We explore three types of redundant
information in this thesis: checksums, parity, and replicas due to their wide spread
use in high-end robust file and storage systems [16, 20, 21, 28, 71, 79, 96, 110].
We first describe and qualitatively evaluate the robustness, performance, and space
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overheads of various redundancy options in file systems (Section 5.1). Then, we
describe the implementation and evaluation of a robust file system, IRON ext3,
wherein we broadly explore the applications of replication, parity, and checksums
to file system data and metadata (Section 5.2). In IRON ext3, we evaluate the re-
dundancy mechanisms separately and in various combinations, and find that they
incur minimal time and space overhead that are tolerable in desktop settings. Our
evaluation also shows that parity is cost-effective both interms of space and perfor-
mance overhead and therefore, we study parity in detail in the following sections.
In order to evaluate the impact of locality of failures in a parity-based redundancy
technique, we develop a probabilistic model that characterizes spatial correlation
in disk errors (Section 5.3.1). Finally, we design two parity update techniques to
update the redundant information without NVRAM support (Section 5.3.2). Our
evaluation shows that better data and parity layout along with new parity update
techniques can greatly improve the robustness of a file system while incurring mod-
est performance overhead.

5.1 In-Disk Redundancy

A file or storage system can store redundant copies of data on disk both for detec-
tion and recovery purposes. For example, a data block can be replicated and both
the copies can be read to detect block corruption. In addition to replicas, redundant
information may also include certain processed copies of data such as checksums,
parity, or more involved error correction codes [64, 69]. Inthis thesis, we study in
detail three types of redundant information: checksums, parity, and replicas.

Our philosophy in building robust systems is that the end-point must be able
to detect and recover from failures, irrespective of whether the intermediate layers
can handle errors; that is, our approach is an instance of theend-to-end argument
[94]. Following this principle, we design and implement allthe redundant informa-
tion at the file system layer rather than at a block device layer such as the software
RAID. Since we focus on journaling file systems, we integrateour techniques with
transactional semantics in order to provide consistency between primary and sec-
ondary copies. There are several important issues in incorporating redundancy into
file systems: the effectiveness of a redundancy technique inhandling disk sector
errors, its performance, and space overheads. We discuss these issues in detail.

Effectiveness: The effectiveness of redundancy techniques vary. For example, a
parity block computed over a set ofN blocks can recover from at most one failure
among theN blocks, while a set ofN replicas can recover more errors. Similarly,
a cryptographic checksum such as SHA-1 on actual data is likely to have fewer



67

collisions with corrupted data than simple checksums such as CRC.

Another factor that affects the effectiveness is the location of the redundant in-
formation with respect to its primary copy, since sectors ona disk might be subject
to spatially local errors. Specifically, we can consider twoblock layout schemes.
First, one can treat block errors as independent events and place the redundant in-
formation either within the same block (in case of checksums) or on the next block.
We represent this scheme in our discussion by subscripts “Within” and “d = 0”,
whered represents the distance between the data and its redundant information.
The other scheme takes into account spatial locality in diskerrors and separates
them byt tracks. We denote this by “d = t”. To achieve greater reliability, a re-
dundant copy must be stored farther from the primary copy so that they both are
not subject to correlated failures.

For a redundant copy to be useful for detection and recovery,it must be up-
dated carefully with respect to its primary copy. If the primary and secondary
copies of a block are not updated atomically, then after a filesystem crash multi-
ple data copies might be inconsistent with each other, and therefore, the redundant
information might not be useful to recover from latent sector faults that might oc-
cur during journal recovery. Hardware support such as NVRAMcan be useful
in updating redundant information consistently and atomically, a lack of which in
low-end systems means we need new techniques for updating the redundant data.
For example, writing both primary and secondary copies intothe journal as part
of a transaction before updating their fixed location copiescan be used to achieve
atomicity although with high performance overheads. In ourdiscussion, we denote
all techniques that update both the data and its corresponding redundant informa-
tion atomically with a subscript “Atomic”, while those techniques that do not have
this property are represented by “Non-atomic”.

Performance Overheads:Adding more redundant information can decrease the
performance of a system, and there are several reasons why this may happen. First,
file systems have to pay the cost of updating the redundant copies whenever the
primary copy is updated. For example, in a journaling file system where all the
metadata blocks (including the journal) are replicated, every metadata write incurs
four write costs: two writes to the primary and secondary journal, and two writes to
the primary and secondary fixed-location copies. Although some systems relax the
synchronous update of redundant copies in order to mitigatethe performance over-
heads [96], they can endanger the reliability of the system.Second, performance
may drop due to additional disk reads that are issued to redundant information such
as checksums in order to verify the validity of the data. Third, file systems might
follow certain write ordering constraints when updating the primary and secondary
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copies to achieve atomicity, which in turn can cause additional rotational latencies
and disk seeks. Fourth, a portion of the host main memory might be used to hold
redundant information such as checksums, which can affect the performance as it
reduces the amount of available memory to the overall system. Finally, it is compu-
tationally expensive to produce certain types of redundantinformation such as the
Reed-Solomon or Tornado error correction codes [69], and such processing may
use significant amount of CPU power available in a system.

Space Overheads:Not surprisingly, redundant information can incur space over-
heads as well and it varies according to the redundancy technique used. For exam-
ple, although stronger in detecting corruptions, a cryptographic checksum such as
SHA-1 occupies more bytes than a simple CRC-type checksum. Similarly, parity
blocks, replicas, and error correction codes each occupy different amount of space
depending on how many copies are maintained.

Table 5.1 presents a qualitative evaluation of effectiveness, performance, and
space overheads of various redundancy techniques. Different redundancy tech-
niques are listed under each row and the effectiveness undera single block error,
spatially local errors that spread up tot disk tracks, and spatially local errors that
spread beyondt disk tracks are listed under different columns along with the per-
formance and space cost. We also study whether a technique can recover from a
failure both during normal file system operation and journalrecovery. A

√
mark

means that a particular technique is guaranteed to detect orrecover from the failure
whereas a× mark represents that no guarantee can be given for failure detection
or recovery.

We now explain the table entries in detail. Broadly, checksums can be stored
in 3 classes of locations: within a sector, at a neighboring block, or at a block
separated byt tracks. If checksum is stored within a sector, its update canbe guar-
anteed to be atomic due to the basic write guarantees offeredby a disk drive. If
separated from the data, checksum update can be either atomic or not. Although,
ChecksumWithin is atomic, it is not guaranteed to detect phantom write or mis-
directed write errors. While in general, the space and time costs are tolerable for
checksums, atomic techniques might require extra writes tothe journal, which can
increase the performance overheads.

In case of parity, it can either be calculated for a set of contiguousN blocks
or, if one wants to tolerate spatially correlated failures,it can be calculated for
blocks that are separated by say,t tracks. Parity update can be atomic as well; how-
ever, logging both parity and its corresponding blocks intothe journal can decrease
the performance significantly. Finally, replicas incur high space and performance
overheads. One can use journal to ensure atomic updates although with severe
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Effectiveness Overheads
Single block Spatial (<= t tracks) Spatial (> t tracks) Time Space

Techniques Normal FS Recovery Normal FS Recovery Normal FS Recovery
ChecksumWithin × × × × × × low low
Checksumd=0,Non−atomic

√ × × × × × low low
Checksumd=0,Atomic

√ √ × × × × high low
Checksumd=t,Non−atomic

√ × √ × × × low low
Checksumd=t,Atomic

√ √ √ √ × × high low
Parityd=0,Non−atomic

√ × × × × × low low
Parityd=0,Atomic

√ √ × × × × high low
Parityd=t,Non−atomic

√ × √ × × × low high
Parityd=t,Atomic

√ √ √ √ × × high high
Replicad=0,Non−atomic

√ × × × × × high high
Replicad=0,Atomic

√ √ × × × × high high
Replicad=t,Non−atomic

√ × √ × × × high high
Replicad=t,Atomic

√ √ √ √ × × high high

Table 5.1:Qualitative Evaluation of Redundancy Techniques.The table presents a qualitative evaluation of the effectiveness,
performance, and space overheads of different redundancy techniques to detect and recover from sector errors or corruption. A

√

mark means that a particular technique is guaranteed to detect or recover from the failure whereas a× mark represents that no
guarantee can be given for failure detection or recovery.
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performance penalties.
In conclusion, we can observe from the table that the more effective a redun-

dancy technique is in handling various errors, higher its performance and/or space
overhead becomes. In the following sections, we implement various redundancy
techniques from the table and evaluate their robustness andcost quantitatively.

5.2 ixt3: A Prototype IRON File System

We now describe our implementation and evaluation ofIRON ext3 (ixt3). Our
design goal is to detect and recover from most errors with an affordable time and
space cost. Within ixt3, we implement a family of recovery techniques that most
commodity file systems do not currently provide. We give moreimportance to
file system metadata and therefore protect them using replicas, while we use a
simple parity-based redundancy scheme for data blocks thatcan only recover from
a single block error per file. By using a single parity block per file, we also strive to
minimize the performance and space cost that can be significant if data blocks were
replicated. To increase its robustness, ixt3 applies checksums to both metadata and
data blocks. In our design, we also take care to handle spatially local failures by
separating the replicas and checksums from their corresponding disk blocks. Ixt3
is not backward compatible with ext3 as we modify some of its internal structures
such as theinode, which stores information about file block pointers.

In this section, we first describe our implementation, and then demonstrate that
it is robust to a broad class of partial disk failures. Then, we investigate the time and
space costs of ixt3, showing that the time costs are often quite small and otherwise
modest, and the space costs are also quite reasonable. In ourperformance measure-
ments, we activate and deactivate each of the IRON features independently, so as
to better understand the cost of each approach.

5.2.1 Implementation

We now describe the ixt3 implementation. We explain how we add checksumming,
metadata replication, user parity, and a new performance enhancement known as
transactional checksums into the existing ext3 file system framework.

Checksumming:To implement checksumming within ixt3, we borrow techniques
from other recent research in checksumming in file systems [79, 110]. Specifically,
we compute checksums for each file system block and treat checksums as meta-
data by placing them first into the journal, and then checkpoint them to their final
location, which is at the end of the file system. The checksumsare separated from
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their corresponding blocks by a distance of about 2500 blocks (approximately 15
tracks).

We ensure atomicity for metadata checksums (i.e., Checksumd=t,Atomic) by
logging both the metadata and their checksums into the journal before updating
their final fixed-location copies. However, data checksum updates are not guar-
anteed to be atomic (Checksumd=t,Non−atomic). By incorporating checksumming
into existing transactional machinery, ixt3 cleanly integrates into the ext3 frame-
work. Checksums are very small and can be cached for read verification. In our
current implementation, we use SHA-1 to compute the checksums. By implement-
ing a strong cryptographic checksum such as SHA-1, which involves more compu-
tational overhead than a simple checksum like CRC, we explore the extent to which
checksums can impact the performance of a file system.

Metadata Replication: We use replicas to protect file system metadata, including
the ext3 journal, which is treated as a metadata. We apply a similar approach in
adding metadata replication to ixt3. All metadata blocks are written to a separate
replica log; they are later checkpointed to a fixed location in a block group distant
from the original metadata. The replica log is at the beginning of the file system
and the corresponding blocks on the primary and replica logsare separated by at
least 350 tracks. We again use transactions to ensure that either both copies reach
disk consistently, or that neither do. In summary, we implement Replicad=t,Atomic

to protect metadata blocks.

Parity: We implement a simple parity-based redundancy scheme for data blocks.
One parity block is allocated for each file. This simple design enables one to re-
cover from at most one data block failure in each file (we explore a more involved
design later in Sections 5.3.1 and 5.3.2). We modify the inode structure of ext3 to
associate a file’s parity block with its data blocks. Specifically, ext3 inode has 15
block pointers, out of which 12 are direct, 1 single indirect, 1 double indirect, and
1 triple indirect block pointers. We use one direct pointer for pointing to the parity
block of the file. Parity blocks are allocated when files are created. When a file
is modified, its parity block is read and updated with respectto the new contents.
To improve the performance of file creates, we preallocate parity blocks when we
create the file system and assign them to files when they are created. In the current
simple design, we preallocate about 250 blocks in the first block group when the
file system is created, and once they are used, we follow the default block allocation
scheme in ext3.

In ordered journaling mode, if a system crashes in between a data block write
and the corresponding transaction commit, then during journal recovery, the file
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system must recompute the parity and make it consistent withthe modified data
block contents. However, in ext3 ordered journaling mode, no additional infor-
mation is stored in the journal about the locations of data blocks that are being
modified.1 To address this problem, Denehyet al. introduce a new journaling
mode calleddeclared journalingmode, where they store the block numbers of data
blocks that are being modified as part of a transaction commitinto the journal [30].
To support parity for data blocks, we add declared mode to ixt3. In summary, we
implement the Parityd=0,Non-atomic design for parity blocks in ixt3.

Transactional Checksums:We also explore a new idea for leveraging checksums
in a journaling file system; specifically, checksums can be used to relax ordering
constraints and thus to improve performance. In particular, when updating its jour-
nal, standard ext3 ensures that all previous journal data reaches disk before the
commit block; to enforce this ordering, standard ext3 induces an extra wait be-
fore writing the commit block, and thus incurs extra rotational delay. To avoid this
wait, ixt3 implements what we call atransactional checksum, which is a checksum
over the contents of a transaction. By placing this checksumin the journal commit
block, ixt3 can safely issue all blocks of the transaction concurrently. If a crash oc-
curs during the commit, the recovery procedure can reliablydetect the crash and not
replay the transaction, because the checksum over the journal data will not match
the checksum in the commit block. We use SHA-1 for transactional checksums
also. Note that a transactional checksum provides the same crash semantics as in
the original ext3 and thus can be used without other IRON extensions.

Cleaning Overheads:Note that “cleaning overhead”, which can be a large prob-
lem in pure log-structured file systems [93, 101], is not a major performance issue
for journaling file systems, even with ixt3-style checksumming and replication.
Journaling file systems already incorporate cleaning into their on-line maintenance
costs; for example, ext3 first writes all metadata to the journal and then cleans the
journal by checkpointing the data to a final fixed location. Hence, the additional
cleaning performed by ixt3 increases total traffic only by a small amount.

5.2.2 Evaluation

We now evaluate our prototype implementation of ixt3. We focus on three ma-
jor axes of assessment: robustness of ixt3 (with checksums,parity, and replicas)
to modern disk failures, and both the time and space overheadof the additional
redundancy mechanisms employed by ixt3.

1The same problem exists in other journaling file systems suchas ReiserFS, JFS, XFS, and NTFS.
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Figure 5.1: Ixt3 Failure Policy. The tables plot both detection and recovery policies of
ixt3 for read, write, and corruption faults injected for each block type across a range of
workloads. The workloads are varied across the columns of the figure, and the different
block types of the ixt3 file system are varied across the rows.The workloads are grouped
in the same manner as in Figure 4.5. The keys for detection andrecovery are presented in
Table 4.8.
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Robustness:To test the robustness of ixt3, we harness our fault injection frame-
work, running the same partial-failure experiments on ixt3. The results are shown
in Figure 5.1.

Ixt3 detects read failures in the same way as ext3, by using the error codes from
the lower level (DErrorCode). When a metadata block read fails, ixt3 reads the
corresponding replica copy (RRedundancy). If the replica read also fails, it behaves
like ext3 by propagating the error (RPropagate) and stopping the file system activity
(RStop). When a data block read fails, the parity block and the otherdata blocks of
the file are read to compute the failed data block’s contents (RRedundancy).

Ixt3 detects write failures using error codes as well (DErrorCode). It then aborts
the journal and mounts the file system as read-only to stop anywrites from going
to the disk (RStop).

When a data or metadata block is read, the checksum of its contents is computed
and is compared with the corresponding checksum of the block(DRedundancy). If
the checksums do not match, a read error is generated (RPropagate). On read errors,
the contents of the failed block are read either from the replica or computed using
the parity block (RRedundancy).

In the process of building ixt3, we also fixed numerous bugs within ext3. By
doing so, we avoided some cases where ext3 would commit failed transactions to
disk and potentially corrupt the file system [85].

Overall, by employing checksumming to detect corruption, and replication and
parity to recover lost blocks, ixt3 provides robust file service in spite of partial
disk failures. More quantitatively, ixt3 detects and recovers from over 200 possible
different partial-error scenarios that we induced. The result is a logical and well-
defined failure policy.

Time Overhead: We now assess the performance overhead of ixt3. We isolate the
overhead of each IRON mechanism by enabling checksumming for metadata (Mc)
and data (Dc), metadata replication (Mr), parity for user data (Dp), and transac-
tional checksumming (Tc) separately and in all combinations.

We use four standard file system benchmarks: SSH-Build, which unpacks and
compiles the SSH source distribution; a web server benchmark, which responds
to a set of static HTTP GET requests; PostMark [61], which emulates file system
traffic of an email server; and TPC-B [117], which runs a series of debit-credit
transactions against a simple database. We run each experiment five or more times
and present the average results.

The SSH-Build time measures the time to unpack, configure, and build the SSH
source tree (the tar’d source is 11 MB in size); the Web serverbenchmark transfers
25 MB of data using http requests; with PostMark, we run 1500 transactions with
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# Mc Mr Dc Dp Tc SSH Web Post TPCB
0 (Baseline: ext3) 1.00 1.00 1.00 1.00
1 Mc 1.00 1.00 1.01 1.00
2 Mr 1.00 1.00 1.18 1.19
3 Dc 1.00 1.00 1.13 1.00
4 Dp 1.02 1.00 1.07 1.03
5 Tc 1.00 1.00 1.01 [0.80]
6 Mc Mr 1.01 1.00 1.19 1.20
7 Mc Dc 1.02 1.00 1.11 1.00
8 Mc Dp 1.01 1.00 1.10 1.03
9 Mc Tc 1.00 1.00 1.05 [0.81]

10 Mr Dc 1.02 1.00 1.26 1.20
11 Mr Dp 1.02 1.00 1.20 1.39
12 Mr Tc 1.00 1.00 1.15 1.00
13 Dc Dp 1.03 1.00 1.13 1.04
14 Dc Tc 1.01 1.01 1.15 [0.81]
15 Dp Tc 1.01 1.00 1.06 [0.84]
16 Mc Mr Dc 1.02 1.00 1.28 1.19
17 Mc Mr Dp 1.02 1.01 1.30 1.42
18 Mc Mr Tc 1.01 1.00 1.19 1.01
19 Mc Dc Dp 1.03 1.00 1.20 1.03
20 Mc Dc Tc 1.02 1.00 1.06 [0.81]
21 Mc Dp Tc 1.01 1.00 1.03 [0.85]
22 Mr Dc Dp 1.03 1.00 1.35 1.42
23 Mr Dc Tc 1.02 1.00 1.26 1.01
24 Mr Dp Tc 1.02 1.00 1.21 1.19
25 Dc Dp Tc 1.02 1.01 1.18 [0.85]
26 Mc Mr Dc Dp 1.03 1.00 1.37 1.42
27 Mc Mr Dc Tc 1.04 1.00 1.24 1.01
28 Mc Mr Dp Tc 1.02 1.00 1.25 1.19
29 Mc Dc Dp Tc 1.03 1.00 1.18 [0.87]
30 Mr Dc Dp Tc 1.05 1.00 1.30 1.20
31 Mc Mr Dc Dp Tc 1.06 1.00 1.32 1.21

Table 5.2:Overheads of ixt3 Variants.Results from running different variants of ixt3 un-
der the SSH-Build (SSH), Web Server (Web), PostMark (Post),and TPC-B (TPCB) bench-
marks are presented.
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file sizes ranging from 4 KB to 1 MB, with 10 subdirectories and1500 files; with
TPC-B, we run 1000 randomly generated debit-credit transactions. These bench-
marks exhibit a broad set of behaviors. Specifically, SSH-Build is a good (albeit
simple) model of the typical action of a developer or administrator; the web server
is read intensive with concurrency; PostMark is metadata intensive, with many file
creations and deletions; TPC-B induces a great deal of synchronous update traffic
to the file system.

Table 5.2 reports the relative performance of the variants of ixt3 for the four
workloads, as compared to stock Linux ext3. Along the rows, we vary which re-
dundancy technique is implemented, in all possible combinations: Mc implies that
metadata checksumming is enabled;Dc that data checksumming is enabled;Mr

that replication of metadata is turned on;Dp that parity for data blocks is enabled;
Tc that transactional checksums are in use. All results are normalized to the perfor-
mance of standard Linux ext3; for the interested reader, running times for standard
ext3 on SSH-Build, Web, PostMark, and TPC-B are 117.78, 53.05, 150.80, and
58.13 seconds, respectively. Slowdowns greater than 10% are marked inbold,
whereas speedups relative to base ext3 are marked in [brackets]. All testing is done
on the Linux 2.6.9 kernel on a 2.4 GHz Intel P4 with 1 GB of memory and a West-
ern Digital WDC WD1200BB-00DAA0 disk.

We now explain the reasons behind some of the performance overheads. Check-
summing data and metadata does not add high overhead for mostworkloads (i.e.,
less than 5% in most cases). However, data checksums for PostMark increase the
performance cost by about 13%. This is due to the fact that ourPostMark bench-
mark writes over 1.4 GB of data with checksums being calculated for every data
block. Since checksums are considered as metadata, when data checksums are
coupled with metadata replication, the overhead on PostMark raises to about 26%.
When applied individually, metadata replication reduces the performance for meta-
data intensive workloads such as PostMark and TPC-B, while causing little over-
heads for SSH-Build and Web server benchmarks. Parity for data blocks does not
add much cost individually but when combined with metadata replication, it raised
the overhead to as much as 39% for TPC-B. The reason for this behavior is due
to the interaction between the declared mode [30] and metadata replication. In
declared mode, extra synchronous writes are issued to the journal, which in ad-
dition to causing rotational latencies also incur disk seeks between the primary
and secondary journal. However, when coupled with transactional checksums, this
overhead drops to about 20%.

From these numbers, we draw three main conclusions. First, for both SSH-
Build and the web server workload, there is little time overhead, even with all
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IRON techniques enabled. Hence, if SSH-Build is indicativeof typical activity,
using checksumming, replication, and even parity incurs little cost. Similarly, from
the web server benchmark, we can conclude that read-intensive workloads do not
suffer from the addition of IRON techniques.

Second, for metadata intensive workloads such as PostMark and TPC-B, the
overhead is more noticeable – up to 37% for PostMark and 42% for TPC-B (row
26). Since these workloads are quite metadata intensive, these results represent the
worst-case performance that we expect. We also can observe that our implemen-
tation of metadata replication (row 2) incurs a substantialcost on its own, as does
data checksumming (row 3). User parity and metadata checksums, in contrast, in-
cur very little cost (rows 1 and 4). Given our relatively untuned implementation of
ixt3, we believe that all of these results demonstrate that even in the worst case, the
costs of robustness are not prohibitive.

Finally, the performance of the synchronous TPC-B workloaddemonstrates
the possible benefits of the transactional checksum. In the base case, this technique
improves standard ext3 performance by 20% (row 5), and in combination with
checksumming, replication, and parity, reduces overall overhead from roughly 42%
(row 26) to 21% (row 31). Hence, even when not used for additional robustness,
checksums can be applied to improve theperformanceof journaling file systems.

Files Dir Indir Size Checksum Parity Replicas
# (count) (MB) (MB) (MB) (MB) (MB) (MB)
1 22182 5.19 9.98 1612.61 7.87 (0.5%) 086.64 (05.37%) 129.17 (8.01%)
2 12688 4.53 6.74 1885.45 9.20 (0.5%) 049.56 (02.62%) 125.27 (6.64%)
3 62222 34.56 22.26 4771.69 23.30 (0.5%) 243.05 (05.09%) 170.82 (3.58%)
4 11547 5.57 6.35 1379.23 6.73 (0.5%) 045.10 (03.27%) 125.93 (9.13%)
5 13821 5.52 10.61 1756.90 8.58 (0.5%) 053.98 (03.07%) 130.14 (7.40%)
6 126697 22.86 32.43 4043.66 19.74 (0.5%) 494.91 (12.23%) 169.29 (4.18%)
7 10207 4.28 0.54 1396.82 6.82 (0.5%) 039.87 (02.85%) 118.82 (8.50%)
8 68985 17.17 14.29 1896.05 9.26 (0.5%) 269.47 (14.21%) 145.46 (7.67%)
9 70314 26.21 17.01 1646.76 8.04 (0.5%) 274.66 (16.67%) 157.23 (9.54%)

Table 5.3:Space Overhead.The above table lists the space overhead due to redundant
information across nine different home directories. Inodeblocks are allocated statically
in ext3 and it adds about 64 MB of replica overhead per file system. Checksums for each
block cause a constant space overhead of about 0.5% for each file system.

Space Overhead:To evaluate space overhead, we measured about nine local file
systems (mostly home directories of graduate students at UWComputer Sciences
Department) and computed the increase in space required if all metadata was repli-
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cated, room for checksums was included, and an extra block for parity was allo-
cated. Table 5.3 presents a detailed list of space overhead numbers. Each row lists
the space cost per file system. For each file, one parity block is allocated. Directory
and indirect blocks are dynamic metadata blocks, which changes across file sys-
tems, while inode blocks and bitmap blocks are statically allocated when the file
system is created. Checksums cause only a constant, small space overhead of about
0.5%. Overall, we found that the space overhead of checksumming and metadata
replication is small, in the 3% to 10% range. We found that parity-block overhead
for all user files is a bit more substantial, in the range of 3% to 17% depending on
the volume analyzed.

5.2.3 Summary

We investigate a family of redundancy techniques, and find that ixt3 greatly in-
creases the robustness of the file system under partial failures while incurring mod-
est time and space overheads. We also see that parity blocks can strike a balance
in terms of robustness, performance, and space overheads, especially for user data,
which occupies a significant part of a local file system. We believe that ixt3 rep-
resents just a single point in a large space of possible IRON file systems. In the
following sections, we explore other designs, focusing specifically on parity blocks.

5.3 Redundant Parity Blocks

In the previous section, we studied in-breadth the cost and effectiveness of various
redundant information. However, in some cases, our design decisions weresim-
ple such as using a single parity block per file. In this section, we explore more
in-depth the issues in building in-disk redundancy on commodity hardware, focus-
ing primarily on parity as the redundant information due to its simplicity, minimal
space overhead, ease of computation, and widespread use in file and storage sys-
tems [21, 28, 96].

First, in order to explore a data layout for parity blocks that is robust against
spatially correlated failures, we need a failure model. In this regard, we pro-
pose using Markov Random Fields [68] to express the spatial dependencies across
disk blocks and develop a simple probabilistic model for data placement assum-
ing spatially local failures. Second, we need new techniques to update the parity
blocks and data blocks atomically, since writing both to thejournal can signifi-
cantly increase the performance cost. We discuss two parityupdate techniques,
a traditionaloverwrite and a radicalno-overwritetechnique, which differ in the
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way they interact with the file system journaling when ordering their block reads
and writes. The overwrite technique does not guarantee atomic update of data
and parity (ParityNon-atomic) but no-overwrite technique provides this atomicity
(ParityAtomic). Finally, we evaluate the performance overhead of overwrite and
no-overwrite techniques.

5.3.1 Spatial Locality in Sector Failures

To handle block failures within the file system, one must havea model of how such
block failures occur. One important characteristic such failures exhibit is spatial
locality (Section 2.4). Specifically, media errors due to particle scratches, thermal
asperity [43], or bad disk head can render a set of contiguousblocks unusable [59].

File system developers are aware of this problem and have considered fault-
isolated data placements for certain important blocks. Forexample, in the original
design of Berkeley Fast File System, redundant super blocksare carefully placed
such that no single failure of a disk track, cylinder or surface endangers all the
copies [71]. However, generic block layout algorithms in modern file systems are
focused on improving performance and are oblivious to spatially local disk errors.
For example, IBM JFS stores both the primary and secondary copies of its super
block close together (separated by seven blocks). Such design decisions can make
both the primary and secondary blocks unusable if there are spatially local errors.

In this section, we propose a probabilistic disk failure model that characterizes
disk block errors with spatial locality and use this model tolayout blocks such that
the probability of two or more errors affecting related blocks is low. Our techniques
are developed specifically for journaling file systems because modern file systems
such as Windows NTFS, Linux ext3, ReiserFS, IBM JFS, and XFS are journaling
file systems, and none of these file systems currently provideparity-based redun-
dancy. We evaluate the validity of the probabilistic model by comparing it with
results from fault injection experiments and the probability of multiple failures as
predicted by the failure model matches closely with the results from the fault injec-
tion experiments.

Probabilistic Failure Model

Let us define aredundancyset(k,f ) to be a set ofk disk blocks, viz.,B0, B1, ...,
Bk−1 that can tolerate a maximum off failures. That is, if more thanf blocks in
the set ofk blocks fail, the redundancy set cannot be recovered. Thek disk blocks
can contain file system data or metadata. In the following discussion, we consider a
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redundancyset(k,1) that can tolerate only up to 1 failure, and cannot recover from
multiple failures.2 We define two events:

F1: A block, Bi, in the redundancy set fails.
F2: At least one more block in the redundancy set fails.

When eventF2 happens, the file system cannot recover the failed blocks from
the redundancy set.P (F2|F1) gives the probability that a second failure happens
given that a first failure has already occurred. Using conditional probability,

P (F2|F1) =
P (F2 ∩ F1)

P (F1)
.

The objective of the data layout algorithm is to select blocks such that the prob-
ability of more than one block failure occurring in the same redundancy set is below
a certain thresholdT. That is, we want

P (F2 ∩ F1) < T (5.1)

⇒ {P (F2|F1) × P (F1)} < T (5.2)

We calculate the probability of more than one block failure under two different
cases. First, we consider block errors as independent events and derive the probabil-
ity for 2 or more failures in a redundancy set. Then, we incorporate spatial locality
into the model and solve for a more generic case. We denoteP (F2∩F1) by P (Er),
whereEr denotes the event of two or more failures happening in a redundancy set
r containingk blocks.

Case 1: We can treat block failures as independent events and assumethat
they are uniformly spread on the disk. That is, if there aren blocks on the disk and
some block fails, then the probability that a blockB fails is 1

n
. If the block failures

are independent, thenP (Er) is given by:

P (Er) = 1 − P (Exactly one failure) − P (No failures)

⇒ P (Er) = 1 − [kC1(
1

n
)(1 − 1

n
)k−1] − [(1 − 1

n
)k] (5.3)

wherekCj gives the number of combinations ofj blocks out ofk blocks and
(1 − 1

n
) is the probability with which a block does not fail.

Case 2: In reality, latent sector faults are not independent and canhave spa-
tial locality. Therefore, a more realistic fault model takes into account that block

2Note that we interchangeably use the term “multiple failures” to refer to 2 or more failures.
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failures may be correlated and the probability of failure can differ according to the
location of a block with respect to other faulty blocks on thedisk.

We propose that the spatial dependencies among a set of sitescan be expressed
using Markov Random Fields (MRF). MRF gives the probabilitydistribution at a
site i, specified conditionally on the sites in theneighborhoodof i. The neighbor-
hood of a sitei is defined by some function. For example, all the sites withina
radius of R from sitei could be defined as neighbors ofi.

We give a brief introduction to MRF and then discuss how we canexpress the
dependencies between the disk block failures as an MRF (a more detailed treatment
of MRF can be found elsewhere [68]). LetF be a finite collection of random
variablesi.e., F = {V1, ..., Vn}. Each random variableVi corresponds to a sitei
and takes a valuevi from a setLi. LetNi be the set of neighbors ofi. F is an MRF
if and only if the random variableVi depends only on its neighbors. More formally,

P (Vi = vi|Vj = vj, for j 6= i) = P (Vi = vi|Vj = vj for j ∈ Ni) (5.4)

The above condition brings out the local characteristics ofF , which states that a
sitei depends only on its neighborsNi. Note that for an MRF, it is always possible
to take a sufficiently largeNi such that the above condition holds.

If the probability that a disk block fails depends only on itsneighbors then the
spatial locality of disk block failures can be expressed as aMarkov Random Field.
For example, if a block is affected only by the failures of other blocks on the same
track, then blocks on the same track can be defined as neighbors of each other. The
most general definition would consider all the blocks on the disk as neighbors (in
fact, this is the definition we adopt for our evaluation). Depending on the definition
of the neighborhood of a block, the layout algorithm can construct a redundancy
set such that two or more errors happening in the same redundancy set is minimal.

In the following discussion, we treat the state of each blockas a random vari-
able, and it can take one of the two values{valid, failed}. We treat the set of disk
block states as an MRF and derive the probability for two or more failures as fol-
lows. Consider two blocksBi andBj in the redundancy set. Assume thatBi has
failed. If Bj is not a neighbor ofBi, then it is not affected byBi’s failure. How-
ever, ifBj is a neighbor ofBi, then the probability thatBj fails depends upon the
distance ofBj from Bi (due to spatial locality). Letd be the distance of blockBj

from the failed blockBi, andP (d) represent the probability of failure at a distance
d. The distributionP (d) can be chosen to reflect the extent to which block errors
are spatial. For example, one can choose an exponential decay distribution forP (d)
if the probability of failure drops exponentially as the distance d increases. Among
all thek blocks of the redundancy set, let the blockBi havemi blocks as neighbors.
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For the sake of simplicity, let all themi blocks be at an exact distance ofdi from
the failed blockBi. The probability of two or more failures in a redundancy set
given that blockBi has failed is given by:

P (At least one more block out ofmi fails |Bi has failed)×P (Block Bi has failed)

⇒ [1 − P (None of themi blocks fail | Bi has failed)] × P (Block Bi has failed)

⇒ [1 − (1 − P (di))
mi ] × 1

n
(5.5)

where(1 − P (di))
mi is the probability with which all themi blocks do not

fail. In practice, themi blocks must beat leastat distancedi and then Equation 5.5
gives the upper bound on the probability of multiple failures. Our objective is to
find the probability of multiple failures for all suchBi in the redundancy setr. This
is given by,

P (Er) =
k∑

i=1

[1 − (1 − P (di))
mi ] × 1

n
(5.6)

Equations 5.3 and 5.6 give the probability of 2 or more failures in a redundancy
set r with k blocks. A disk withn blocks hasn

k
redundancy sets. To find the

probability of multiple failures happening over the entiredisk, one must consider
all the n

k
redundancy sets while calculating the probability using either Equation 5.3

or 5.6. Letq = n
k

. We derive the probability of multiple failures within at least one
redundancy set (represented byP (M)) over the entire disk as follows:

P (M) = 1 − P (No multiple failures in all redundancy sets)

= 1 −
q∏

i=1

[1 − P (Ei)] (5.7)

where
∏q

i=1
[1 − P (Ei)] gives the probability of no multiple failures happening in

all the redundancy sets.

Using the failure model

In this section, we discuss how the failure model can be employed by a file system
to construct redundancy sets and lay out blocks. First, we use Equation 5.7 to
compute the probability of multiple failures and then describe how this probability
can be used by file systems to construct redundancy sets.

In practice, the type of distribution to choose forP (d) must be derived by ana-
lyzing the sector errors over a large set of failed disks. Although no such distribu-
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Figure 5.2:Multiple Failures Under Different Probability Distributi ons.

tion is available today (due to the proprietary nature of thedisk industry), they can
be made available in the future by disk manufacturers or users of large disk farms.
Since there are no numbers available to choose forP (d), we use different distribu-
tion functions forP (d) to compute the probability of multiple errors happening on
at least one redundancy set over the entire disk.

In Figure 5.2, we plot the probability of multiple failures under three different
distributions forP (d): one, an exponential decay curve, where the probability of



84

failure drops exponentially as the distance of a block increases from an already
failed block (left-most graph in Figure 5.2); two, a distribution with a linear drop
in probability (middle graph in Figure 5.2); finally, a step-like distribution that has
the same probability over a certain set of contiguous tracks, and then drops further
(right-most graph in Figure 5.2). Each graph in Figure 5.2 has 3 curves in it. The
curve denoted byP (d) plots the failure probability of a block at a distanced from an
already failed block. The two other curves plot the probability of multiple failures
happening over the entire disk for different values ofk (size of the redundancy set).

We discuss three main points of Figure 5.2. First, instead ofplotting the val-
ues ofP (Er) (Equation 5.6), which gives the probability of multiple failures for a
particular redundancy setr, we plot the probability of multiple failures happening
within at least one redundancy set over theentiredisk of size 50 GB (Equation 5.7).
The reason isP (Er) does not capture how a large disk with several thousands of
redundancy sets can have a higher probability of multiple failures. Second, we
plot the probability of multiple failures for two differentvalues ofk viz., k = 50
andk = 400. As k (the size of the redundancy set) increases, the probabilityof
two or more failures also increases. Finally, the graphs plot the failure distribution
over a simple two dimensional surface. However, disks can have multiple surfaces,
and therefore, the failure distributionP (d) could be chosen to express the spatial
locality across multiple surfaces, and across multiple tracks on a single surface.

A file system can compute the probability of multiple failures using the failure
model and layout the related blocks accordingly. For example, assuming that the
distanced represents track separation, ifP (d) follows an exponential decay curve
similar to the left most graph of Figure 5.2, file systems can construct redundancy
sets such that the blocks of the set are separated at least by adistance of 100 tracks
in order to keep the probability of multiple failures low. Itis important to note
that logical file system entities like files and directories themselves are allocated
contiguously irrespective of whether the distanced is set to 100 or 0. Settingd
to 100 means that the redundancy set blocks are separated by at least 100 tracks.
Figure 5.3 depicts one particular case of such a layout wherea file is allocated
contiguously on a single track, while the corresponding blocks on every 100th track
belong to the same redundancy set. A file system can also use Equation 5.7 to derive
the size of the redundancy set based on its fault tolerance requirements.

Failure model limitations

Our model has the following limitations. First, we do not account for temporal
locality in block access patterns. If two blocks are accessed together, they might
be affected by a bad disk head. Second, the block layout algorithm is based on
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the assumption that file systems can observe the disk geometry and control block
placements. Logical block to physical disk address mappings can be obtained for
SCSI disks using low level SCSI commands. However, for low end ATA drives
such features may not be available. For such low end drives, the disk features can be
extracted by running micro benchmarks similar to the one developed by Talagalaet
al. [114]. Finally, lower layers on the storage stack can reassign blocks to different
locations on the disk breaking the layout pattern suggestedby the file system [111].
For example, disk drives themselves can do bad block remapping which can affect
the file system’s assumption about where disk blocks are located. However, in
modern systems, such remapping is rare and the locations of the remapped blocks
can be obtained through low-level disk commands.

Model Evaluation

In this section, we describe the evaluation of the probabilistic failure model. We
evaluate the probability model by comparing the results from equation 5.7 with the
results from a set of fault injection experiments on a simulated disk.

The fault injection experiment works as follows. First, we construct parity sets
on a disk withn blocks. Then, a blockB out of then disk blocks is selected at
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Figure 5.4:Comparing the Probability of Multiple Failures Using Failu re Model and
Simulation.

random and failed. Following the first failure, the other blocks from the same parity
set asB are considered for the second failure. Depending on the distance of a block
from the failed blockB, we compute the chances of the second failure and inject
the second fault probabilistically. We run the experiment for 10,000 iterations on
a simulated disk of 50 GB. The probability of the second (or higher number of
failures) is computed as the number of times a second or a higher number of faults
were injected over 10,000 runs. We repeat the experiment fordifferent parity set
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sizes and block distances. In Figure 5.4, we plot the probability of 2 or more failures
from the equation 5.7 and the results of the fault injection tests. From Figure 5.4,
we can see that the curves from the model and experiments match closely.

5.3.2 Redundant Data Update Techniques

As we pointed out in Section 5.3, commodity file systems run oncheap disk drives
without additional hardware support such as NVRAM. NVRAM support can be
useful when redundant information must be updatedatomically, that is, either both
the primary and secondary copies are updated or none of them are modified. In this
section, we describe two techniques to update data and its corresponding parity.
First, we explain a traditional overwrite technique, whichupdates the data blocks
inplaceand we employ this technique while implementing parity in ixt3. Although
simpler to implement, we show that this method does not guarantee atomic update
of data and parity (ParityNon-atomic). Second, we develop a radical no-overwrite
approach, which writes the data to unallocated blocks and switches block pointers
to point to the new blocks. No-overwrite technique can atomically update the data
and parity (ParityAtomic), and in principle, this is similar to the Write Anywhere
File Layout [53] approach that is used to maintain file systemintegrity. Both the
overwrite and no-overwrite techniques are integrated withthe transactional seman-
tics in journaling file systems.

We implement overwrite and no-overwrite techniques along with a block layout
proposed by the probabilistic model from the previous section. Our performance
evaluation shows that separating related blocks widely to avoid spatially local er-
rors has some performance impact and it varies according to the workload. We
run microbenchmarks and show that overwrite update incurs more performance
overhead compared to no-overwrite technique. By batching parity updates, no-
overwrite technique reduces costly disk seeks and thereby reduces performance
overhead. However, no-overwrite technique can fragment a file and therefore re-
quires periodic cleaning to re-layout the file blocks contiguously.

First, we briefly recapitulate the journaling functionality, followed by an ex-
planation of how parity update schema interact with journaling modes. Then, we
describe the overwrite and no-overwrite techniques, and finally, evaluate the tech-
niques.

Journaling file systems

As we explain in Section 3.1, journaling file systems offer three different journaling
modes: data journaling, ordered journaling, and writebackjournaling. Each mode
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differs from the other by the type of blocks they write to the journal and the order
in which the blocks are written. We focus on ordered journaling mode, which is the
default mode in the modern file systems such as Linux ext3, ReiserFS, IBM JFS,
XFS, and Windows NTFS due to its low performance overhead compared to the
data journaling mode and better consistency semantics compared to the writeback
mode. In fact, JFS, XFS, and NTFS do not support any other journaling modes.

In ordered journaling mode, only the metadata blocks are written to the journal.
The data blocks are written directly to their fixed locations. But, the data writes are
ordered such that they complete before the metadata blocks are committed to the
journal. For example, when an application writes to a block,first the data block on
the disk is updated. Next, the inode block and other metadatablocks are committed
to the journal. Once the transaction is committed, at a laterpoint in time, the inode
and other metadata blocks are written to their final fixed locations on disk and this
process is calledcheckpointing.

Parity Scheme in Journaling File Systems

A file system can implement a parity-based redundancy scheme. Parity is calcu-
lated on a set of blocks and stored on a separate disk location. Parity is calculated
for both file system data and metadata. The location of the parity block for a set of
disk blocks is stored on a mapping and this mapping itself is protected by redundant
copies. In the following discussion, we refer to a redundancy set that uses parity as
the redundant information as a parity set.

In a journaling file system, parity-based redundancy works along with the jour-
naling layer. That is, whenever a block is written, the parity block that protects the
block must also be updated in tandem during ordered writes. It is important that
the data and parity are updated atomically, or else the contents of the parity block
will be inconsistent with respect to the other blocks in the parity set.

There are three phases in the data and parity update procedure: one, aparity up-
datephase where the old copies of the data and parity blocks are read from the disk
and the new contents of the parity block are computed using XOR operations; two,
a transaction commitphase where the data and parity blocks are updated through
ordered writes and the metadata blocks are committed to the journal; and finally,
a checkpointphase where the metadata blocks that were logged to the journal are
written to their final fixed locations on the disk. The overwrite and no-overwrite
techniques differ in the order in which these phases are executed and where the data
is written to the disk. Specifically, overwrite and no-overwrite techniques imple-
ment ParityNon-atomic and ParityAtomic respectively from Table 5.1.
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Figure 5.5:Overwrite Technique for Parity Update. The figure shows the sequence of
steps followed by the file system to update the parity block inoverwrite technique.

Overwrite

Figures 5.5(i) to 5.5(iii) depict the three phases of overwrite update. The first phase
is the parity update phase. When a new write is issued, the oldcopies of the data
block and the parity block are read from the disk (steps (a), (b), and (c)). Using
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the old copies and the new write, the new parity contents are calculated (step (d)).
The second phase is the transaction commit phase in which thenew data and parity
blocks are written to their fixed locations on disk (steps (e)and (f)). Once the or-
dered writes are over, the metadata blocks including the inode block are committed
to the journal (step (g)). The last phase is the checkpointing phase during which the
journaled blocks are written to their fixed locations on disk(step (h)). At the end
of the third phase, the parity set is consistent and if one of the blocks in the parity
set fails, it can be recovered using the rest of the blocks.

However, the overwrite update algorithm does not provide atomic update of
data and parity, and therefore, cannot recover from block errors during journal re-
covery. This can be explained by considering the following case: if the file system
crashes after step (e) and before the completion of step (g) in Figure 5.5(ii), then
during journal recovery, all the disk blocks in the parity set must be read to recom-
pute parity. This is due to the lack of atomicity, which results in an inconsistent
parity block after the crash. However, while reading the parity set blocks, if the file
system encounters a latent sector fault or block corruption, then the parity block
cannot be used to recover the failed block because the parityset is in an inconsis-
tent state. The root cause of the problem is in the overwrite update; by modifying
the old contents of the data block, the parity set is made inconsistent until the par-
ity block is also updated with its new contents. Note that even if the parity block
is in a consistent state during the crash (say, the crash happened after step (f) and
before step (g)), the file system cannot provide guarantees about the consistency of
the parity block, and therefore it has to read allk blocks to compute the parity. In
general, the same problem would occur if the file system crashed at any point in
time before the completion of journal commit (step (g)) in the transaction commit
phase (Figure 5.5(ii)).

No-Overwrite

In this section, we describe the no-overwrite technique to update the parity block. In
this schema, the data block is not overwritten; rather, it iswritten to a new location
on disk. The three phases of this technique are shown in Figures 5.6(i) to 5.6(iii).

The first phase is the transaction commit (in contrast to the parity update in the
overwrite technique). When a write to a block is issued, instead of overwriting the
old contents, a new block is allocated and the data is writtento the new location
(steps (a) and (b)). This constitutes the ordered write in the ordered journaling
mode. Note that the new block allocated must be in the same parity set as the old
block. That is, in Figure 5.6, blocksB1 andB

′

1 must be from the same parity group.
After the ordered writes, the metadata blocks including theinode are committed to
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Figure 5.6:No-overwrite Technique for Parity Update. The figure shows the sequence
of steps followed by the file system to update the parity blockin no-overwrite technique.

the journal (step (c)). The second phase, which is the parityupdate phase, happens
before checkpointing. During this phase, the old versions of the data and parity
blocks are read from the disk, and the new parity contents arecalculated (steps (d),
(e), and (f)). The final phase is the checkpoint phase, where the parity block is
written to its original location on disk (step (g)), followed by the checkpoint of the
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metadata blocks to their fixed locations (step (h)). Note that in step (h), the block
pointer in the inode has changed to refer to the new location of the data block.

Since the data blocks are not overwritten, this schema provides the necessary
atomicity and can recover from block failures even during journal recovery. Con-
sidering the same example we saw before, even if the file system crashes after step
(b) in Figure 5.6(i), the parity set remains in a consistent state. Therefore, any
block error in the parity set can be recovered by reading the other blocks in the par-
ity set. A file system crash happening during any step in Figures 5.6(i) to 5.6(iii)
followed by a single block error during journal recovery canbe successfully recov-
ered because at any point the parity block is either consistent with the old contents
of block B1 or with the new contents of blockB

′

1. Since the parity block is always
in a consistent state, block errors can be recovered successfully.

The disadvantage of this approach is that it fragments a file into several blocks
due to a new block allocation on every overwrite. Periodic cleaning of fragmented
blocks to reallocate them contiguously can be performed to improve the file conti-
guity on the disk.

5.3.3 Performance Analysis

We now evaluate the performance of overwrite and no-overwrite approaches, and
compare it to default ext3. We run a set of microbenchmarks and macrobench-
marks similar to those used by Steinet al. to evaluate their checksum implementa-
tion [110]. First, we present the implementation and systemconfiguration details,
then discuss the microbenchmark results, and finally explain the macrobenchmark
results.

Implementation: We implement the overwrite and no-overwrite techniques in
Linux ext3. In both the techniques, reads are directly issued to the corresponding
disk blocks (i.e., reads do not incur any additional processing overhead). However,
file system writes may incur extra disk reads and writes. In overwrite mode, for
ordered and checkpoint data writes, old copies of the blocksare read (if they are
not already present in a local cache), parity is computed, and written to disk. In
no-overwrite mode, a new block is allocated for an ordered write and the parity
computation occurs during checkpointing. For the evaluation purposes, we run the
experiments on 4 GB partition and separate the blocks in the same parity set by
at least 5 tracks (about 800 KB). That is, this design can tolerate spatially local
failures that are no longer than 800 KB. In order to reduce theseek overhead, we
group the writes in a queue and issue them as a whole. In all theexperiments, we
cache the parity blocks, which consumed about 1 MB of memory.Our test system
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Figure 5.7:Performance Under Microbenchmarks. The three graphs plot the perfor-
mance of overwrite and no-overwrite techniques with respect to ext3. Performance under
file creates, file writes, and file reads are plotted in the top,middle, and bottom graphs
respectively.

consists of a Linux 2.6.9 kernel on a 2.4 GHz Intel P4 with 1 GB of memory and a
Western Digital WDC WD1200BB-00DAA0 disk.

Microbenchmarks: The microbenchmarks consist of three phases. First, files
are created synchronously with 1KB data each. We create between 50 to 500 files,
and not more than 50 files per directory in order to limit the pathname lookup
time. Second, a 100 KB of data is written to each file synchronously. Totally,
we write between 5 MB to 50 MB to all files. Finally, the files areread. All the
phases issue plenty of random I/Os to small files spread across multiple directories
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and some sequential I/Os within each file. Between each phase, the file system is
unmounted to clear the cache contents. Although artificial,this helps us separate
the performance impact in each phase.

Figure 5.7 presents the results of microbenchmarks and we make the following
observations. First, in File Creates, overwrite and no-overwrite perform worse than
default ext3 and this is due to the additional disk traffic incurred by reads to old
copies of blocks and writes to parity blocks. Second, in FileWrites, no-overwrite
performs better than overwrite approach. Examining the disk traffic further, we
find that this is due to the higher disk seek incurred in the overwrite approach. If
writes are issued over multiple transactions, overwrite technique updates the parity
on every transaction by reading the old copies of the data andparity blocks (Fig-
ure 5.5(i)) whereas the no-overwrite scheme batches all theparity updates together
just before checkpointing (Figure 5.6(ii)). This parity update batching reduces the
disk seeks and improves the write performance. Finally in File Reads, in contrast to
writes, no-overwrite scheme performs worse than overwriteapproach (which has
no performance degradation with respect to default ext3). Since no-overwrite allo-
cates a new block for every ordered write, over time the data gets scattered around
the disk. Therefore, while reading back the data written, wepay additional cost
by seeking to the scattered data locations. With periodic de-fragmentation, this
overhead can be reduced.

Techniques SSH Web PostMark TPC-B
Overwrite 1.09 1.00 1.19 1.46

No-Overwrite 1.11 1.04 1.26 1.50

Table 5.4: Performance Overheads of Overwrite and No-Overwrite. The table lists
the relative running overheads of four different benchmarks in overwrite and no-overwrite
techniques when compared to Linux ext3. Overheads greater than 10% are marked inbold.

Macrobenchmarks: We run a set of four macrobenchmarks, similar to the ones
we used to evaluate the performance of ixt3 (Section 5.2.2):a benchmark represent-
ing desktop type workloads (SSH-Build), a read intensive workload (web server),
a metadata intensive benchmark (PostMark [61]), and finally, a workload with lots
of synchronous writes (TPC-B [117]).

The relative overheads of four benchmarks in overwrite and no-overwrite tech-
niques with respect to default ext3 are presented in Table 5.4. From the table, we
can derive the following conclusions. First, both overwrite and no-overwrite incur
additional overhead when compared to default ext3, and the magnitude of the over-
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head depends on the workload. For write intensive workloadswith no idle time
like PostMark or TPC-B, the overhead varies from 19% to 50%. Note that we run
these benchmarks on a cold cache with no copies of disk blockspresent in memory
and this results in extra overhead due to reads to old disk block copies. However,
on an actual system some blocks may be present in the cache, and we expect that
this can reduce some overhead. For SSH, which is a desktop-like workload, the
overhead is modest (9% for overwrite and 11% for no-overwrite). Second, there
are no additional overheads for the web server workload in overwrite technique
but no-overwrite incurs some overhead (about 4%) due to scattered file blocks (we
see a similar behavior in the File Reads microbenchmark as well). Finally, al-
though no-overwrite technique performs better when compared to overwrite tech-
nique on simple write intensive microbenchmarks, its performance degrades when
the benchmark involves both reads and writes.

In summary, the no-overwrite technique incurs less overhead compared to the
overwrite technique, primarily due to the batching of parity updates. However, the
no-overwrite technique has the disadvantage of reallocating the file blocks to differ-
ent locations on disk and thereby fragmenting the file. Periodic cleaning with file
re-layouts is necessary to maintain the physical contiguity of logically contiguous
file blocks.

5.4 Conclusion

Although redundant information has been used for years in building robust file and
storage systems, their use within a single disk has not been thoroughly studied
before. Low-end systems offer several challenges including the lack of redundant
disk drives and NVRAM support. In this chapter, we explore the effectiveness and
cost of different redundancy techniques that use checksum,parity, and replica to
detect and recover from errors. From our experiences in building ixt3, we conclude
that while the performance cost of redundant information can be severe for high
I/O intensive workloads, the overheads are modest for typical desktop applications.
We also find that the parity approach strikes a balance in terms of effectiveness,
performance, and space overheads. Since disk sectors can besubject to spatially
correlated failures, parity blocks must be laid out carefully. We derive a simple
probabilistic equation that can be used by a file system to construct parity sets
such that the chances of multiple errors affecting the same set is low. Finally, we
develop two parity update techniques. While the traditional overwrite approach
modifies data blocks in place, the radical no-overwrite approach writes data to new
locations and changes block pointers. Although no-overwrite offers the atomicity
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in updating redundant information, it can fragment a file andtherefore requires
periodic cleaning.
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Chapter 6

Unifying Failure Handling with
Low-level Machinery

In this chapter, we address the second challenge in buildingrobust file systems;
that is, how to incorporate low-level redundancy machinerywith the myriads of
high-level failure handling policies. We restructure commodity file systems with
a Centralized Failure Handler that unifies all the I/O failure handling at a single
point. First, we describe the design and implementation details and then explain
the evaluation of the system.

6.1 Centralized Failure Handler

Our failure policy analysis reveals that file system failurehandling is broken with
failure policies that are inconsistent, inflexible, coarse-grained, and erroneous in
error propagation.

File systems contain complex interleaving of I/O calls thatare initiated from
various locations in the file system code. For example, disk reads and writes are
issued by system calls, background daemons, journaling layer, and buffer cache
manager. In addition, there are functions that notify the I/O completion, which are
special routines that are different from the functions thatissue the I/O. This results
in diffusion of I/O specific routines throughout the file system code.

Diffusion of I/O calls leads to diffusion of I/O failure handling. That is, the
code that detects I/O failures and performs recovery (such as retry or stopping the
file system) is spread over different places. This leads to several problems:

Inconsistent Policies:File systems containillogically inconsistentfailure handling
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policies, where different failure handling techniques areused even under similar
failure scenariosunintentionally. For example, in Figure 4.5 that is presented in
Section 4.3.1, we can observe that for similar indirect block read errors, four dif-
ferent recovery actions are taken by ext3: zero (RZero), propagate (RPropagate),
stop (RStop), and retry (RRetry). We confirm by verifying the source code that this
inconsistent failure handling is due toad hocapplication of recovery techniques.

Tangled Policies and Mechanisms:Due to the diffusion of I/O calls and their
corresponding failure handling, it becomes harder to separate failure policies (e.g.,
“detect block corruption”) from their implementation (e.g., “do a specific sanity
checking”). As a result of this tangled policy and mechanism, neither can be mod-
ified without affecting the other, resulting in an inflexiblefailure handling system.

Coarse Grained Policies:Modern file systems do not support fine-grained per-
block-type failure policies. Under different block type failures, file systems often
use the same recovery technique such as stopping the entire file system. In the cur-
rent file system framework, if different I/O failures must behandled with different
failure policies, the detection and recovery code must change at all the places where
an I/O is being issued. This can increase the diffusion of failure handling and in
turn, worsen the above mentioned problems.

We propose a Centralized Failure Handler (CFH) for file systems as a way to
mitigate the aforementioned problems and support well-defined failure policies.
The CFH architecture decouples failure handling mechanisms from policies, and
offers a configurable framework where a file system can specify per-block-type
failure policies.

There are many challenges in building a CFH. First, the CFH needs semantic
information about I/O calls; that is, what block type each I/O represents. Broadly,
there are two ways to obtain this information. One, we can apply reverse engineer-
ing techniques with file system level gray-box knowledge [9,83] to the I/O stream
and find the block types. Although similar techniques have been developed in the
past to do this to a certain extent [10, 12, 105, 106, 108], they are complex and
cannot guarantee correct block type detection due to file system asynchrony. The
other approach is to modify the file system source code to explicitly pass block
type information along with each I/O call, and we adopt this approach. Second,
even if one has access to source code, it is not always possible to get the correct
block type due to generic file system components. For example, if an I/O is issued
by a file system via the generic buffer cache layer, block typeinformation is lost.
We modify the common journaling layer and buffer cache manager to overcome
this limitation. Finally, failure policies are harder to specify without the correct
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framework due to hundreds of combinations of block types, detection, and recov-
ery actions that are possible. We have developed a policy table that abstracts away
the complex details of mechanisms and offers a simple interface to specify even
intricate failure policies.

We design, implement, and evaluate a prototype CFH for Linuxext3, where
we show that CFH can detect and recover from failures in a consistent manner as
specified by the file system. Our evaluation brings out the flexibility of the CFH,
where a few lines of change in the configuration modifies the failure policy of ext3
to behave like ReiserFS or NTFS.

6.1.1 Design and Implementation

The main goal of CFH is to provide a single locale within the system for a file
system policy to be specified and appropriately handled. Thus, all requests must be
routed through the CFH and I/O failures must be reported to the CFH first.

Key to this vision is thepolicy table, which specifies the failure-handling policy
of the system, thus enabling CFH to cleanly separate policy from mechanism. The
policy table should be easy to read (thus ensuring that the policy that is enacted is
the policy that is desired) and easy to modify (thus ensuringthat new policies can
easily be put into place as needed).

Also critical to the design of CFH is the availability of the correct semantic
information. For example, when a specific request passes through the CFH,infor-
mation about its block type and other relevant information about the request should
be accessible within the CFH. Such information is crucial inenabling fine-grained
and flexible policies to be implemented.

We now describe our approach to centralized failure handling. We start with the
basic framework, then discuss issues in the design of the policy table and acquiring
semantic information, and finally explain a few implementation details.

Basic Framework

Figure 6.1 shows the framework of the CFH. I/O calls are issued from different
components of a file system such as the core file system, journaling layer, and
buffer cache manager. Each of the reads and writes are passedto the CFH, which
then issues the request to the lower level device drivers of the disk.

Each I/O call, besides from containing the standard information such as the
block number and request size, also contains semantic information about the I/O.
For example, semantic information of each I/O includes the block type, inode num-
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Figure 6.1:The CFH Framework. The figure shows components of a centralized failure
handler. It has three main subsystems: a file system specific layer, a generic layer, and
threads for failure handling. The file system specific layer also maintains a failure policy
table. The generic layer contains various mechanisms such as replication, parity, and
checksums that can be commonly used by various file systems.

ber, pointers to specific detection and recovery routines, and so on. Such informa-
tion is crucial in enabling fine-grained and flexible policies at the CFH.

The CFH basic framework consists of three main components: afile system
specific layer, a generic layer, and additional threads to handle failures. We describe
each in turn.

File system specific layer:The file system specific layer receives requests that
are issued from a particular file system or from other layers on behalf of the file
system, and it understands the semantics of the I/O requests. For example, the ext3
specific component understands different block types of ext3.

A file system can use generic detection and recovery routinessuch as the check-
sum or retry module or file system specific block type sanity checking modules or
its own special recovery routines. In our current prototypeimplementation, the
policies are specified by the file system developer. However,extending the inter-
face to other users such as system administrators is simple.When a file system
mounts, it registers its specific detection and recovery routines. For example, ext3
could register a function pointer toext3 inode sanity check() with the
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CFH during its mount, which will be called every time an inodeblock is read or
written by ext3. Note that using this framework, a file systemcan even perform
sanity checking before its writes are issued to the disk, which can help find certain
software-induced or memory-related corruptions before the data reaches the disk.

Generic layer: The CFH consists of a generic layer that implements several
mechanisms such as retry, replication, parity, remap, and different types of check-
sums, all of which are available to the policy implementor. The functionality pro-
vided by the generic layer can be used commonly across multiple file systems and
the generic mechanisms can be easily configured to suit the needs of the file sys-
tem. For example, the number of retries can be easily set for ext3 and they can be
different for reads, writes, and other block types. This design aspect of the CFH
provides a clean separation of mechanisms from policy.

Failure handlers: CFH contains additional threads to handle I/O failures. An
I/O completion is notified under interrupt context and if there is a failure, the recov-
ery actions cannot be invoked under interrupt context because they are time critical
and performing complex recovery actions under them might crash the entire sys-
tem.

When an error is detected, the I/O block along with its context information is
added to a queue and the failure handler thread is woken up. The failure handler
thread removes the failed I/O and enforces the recovery policy specified by the
file system. For example, if the file system wants to retry a failed I/O, the I/O
is reissued. One can implement and apply any of the techniques under the IRON
taxonomy (Tables 2.1 and 2.2) using the failure handlers.

Failure handling threads are also useful in monitoring asynchronous I/O calls.
Typically, asynchronous I/O failures are not detected by a file system and no recov-
ery action is taken. In CFH, the failure handlers capture allI/O failures including
asynchronous ones and handle them appropriately.

The Policy Table

CFH maintains a policy table, which is initialized by the filesystem during its
mount and can be modified while it is running. The policy tablespecifies the kind
of detection and recovery actions to be taken for each block type failure. It provides
a single and easily understandable location within which failure-handling policy is
specified.

Table 6.1 shows the fields on each record in the policy table. One record is
used for each block type, enabling the CFH to implement fine-grained policy per
block type of the file system. We explain the policy table fields in detail. Block
type information is specified byType and for all blocks confirming to this type,
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Fields What they represent
Type Block type information
Validate IO Whether to verify the block contents.
Retry max Maximum number of retries
Remap Whether this block must be remapped
Isolate Number of blocks to isolate around failed block
Inode File or directory this block belongs to
(*Sanity) Pointer to block type specific sanity checking module
(*Recover) Pointer to recovery module
FS Arg Any file system specific argument (e.g., in-core super block)

passed to the recovery function

Table 6.1: CFH Policy Table. The table presents various fields in a CFH policy table
record. The fields can be configured separately for each I/O and offer great flexibility in
supporting fine-grained failure policies.

the policy specified by the record is applied.Validate IO is a flag that speci-
fies whether a block content must be validated are not, and if so, whether to use
checksums or sanity checking for validation. Possible values for this field include
DONT VALIDATE, SANITY CHECK, and CHECKSUM.

We implement certain generic recovery routines such as retrying failed requests
and remapping writes to a different location. If a file systemwants to use those re-
covery techniques, it can use theRetry max to specify maximum number of times
the failed I/O must be retried andRemap to point to the block to which a write fail-
ure must be remapped. Blocks around a failed block may have higher chances of
failing and therefore, a file system can useIsolate to specify the number of
blocks that must be remapped around a failed block. In addition to offering a per-
block-type failure policy, one can even fine tune the policy to per file or directory.
For example, one can apply stronger failure handling approaches to root directory
than rest of the directories and this can be achieved by specifying the inode num-
ber of the file or directory inInode field. (*Sanity) and(*Recover) are
function pointers specific to a file system. For example, in inode failure policy
record, a file system can set(*Sanity) to an inode sanity checking routine and
(*Recover) to a file system stop function. Certain file system recovery actions
such as stopping the entire file system require access to the in-core super block of
the file system and the policy table record also provides a field (FS Arg) to store
it.
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It must be noted that this is just one possible design for the policy table fields.
While we have taken a first approach here, more complex designs are possible. For
example, a file system might want to use its own remap routine in order to remap
an entire logically contiguous unit. In general, a file system can either implement
its own specialized routines for every IRON detection and recovery techniques, or
use all the techniques from the CFH generic layer. To supportsuch highly flexible
designs, the policy table fields must be changed. However, webelieve that those
changes are not significant and can be implemented as an extension of our prototype
design.

Acquiring Semantic Information

One of the design issues in building a CFH is understanding the semantics of each
I/O. The file system specific component of a CFH must understand the context of
an I/O such as the block type to invoke specific failure policies on I/O failure.

Understanding the I/O semantics is straightforward for reads and writes that
are issued directly from the file system. We modified ext3 to pass the I/O context
information along with an I/O call.

However, I/O calls can be issued from common file system layers such as the
generic buffer cache manager. There are two issues in modifying the functions in
buffer cache layer to use CFH. First, since the buffer cache is commonly used by
other parts of the system, file systems that do not use CFH willbe affected. We
solve this problem by altering the buffer cache layer such that only if a file system
uses CFH, its I/O calls are redirected. Second, since the I/Os are issued from a
generic layer, the file system specific semantics is lost in these I/O calls. We handle
this problem by adding calls in ext3 that pass the block type information to CFH
for those I/Os that are issued via the generic layer.

When a file system is recovering after a crash, file system blocks that are written
in the journal as part of a successfully committed transaction are read and written
to their fixed locations. It is important that we know the typeof the recovered
blocks so that the failure policies can be applied even during recovery. We cannot
configure the file system to pass the block type information during journal recovery
because the file system itself is not active until the recovery completes. We solve
this problem by storing the block type information along with the blocks in the
journal, which can be read during recovery to apply the appropriate failure policy.
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Function Ext3 block type
readdir Directory
rmdir Directory, Data bitmap, Inode bitmap
unlink Data bitmap, Inode bitmap, Indirect block
truncate Data bitmap, Indirect block
write Data bitmap, Indirect block

Table 6.2:Fixing Error Propagation. The table presents a list of functions that fail to
propagate error to the application on various block type failures in ext3. We fix all these
functions to send an “I/O Error” code to the application uponfailure.

Implementation Details

We have implemented a centralized failure handler for Linux2.6.9 kernel and mod-
ified Linux ext3 to use it. We also modify the generic buffer cache and journaling
layer to issued disk reads and writes to CFH if the requests are issued on behalf of
ext3. We call the resulting system as ext3c.

We verified that all the I/O calls are redirected to the CFH by flagging I/O
requests within the CFH and ensuring that all requests that are about to be passed
to disk have such a flag. Although not comprehensive, this simple technique gave
us confidence that the CFH interposed on all relevant I/Os.

In order to build a robust system, error codes must be propagated reliably across
different layers of the system until the error is handled appropriately. CFH is de-
signed such that when an I/O failure cannot be recovered, it propagates the failure
to the file system and also logs error message in the system log. However, file
systems ignore failures and often fail to propagate the error to the application [86].
From our analysis, we find that ext3 fails to propagate error to the application under
several POSIX calls (for example, directory block failure in rmdir is not notified
to an application). Table 6.2 lists a set of functions that ignore error propagation in
ext3 and we fix all those functions in ext3c.

6.1.2 Evaluation

We evaluate ext3c as follows. First, we show the flexibility and consistency of
ext3c by making it mimic ReiserFS-like and NTFS-like failure policies. By chang-
ing a few lines of code in the policy table, ext3c acts entirely differently in response
to a disk failure. Second, we evaluate how ext3c can be used to implement fine-
grained policies for different block types. Specifically, we develop and evaluate a
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policy that acts in a more paranoid fashion about its own metadata, while simply
propagating failures encountered when accessing user data. Finally, we evaluate
the performance overhead of routing I/O requests via CFH by running several mac-
robenchmarks.

Flexibility and Consistency in ext3c

Linux ext3c is highly flexible and can be easily configured to mimic different fail-
ure policies just by modifying a few lines in its configuration file. A configuration
command in ext3c is as simple as:

ext3c_dir_block = {
.Type = ext3c_DIR_BLOCK,
.Validate_IO = SANITY_CHECK,
.Retry_max = 0,
.Sanity = ext3c_dir_sanity_check,
.Recover = ext3c_stop,

};

The above code defines the failure policy for directory blocks in ext3c. It in-
forms CFH to perform sanity checking usingext3c dir sanity check rou-
tine and if there is an I/O failure, asks CFH to stop the systemby callingext3c stop.

The above configuration mimics ReiserFS-like failure policy. Previous work
has shown that ReiserFS is paranoid about disk failures and therefore stops the
file system on most block I/O errors [86]. We show the flexibility of CFH by
changing its failure policy from ReiserFS to that of NTFS by altering only a few
lines. NTFS assumes failures are more transient, and therefore performs persistent
retries [45, 86]. We make ext3c behave like NTFS on directory failures by setting
Retry max to a non-zero value andRecover to an error propagating function,

We use a testing framework similar to that of our previous analysis (Section 5.2)
to perform a thorough failure policy analysis of ext3c. We run different workloads
and fail specific file system block types. Tables in Figure 6.2present ext3c failure
policy under read failures. Each column represents one or a set of workloads and
each row represents a data structure in ext3. If a data structure is read on a work-
load, then the corresponding entry gives the failure policyenforced by CFH. We
can see that by just changing 2 lines for each of the 13 data structures, ext3c can be
made to mimic a different failure policy for all block type failures. Although the
results are not shown, we ensure that ext3c enforces similar policy on write failures
too.
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  ReiserFS-like Failure Policy  
a b c d e f g h i  j k l mn o p q r s t
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      NTFS-like Failure Policy  
a b c d e f g h i  j k l mn o p q r s t
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data
indirect
i-bitmap
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dir
inode

Figure 6.2: Consistent Failure Policies in ext3c. The table indicates recovery poli-
cies of ext3c for read faults injected for each block type across a range ofwork-
loads. The workloads area: path traversalb: access,chdir,chroot,stat,statfs,lstat,open
c: chmod,chown,utimesd: reade: readlink f: getdirentriesg: creath: link i: mkdir j: re-
namek: symlinkl: write m: truncaten: rmdir o: unlink p: mountq: fysnc,syncr: umount
s: FS recoveryt: log write operations. A gray box indicates that the workloadis not ap-
plicable for the block type. If multiple mechanisms are observed, the symbols are superim-
posed. Key for recovery: A “/”, “ −”, and “ |” represent retry, error propagation, and file
system stop respectively.
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In addition to being flexible, ext3c can be highly consistent in applying its poli-
cies and this can be noticed from Figure 6.2. Two design aspects of CFH enables
this consistent application of policies: first, we separatefailure policies from mech-
anisms; second, all the failure policies are enforced at onecentral place. The result
is a file system with a well-defined failure handling system.

Fine-grained Failure Policies

   Fine-grained Failure Policy  
a b c d e f g h i  j k l mn o p q r s t

j-data
j-commit
j-desc
j-revoke
j-super
g-desc
super
data
indirect
i-bitmap
bitmap
dir
inode

Figure 6.3:Fine-grained Failure Policies in ext3c. The table indicates fine-grained poli-
cies of cxt3 for write failures. The workloads and data structures are the same as in Fig-
ure 6.2. Key for recovery failure policy: A “/”, “ \”, and “ |” represent retry, remap, and
file system stop respectively. Error is propagated on all thefailures either through error
code or by logging error messages.

File systems can configure CFH to implement different policies for different
block types depending upon their importance to the system. For example, a file
system can be more paranoid about metadata block failures and handle them dif-
ferently from data block failures. We show how CFH can be usedto implement
fine-grained policies by configuring ext3c with the following policy: file system
metadata write errors are retried and remapped, and journalwrite failures are only
retried. In both the above cases, ext3c stops the system when it cannot recover from
the write error. When data write fails, ext3c only retries but does not remap or stop,
but rather just propagates the error, enabling the application to take the appropriate
action. We evaluate this failure policy for write failures of all block types and Fig-
ure 6.3 presents the failure policy table. From the table, wecan see that under all
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Figure 6.4:Fine-grained Failure Handling. The above figure shows how different block
type failures are handled differently by CFH. On X-axis, I/Ocompletion time is plotted and
on Y-axis, block numbers are shown. Failed I/Os are shown with legends that are not filled,
while successful I/Os are shaded in black. Writes are markedwith a “W” and reads with a
“R”. We show three different block type failures: a commit block write failure, which is a
transient error, a directory block and a super block write errors, which are permanent. CFH
retries the commit write failure and successfully recovers(Section A). CFH is configured
to retry 3 times after directory write failure and when all the retries have failed, it remaps
the directory block to a different location on disk (SectionB). CFH also marks few blocks
around the failed dir block for isolation, reads and remaps them (Section C). Finally, when
the super block write fails, it is retried 10 times and remapped. When the remap also fails,
CFH stops the file system (Section D).

workloads, all metadata write failures are handled more thoroughly than data block
failures.

Figure 6.4 shows a specific example of the above policy. When acommit block
write fails in a transient manner, it is recovered by a retry.However, when a di-
rectory block write fails continuously, CFH remaps it to a new location. We im-
plement an isolation policy in CFH that reads blocks around afailed block, writes
them to a new location, and marks the region as unusable to prevent future errors.
Finally, when the super block write fails, CFH first retries 10 times, then tries to
recover by remapping, and finally stops the file system when the remap also fails.
Even though we show a simple policy here, a file system can implement more fine-
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grained policies such as treating root directory I/O failures differently from other
directory failures.

Performance Overhead

Benchmark Ext3 ext3c
SSH 118.45 118.56 (0.00%)
Web 98.85 99.00 (0.15%)

PostMark 150.50 151.25 (0.49%)
TPC-B 52.48 52.54 (0.11%)

Table 6.3:Performance Overheads in CFH.The table lists the running time (in seconds)
for four different benchmarks in ext3 and ext3c.

Finally, we evaluate ext3c performance to understand if additional processing
caused by passing every I/O through CFH adds any performanceoverhead. We
run four different file system benchmarks: SSH-Build, whichunpacks and com-
piles the SSH source code, a Web server benchmark reads file inext3c and sends
over the network, the standard PostMark benchmark [61], which emulates a mail
server workload, and a TPC-B-like benchmark, which runs debit-credit transac-
tions [117]. The results are presented in Table 6.3. We run over 15 iterations for
each of these benchmarks on ext3 and ext3c and find no noticeable difference in
their performance.

6.1.3 Conclusion

We design and implement a centralized failure handler for file systems that for-
wards I/O requests and responses between a file system and disk. CFH implements
generic and specific error handling routines that can be usedby a file system to
handle disk failures. By unifying all the failure handling at a single point and sep-
arating policies from mechanisms, CFH enables fine-grainedand consistent failure
handling in file systems.

While CFH offers greater flexibility in failure handling, the implementation
efforts are non-trivial. Overall, we modified about 600 lines of existing code in
ext3, the buffer cache, and the journaling layer and added about 3100 lines of code
to build the CFH (including its generic detection and recovery mechanisms such
as checksums and remap). Extending CFH to other file systems is less expensive
once the basic CFH framework is in place. In fact, certain filesystems such as
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ReiserFS do not use the generic buffer cache and therefore, it is relatively easier to
embed the block-type semantic information in their I/O calls. We also find that it is
easier to maintain CFH even if individual file systems go through different design
changes. Since CFH contains a clear separation between file system specific layer
and generic layer, whenever a file system data structure is modified, routines that
handle that data structure alone must change without affecting the rest of the failure
handler parts.
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Chapter 7

Related Work

Our effort builds upon related work from two bodies of literature. Our file system
analysis (Section 4) is related to efforts that inject faults or otherwise test the robust-
ness of systems to failure. Our work on building robust file systems including the
prototype ixt3 (Section 5.2), probabilistic model for datalayouts (Section 5.3.1),
parity update techniques (Section 5.3.2), and centralizedfailure handler (Chap-
ter 6) draw on efforts in building software that is more robust to hardware failure.
We discuss each in turn.

7.1 Robustness Analysis

Several different approaches are taken to analyze and measure the robustness of a
system. We discuss the related approaches here. First, faults can be injected and
the resulting system behavior can be monitored. Second, more formal techniques
such as model checking can be used to find out bugs in system code. Finally, failure
characteristics of a system can be measured by stress testing or collecting failure
data from production systems.

7.1.1 Fault Injection

Fault injection has been used for several decades as a mechanism to measure the
robustness of systems [54]. We use software to simulate the effects of hardware fail-
ures and inject faults by dynamically determining the file system block types. Sev-
eral previous work has used similar software-implemented fault injection (SWIFI)
techniques to evaluate the dependability of computer systems.
Generic Fault Injection: FIAT (Fault Injection-based Automated Testing) is one
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of the early systems to use fault injection techniques to simulate the occurrences
of hardware errors by changing the contents of memory or registers [17]. FIAT
injects memory bit errors into a task image and the physical location of the fault
is gathered from the compiler and loader information automatically. In our fault
injection experiments, the driver automatically determines the fault location (i.e.,
the block to fail) by inferring the block type information. FERRARI (Fault and
ERRor Automatic Real-time Injector) is another tool that emulates permanent and
transient hardware faults in software and uses software traps to inject faults [58].
Its four modules roughly correspond to the functionalitiesof coordinator and fault
injection driver of our system. The initializer and activator module in FERRARI
prepares the system for fault injection; the user information module obtains param-
eters such as fault and error types from the user; the fault injector injects faults dur-
ing the program execution; and finally, data collection and analysis module collects
logs of all the results. The coordinator and driver perform all the above activities in
our system.

Other systems that use SWIFI approach include FTAPE (Fault Tolerance And
Performance Evaluator), which is a tool that performs dynamic workload measure-
ments and injects faults by automatically determining the time and location that
will maximize fault propagation [118]. FTAPE uses stress-bases injection tech-
niques to inject faults during high workload activities, which ensure higher fault
propagation. FTAPE uses a framework similar to ours to inject disk system faults,
where a driver is used to emulate I/O errors. An important difference is that in their
system a fault is initiated by the workload stress, while in our framework a fault is
initiated when a particular block type is written to disk. Fault injection experiments
have also been used to study fault propagation in the system.FINE (Fault Injection
and moNitoring Environment) is a tool developed by Kaoet al., to inject hardware
induced software faults into UNIX kernel and trace the execution flow of the ker-
nel [70]. Although we do not explicitly trace the fault propagation in our system,
the disk errors that we inject propagate from its origin through a generic device
driver layer until it reaches the file system, where it can cause several behaviors
including system crashes. Several work has targeted the kernel for reliability anal-
ysis. In a more recent work, fault injection techniques are used to test the Linux
kernel behavior under the presence of errors in the kernel instruction code [49].
They test four kernel subsystems including the architecture dependent code, virtual
file system, memory management, and the core kernel. Our testing focuses only on
file systems and while they inject faults in instruction streams, we inject disk I/O
failures.

File and Storage System Testing:Fault injection has been used specifically to
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study the reliability of storage systems as well. Brownet al.developed a method to
measure the system robustness and applied it to measure the availability of software
RAID systems in Linux, Solaris and Windows [24]. They use a PCto emulate
a disk and use the disk emulator to inject faults. They test the software RAID
systems while our work targets the file systems. Moreover, weuse file system
knowledge to carefully select and fail specific block types whereas they do not
require any semantic information for fault injection. Other studies have evaluated
RAID storage systems for reliability and availability [55,62]. These studies have
developed detailed simulation models of RAID storage arrays and network clusters
and used them to obtain the dependability measures. In contrast to their simulation-
based fault injection, we perform a prototype-based fault injection for our failure
analysis.

Several file system testing tools test the file system API withvarious types of
invalid arguments. Siewioreket al. develop a benchmark to measure the system’s
robustness and use it to test the dependability of file system’s libraries [104]. Their
benchmark consists of two parts, each exercising a different part in the file man-
agement system. The first part focuses on data structures in file management such
as corrupting a file pointer or a file system flag. The second part measures the ef-
fectiveness of input error detection mechanisms of the functions in the C standard
input/output library (STDIO). Similarly, Koopmanet al. use the Ballista testing
suite to find robustness problems in Safe/Fast IO (SFIO) library [31]. They test 36
functions in the SFIO API and show that although SFIO robustness is far greater
than STDIO, it still had a fair number of robustness failuresin functions like read
and write. In contrast to both the above work, which test the robustness of file
system API, we measure the robustness of file system to disk write failures.

One major difference between the related work in fault injection and ours is
that our approach focuses on how file systems handle the broadclass of modern
disk failure modes; we know of no previous work that does so. Our approach also
assumes implicit knowledge of file-system block types; by doing so, we ensure that
we test many different paths of the file system code. Much of the previous work
inserts faults in a “blind” fashion and hence is less likely to uncover the problems
we have found.

7.1.2 Formal Methods

Static source code analysis is another popular approach to test the robustness of
software systems. Model checking techniques can be appliedto the file system code
to find bugs and design flaws. Although model checking is more comprehensive
than fault injection in its error detection, it requires more work in terms of modeling
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complex file system operations. In a recent work, Yanget al. use model checking
comprehensively to find bugs in three different file systems:ext3, ReiserFS and
JFS [129]. They use formal verification techniques to systematically enumerate a
set of file system states and verify them against valid file system states. Their work
can be used to identify problems like deadlock, and NULL pointers whereas our
work focuses mainly on how file systems handle latent sector faults.

More recently, Yanget al. develop a method to automatically find bugs in file
system code that sanity checks on-disk data structure values [128]. They use a
symbolic execution system, called EXE, which instruments aprogram and runs on
symbolic input that is initially free to have any value. Based on the conditional
expressions on data values, EXE generates constraints on the input values and gen-
erates cases for the “true” path and “false” path of the conditional expressions. This
approach, as other formal methods, requires access to source code whereas we do
not need source code for our analysis to work.

7.1.3 Other Techniques

Systems can be stress tested and monitored to understand their failure characteris-
tics. Grayet al.measure the disk error rates in SATA drives by moving severalPB
of data [45]. They run programs in office-like and data-center-like setups that write
and read data from large files and compare the checksum of the data looking for
uncorrectable read errors. They measure about 30 uncorrectable bit errors as seen
by the file system and 4 errors at the application level. They conclude that uncor-
rectable read errors is not a dominant system-fault source and suggest that “Mean
Time To Data Loss” (MTTDL) would be a better metric.

Maintainers of large disk farms log and collect failure datafrom production
systems. Some results are published after anonymizing the drive manufacturer in-
formation [34, 35, 103, 102]. For example, effect of firmwarechanges on failure
mechanisms is studied over a family of drives and it is concluded that certain fixes
applied to improve performance can increase the failure rates [103].

7.2 Building Robust File Systems

System researchers were aware of disk failures even severaldecades before and
considered reliable file systems as one of important pieces of operating system
design. To quote Needhamet al. “ integrity of [file] system is both an important
requirement and ... requires special treatment ... in dealing with errors” [74]. In
the following sections, we explain the related work in the realm of designing and
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building robust file systems.

7.2.1 IRON File Systems

Our work on IRON file systems was partially inspired by work within Google.
Therein, Acharya suggests that when using cheap hardware, one should “be para-
noid” and assume it will fail often and in unpredictable ways[1]. However, Google
(perhaps with good reason) treats this as an application-level problem, and there-
fore builds checksumming on top of the file system; disk-level redundancy is kept
across drives (on different machines) but not within a drive[40]. We extend this ap-
proach by incorporating such techniques into the file system, where all applications
can benefit from them. Note that our techniques are complimentary to application-
level approaches; for example, if a file systemmetadatablock becomes inaccessi-
ble, user-level checksums and replicas do not enable recovery of the now-corrupted
volume.

Another related approach is the “driver hardening” effort within Linux. As
stated therein: “A ‘hardened’ driver extends beyond the realm of ‘well-written’ to
include ‘professional paranoia’ features to detect hardware and software problems”
(page 5) [57]. However, while such drivers would generally improve system reli-
ability, we believe that most faults should be handled by thefile system (i.e., the
end-to-end argument [94]).

The fail-partial failure model for disks is better understood by the high-end
storage and high-availability systems communities. For example, Network Appli-
ance introduced “Row-Diagonal” parity, which can toleratetwo disk faults and can
continue to operate, in order to ensure recovery despite thepresence of latent sector
faults [28]. Further, virtually all Network Appliance products use checksumming
to detect block corruption [53]. Similarly, systems such asthe Tandem NonStop
kernel [16] include end-to-end checksums, to handle problems such as misdirected
writes [16].

Interestingly, redundancy has been usedwithin a single disk in a few instances.
For example, FFS uses internal replication in a limited fashion, specifically by mak-
ing copies of the superblock across different platters of the drive [71]. As we noted
earlier, some commodity file systems have similar provisions.

Yu et al.suggest making replicas within a disk in a RAID array to reduce rota-
tional latency [130]. Hence, although not the primary intention, such copies could
be used for recovery. However, within a storage array, it would be difficult to apply
said techniques in a selective manner (e.g., for metadata). Yuet al.’s work also
indicates that replication can be useful for improvingbothperformance and fault-
tolerance, something that future investigation of IRON strategies should consider.
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Checksumming is also becoming more commonplace to improve system secu-
rity. For example, both Patilet al. [79] and Steinet al. [110] suggest, implement,
and evaluate methods for incorporating checksums into file systems. Both systems
aim to make the corruption of file system data by an attacker more difficult.

Finally, the Dynamic File System from Sun is a good example ofa file system
that uses IRON techniques [126]. DFS uses checksums to detect block corrup-
tion and employs redundancy across multiple drives to ensure recoverability. In
contrast, we emphasize the utility of replication within a drive, and suggest and
evaluate techniques for implementing such redundancy. Further, we show how to
embellish an existing commodity file system, whereas DFS is written from scratch,
perhaps limiting its impact.

7.2.2 Disk Failure Modeling

Failure models for disks, specifically in the context of RAIDstorage arrays have
been studied before. Gibson develops an analytical model ofthe reliability of re-
dundant disk arrays [41]. He discusses four different models ranging from a simple
one that considers independent disk failures, to more complex models that include
spare disks and dependency among disk unit failures. The models are validated
using software simulation. In similar work, Kari develops reliability models which
includes both sector faults and disk unit faults. However, he treats sector failures
as independent events and does not account for the spatial locality in sector er-
rors. [59]. In comparison with the above work, our failure model is developed for
a single disk and uses Markov Random Field to express the local characteristics of
disk errors. While Markov Random Field is extensively used in the field of Com-
puter Vision for interpreting spatially correlated features such as image pixels [68],
we use it to express the locality on disk sector failures.

Reliability of long term digital archives such as photos, emails, and web site
archives has received attention from the research community. Bakeret al.model the
reliability of long-term replicated storage systems [14].They consider correlated
failures that might occur due to spatial locality, assumingthat the correlated failures
are exponentially distributed. Their model is similar to our probabilistic model,
where both model a system that tolerate at most one failure and consider spatial
locality.

7.2.3 Parity-based Redundancy

Parity is widely used as a mechanism to store redundant information on disk and has
been the topic of several research work. The seminal work on RAID storage arrays
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includes a discussion on how RAID-5 can be constructed usingparity blocks [81].
While it can tolerate a single disk failure, more recent workhave focused on using
parity blocks to with stand double disk failures. For example, EVENODD [21]
and RDP [28] are techniques that spread parity among multiple disks such that the
data can be recovered after a double disk failure. In a more recent work, Denehyet
al. develop techniques to handle the parity update consistencyissues on software
RAID systems [30]. They introduce a new mode of operation in journaling file sys-
tem called declare mode that provides information about outstanding disk writes
after crash. They augment the software RAID layer to improvethe speed of resyn-
chronization of parity with other blocks with the help of thefile system. While all
the previous work have focused on adding parity at a layer beneath the file system,
our work is primarily built around implementing redundancywithin the file system.

7.2.4 Centralized Failure Handling

System designers have considered the separation of policies from their mechanisms
as a basic design principle for several decades. The classicwork on the Hydra op-
erating system built mechanisms into the kernel to perform operations like schedul-
ing, paging, and protection, and let the user-level controlthem with different poli-
cies [66].

The Congestion Manager (CM) architecture [15] is a similar work that advo-
cates centralized mechanism for implementing variety of policies. CM is motivated
by problematic behavior exhibited by applications whose flows compete with each
other for resources and do not share network information with each other. CM ad-
dresses these problems by inserting a module above IP which maintains network
statistics across flows and orchestrates data transmissions with a new hybrid con-
gestion control algorithm.
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Chapter 8

Conclusions and Future Work

“One therefore has the problem of being able to deal ... with ... bizarre
occurrences such as a disc channel whichwrites to the wrong placeon the
disc without any error indication or, perhaps even worse, one whichsays that
it has written but in fact has not.”

“Theory and Practice in Operating System Design”
R.M.Needham and D.F.Hartley
SOSP 1969

Commodity operating systems have grown to assume the presence of mostly re-
liable hardware. The result, in the case of file systems, is that most commodity file
systems do not include the requisite machinery to handle thetypes of partial faults
one can reasonably expect from modern disk drives. In this thesis, we develop
and employ a new technique,semantic failure analysis(SFA), that usesblock type
information andtransaction semanticsto test and understand failure handling in
journaling file systems. Then, we built robust versions of Linux ext3 that use vari-
ous redundant information and a centralized failure handler to provide fine-grained
and well-defined failure policies.

In this chapter, we summarize this dissertation by recapitulating our failure
policy analysis and experiences in building IRON file systems (Section 8.1). We
then list a set of lessons we learned from this dissertation (Section 8.2). Finally,
we present the future directions where this thesis can possibly be extended (Sec-
tion 8.3).
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8.1 Summary

Storage stacks on modern computers present complex failuremodes such as la-
tent sector faults, data corruption, and transient errors.The first part of this thesis
focuses on understanding the failure policies of file systemwhen confronted with
such faults. We choose to focus on local file systems due to their ubiquitous pres-
ence and new challenges they present.

Commodity file systems are large, complex pieces of softwarewith intricate
interactions with other parts of the system such as buffer cache manager, I/O sched-
ulers, journaling layer, and low level drivers. Given this complexity, we need new
techniques and approaches that can be used by system developers, and even users
of file systems, to test and understand how commodity file systems handle disk fail-
ures. In this regard, we develop a new technique called Semantic Failure Analysis,
which applies file system specific knowledge, such as block types and transaction
semantics to low-level block I/O stream and fails specific file system I/O. In con-
trast to traditional fault injection, which fails blocks ina “blind” fashion, semantic
failure analysis is fast and can be used to identify failure policies, bugs, and incon-
sistencies relatively easily.

We analyze five commodity journaling file systems: Linux ext3, ReiserFS, JFS,
and XFS and Windows NTFS. We make the following observations. First, com-
modity file systems are built with the assumption that disk fails in a fail-stop man-
ner and therefore, they store little or no redundant information on disk. As a result,
when portions of a disk fail, file systems are not able to recover from them. Second,
file systems exhibit illogical inconsistency in their failure handling policies. That
is, even under similar disk failure scenarios, different detection and recovery ac-
tions are employed. We suspect that this may be the result of the assumptions made
by different developers when writing different sections ofthe code. Finally, failure
handling is hard in current file system architecture, and we need new frameworks
for supporting well-defined failure policies.

In the second part of this thesis, we focus on improving the robustness of com-
modity file systems to disk failures. First, we explore the effectiveness and cost
of different redundant information like checksum, replica, and parity. By apply-
ing redundancy to file system metadata and data, both individually and in various
combinations, we study in breadth the cost in terms of time and space. Our results
show that for typical desktop-like workloads, it is indeed feasible to use redundant
information with small overheads.

Second, we focus in depth on two issues presented by single disk drives on low-
end systems: spatially correlated faults and lack of NVRAM support. We develop
a probabilistic model that a file system can use to construct redundancy sets such
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that the chances of multiple faults affecting blocks in the same set is low. We also
develop two parity update techniques that integrate with journaling framework to
update data and parity blocks consistently. One of the techniques, the no-overwrite
approach, can provide atomicity in updating the redundant information and as a
result, can handle latent sector faults even during journalrecovery. Our evaluation
of the techniques point out that the performance overhead ofparity update tech-
niques varies between less than 1% to 11% for typical desktop-type workloads and
increases as high as 51% for synchronous, write-intensive benchmarks.

Finally, we rearchitect the file system with a Centralized Failure Handler (CFH)
to handle all the failures in a consistent manner. The CFH receives all the I/O calls
from a file system along with the I/O semantics such as the block type information.
By separating policies from mechanisms and handling all I/Ofailures at one single
point, CFH enables uniform, fine-grained, and flexible failure policies. We also
show that CFH incurs no additional overhead in forwarding requests between a file
system and disk.

To conclude, we believe it is time to reexamine how file systems handle failures.
One excellent model is already available to us within the operating system kernel:
the networking subsystem. Indeed, because network hardware has long been con-
sidered an unreliable hardware medium, the software stacksabove them have been
designed with well-defined policies to cope with common failure modes [82].

8.2 Lessons Learned

Next, we present a list of lessons we learned while working onthis dissertation. We
believe that they will be relevant even beyond the realm of this thesis.

• Importance of semantic information: Semantic information is crucial in
building high performance and dependable systems [29, 107,108]. In addi-
tion, semantic knowledge can be used to perform more informed analysis as
well [84]. We realize this and use it for our failure policy analysis, where
transactional semantics and block type information are used to unearth file
system failure policies.

However, it is harder to get the correct semantic information under certain
cases, even if one has access to the source code. For example,while build-
ing the centralized failure handler, file system semantics are lost for all I/Os
issued via the generic buffer cache manager and journaling layer. Although
we modified ext3, the generic buffer cache layer, and the journaling layer to
pass semantics of the file system, this might not be practically feasible as
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modifying a common layer like buffer cache that is used by several sub-
systems is generally discouraged. Under such circumstances, we believe
that the techniques developed in the context of semantically-smart disk sys-
tems [10, 12, 105, 106, 108] to reverse engineer file system information can
be immensely useful.

• Failure as a first class citizen:Traditionally, systems have been built with
performance as the main focus and as a result, various policies have been de-
veloped for different applications, where each policy is aimed at maximizing
the performance of a specific workload behavior.

However, as systems grow in complexity, reliability is becoming a primary
design goal [65] and we believe that failures must be treatedas first class
citizens in such systems. For example, different failure policies must be
presented to an application and let it choose the policy thatsuits its needs.
Our CFH is a first step towards achieving this goal, where we apply fine-
grained policies to file system data and metadata.

• Need for benchmarks that represent desktop workloads:In this thesis,
we focus on local file systems running on low-end systems. To estimate the
cost of redundancy techniques on such systems, we used SSH-Build (Sec-
tion 5.2.2) as a representative workload. However, there are no benchmarks
built systematically to depict the applications running ona desktop or lap-
top setting. All the current file system benchmarks [23, 61, 73, 75, 76, 117]
stress the file system I/O path and are targeted at emulating high end systems
(e.g., PostMark represents a mail server workload [61] and TPC-B represents
a transactional workload on a database server [117]). A workload suit built to
emulate desktop applications can be useful for commodity operating system
developers.

• Ways to describe policies:Policies are harder to get right without the right
framework. This is especially so for failure policies wherethere are hundreds
of combinations that are possible among different block types, detection, and
recovery techniques. In this thesis, we show using CFH that given a right
interface, it is indeed possible to specify even intricate policies using simple
commands.
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8.3 Future Work

Next, we present a set of research directions to pursue in thefuture. All the work
that we discuss here stem from our efforts in analyzing and building robust file
systems.

8.3.1 Using Checksums to Relax Ordering Constraints

In order to maintain file system integrity, modern file systems implement certain
ordering constraints when they update their on-disk structures. For example, write
ordering is used by all the journaling modes in journaling file systems, file sys-
tems with soft updates [39], Write Anywhere File Layout (WAFL) [53], and log
structured file systems [93].

Ordering the file system interactions with disk introduces certain problems.
First, it causes performance overhead by introducing a waitbetween I/O calls. For
example, journaling file systems wait for all the transaction writes to finish before
writing the commit block to mark the transaction as complete, and this, in spite
of being a sequential write on the journal, incurs additional rotational latency at
the disk drive. Second, implementing the correct ordering among several differ-
ent types of disk blocks with multiple, concurrent updates to it can be a night-
mare [120].

We propose to use checksums in file systems to relax ordering constraints while
providing the same consistency and integrity guarantees. We explore an application
of this idea in this thesis, which we call transactional checksums (Section 5.2.1).
We show that transactional checksums significantly improvefile system perfor-
mance, especially for workloads with small, synchronous writes.

In the future, we plan to examine how checksums can be used in other file
systems such as the ones that use soft updates or WAFL. Also, as a limiting case
study, we plan to apply the idea to a FFS like file system such asext2 and make
its crash recovery faster. However, the benefits do not come for free. Checksum
computational cost can add some overhead, but with the ever increasing processing
power and limited improvement in disk access speeds, we believe this is a profitable
trade-off to make.

8.3.2 Understanding Spatial Locality in Disk Faults

One of the attributes of disk failures is that, under certainconditions like a particle
scratch or thermal asperity, faults can be spatially correlated. However, currently
we do not have field data on how such faults spread (i.e., the distribution of bad
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blocks) on disk platters. Deriving such data from drives that are discarded as un-
usable can shed light into block faults and help higher layers improve their data
layout patterns.

SCSI drives provide low-level commands to obtain the mapping details between
a logical block to its physical location on disk (including details like cylinder, track,
and sector). As a first step, one can reconstruct the layout oflogical blocks on disk,
which can show the bad blocks that are not used by a disk drive.Although this
only brings out the bad blocks that are already identified by adisk drive, it can
unearth certain internal policies of a disk firmware such as its bad block remapping
algorithm, which can possibly be used by a higher layer to improve its layout.

8.3.3 Impact of Richer Interfaces on Reliability

As we pointed out in Section 2.2, storage stacks consist of several layers, each with
its own failure modes, detection, and recovery techniques.However, in the current
I/O architecture, not many details about an I/O failure are exposed to the end point
(e.g., the file system). The only information a file system receivesis whether an I/O
has succeeded or not. Exposing more information such as which layer caused the
error, and what detection and recovery actions were taken byintermediate layers
can improve failure handling at the end point as it may possibly use other redundant
components (such as a different controller) to recover fromthe failure.

More information about the failure handling mechanisms of disk drives and
new interfaces to control them can improve the overall robustness of the storage
stack. For example, interfaces already exists to control the additional information
stored on the 8 bytes of a 520 bytes sector. However, there areother low-level infor-
mation that are not yet available. Since disk drives implement remapping internally,
information such as the number and location of blocks reserved for remapping, list
of already remapped disk blocks, algorithm used for remapping, and perhaps, an
interface to control the block remapping can be useful for a file system to deter-
mine its data layout policies. Moreover, if disks can exposethe set of detection and
recovery actions taken while reading or writing data, the other layers on the storage
stack can avoid re-executing similar actions. For example,if a disk notifies that it
retried several times before declaring a block as inaccessible, the layer above the
disk drive can avoid retrying the request.

Higher level semantic information at the other end of the storage stack (i.e.,
the disk drives) can also improve reliability. For example,if a drive understands
which physical disk blocks constitute a logical file system entity or which phys-
ical blocks are “alive”, it can improve its internal reliability mechanisms such as
bad block remapping. Semantically-smart disk systems [10,12, 105, 106, 108]
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explored some uses of file system level knowledge at the disk drives, where they
reverse engineered the higher-level semantics. However, with the advent of object-
based storage systems [6] some of this information can be available through explicit
interfaces.

8.3.4 Using Virtual Machines to Improve Storage Stack Reliability

In this thesis, we show that failure handling in commodity file systems is broken.
While we modify file systems to improve their robustness, altering file systems may
not be feasible in practice. In the future, we propose to explore the idea of using
virtual machines to improve the reliability of the storage stack, wherein the virtual
machine detects and recovers from various partial disk faults but presents a simple
fail-stop (virtual) storage system to commodity file system. While the same can be
achieved with a pseudo-device driver instead of a more powerful virtual machine,
we can use the potential of a virtual machine to alter certainfile system behavior.
For example, file systems like ReiserFS crash the entire system on even simple
read errors by calling a kernel-levelpanic. Virtual machines can possibly be used
to capture such calls and turn them into less expensive stopssuch as a read-only
mount.

8.3.5 Analyzing Robustness of Other Data Management Systems

While we limit the focus of this thesis to local file systems, several of the issues
we discuss here such as the latent sector faults, block corruption, spatial locality in
sector faults, and the impact of redundancy techniques are applicable to other data
management systems such as distributed file systems and database management
systems. These systems are more complex than local file system with many more
layers on their storage stack (like the presence of network in distributed systems).
Therefore, the first step is to study new partial failure scenarios, if any, introduced
in this context. Second, several of these systems can support redundant compo-
nents such as multiple disks either within a single site or across multiple sites. This
raises the issue of finding trade-offs among redundancy within a single disk, among
multiple disks in a same site, and finally, across distributed disks. Third, optimiza-
tions such as transactional checksums are directly applicable to databases and in
fact, one can even explore the applicability of relaxing ordering constraints using
checksums in distributed protocols.
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