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A b s t r a c t. Let S be a structural consequence relation, not

assumed to be protoalgebraic. It is proved that the following con-

ditions on S are equivalent, where ‘algebra’ means algebra in the

signature of S: (1) S is truth-equational , i.e., the truth predicate

of the class of reduced matrix models of S is explicitly definable

by some fixed set of unary equations . (2) The Leibniz operator

Ω of S is completely order reflecting on all algebras, i.e., for any

set of S–filters F ∪ {G} of an algebra, if
⋂

Ω[F ] ⊆ ΩG then⋂
F ⊆ G. (3) The Leibniz operator is completely order reflecting

on the theories of S. (4) The Suszko operator of S is injective on

all algebras.

It makes no difference to the meaning of (1) whether ‘reduced’ is

interpreted as Leibniz-reduced or as Suszko-reduced. For the class

of Suszko-reduced matrix models of S, (4) ⇒ (1) says that the im-

plicit definability of the truth predicate entails its equational de-

finability. Previously, this was known only for protoalgebraic sys-

tems. The corresponding assertion for the Leibniz-reduced models

is shown to be false, i.e., global injectivity of the Leibniz operator

does not entail truth-equationality.
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1 Introduction

By a deductive system we shall mean any structural consequence relation

over an algebraic language. It is well known that every deductive system S

possesses a matrix semantics consisting of ‘reduced matrix models’. Here,

a matrix model of S is a structure 〈A, F 〉 where

• A is an algebra in the signature of S and

• F is an S–filter of A, i.e., a subset closed under all derivable rules of

S (and in particular containing all A–instances of theorems of S).

Such a structure is said to be (Leibniz-) reduced provided that

• no nontrivial congruence of A makes F a union of congruence classes.

The class of all reduced matrix models of S is denoted by Mod∗S, and

every deductive system S is strongly sound and complete, in a natural sense,

with respect to this class. The semantics Mod∗S becomes more tangible

when S is an algebraizable logic in the sense of [9] or [20], [26]. For exam-

ple, the reduced matrix models of classical or intuitionistic propositional

logic are just all pairs 〈A, {>}〉 where A is a Boolean or Heyting algebra,

respectively, whose top element is >. For the weaker ‘substructural’ logics

S, Mod∗S consists of all pairs 〈A, {a ∈ A : a → a ≤ a}〉 where A belongs

to a fixed variety of residuated lattice-based algebras determined by S.

As these examples suggest, every algebraizable logic S is completely

interchangeable with an essentially unique class K of pure algebras, and

the objects in K are exactly the algebra reducts of the reduced matrix

models of S. Moreover, each reduced matrix model is determined by its

algebra reduct, i.e., when 〈A, F 〉 and 〈A, G〉 are reduced matrix models

of S then F = G. We express this by saying that the truth predicate of

Mod∗S is implicitly definable (when S is algebraizable).

Actually, the truth predicate of Mod∗S is equationally definable when-

ever S is algebraizable. By this we mean that

(∗) there exists a set τ of formal unary equations δ(x) ≈ ε(x) such that

for every 〈A, F 〉 ∈ Mod∗S and every a ∈ A, we have:

a ∈ F iff [ δA(a) = εA(a) for all δ ≈ ε ∈ τ ].
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In classical or intuitionistic logic this takes the form

a ∈ F iff a = >.

In substructural logics, e.g., linear or relevance logic, it becomes

a ∈ F iff a = a ∨ (a → a).

We shall say that a deductive system S is truth-equational if (∗) is

true. The exact relationship between this notion and algebraizability is as

follows:

Algebraizable = Truth-equational + Equivalential (see [28], [20]).

The equivalential deductive systems are very well understood and we post-

pone further discussion of them until Section 11. The aim of this paper is to

isolate the meaning of truth-equationality for arbitrary deductive systems.

It is strictly intermediate between algebraizability and the much weaker de-

mand of possessing an algebraic semantics. The truth-equational systems

encompass the weakly algebraizable logics of [22], as well as the assertional

logics of all pointed quasivarieties, and they must possess some theorems

(as opposed to proper derivable rules). Further examples will be identified

in Sections 12–14. But until now, no readily falsifiable characterization of

truth-equationality was known.

In this paper we shall show that the truth-equational deductive systems

are characterized intrinsically by an intelligible property of the ‘Leibniz op-

erator’. For a deductive system S and an algebra A of the same signature,

the Leibniz operator of S associates with each S–filter F of A the largest

congruence θ of A for which F is a union of θ–classes. This congruence

always exists; we denote it by ΩAF and call it the Leibniz congruence of

F . The degree to which a deductive system admits algebraic treatment is

known to correlate closely with transparent properties of its Leibniz oper-

ator: see [9], [20], [26].

The main result of this paper (Theorem 28) states that a deductive

system S is truth-equational if and only if its Leibniz operator is completely

order reflecting on the S–filters of all algebras, i.e., whenever F ∪ {G} is a

set of S–filters of an algebra A in the signature of S, if
⋂

F∈F
ΩAF ⊆ ΩAG

then
⋂

F ⊆ G. This condition is readily falsifiable, as it makes no mention

of any set of equations τ or any special class of algebras. To verify that S
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is truth-equational, it proves sufficient to check that the Leibniz operator

is completely order reflecting on the theories of S, i.e., on the S–filters of

the absolutely free algebra generated by the variables of the language.

The protoalgebraic logics are the deductive systems whose Leibniz oper-

ators are order preserving on the filters of all algebras. Roughly speaking,

they are the logics in which implication can be represented adequately by

some family of connectives. Some significant truth-equational deductive

systems fail to be protoalgebraic: see Section 13. Several authors have

suggested that the classification of non-protoalgebraic logics may need to

be based on properties of the ‘Suszko operator’, rather than the Leibniz

operator.

The Suszko operator of S maps each S–filter F of an algebra A to

the intersection of the Leibniz congruences of all S–filters containing F .

If this intersection is the identity relation, the matrix 〈A, F 〉 is said to

be Suszko-reduced . For protoalgebraic logics, the Leibniz and Suszko op-

erators coincide. When S is not protoalgebraic, its Suszko operator still

preserves order, and the role of Mod∗S is to some extent taken over by a

semantics ModSuS, consisting of all Suszko-reduced matrix models. But

the meaning of ‘S is truth-equational’ is unaffected by this move, because

ModSuS is known to be just the closure of Mod∗S under subdirect products

and isomorphisms [21], [25].

Theorem 28 also shows that a deductive system S is truth-equational

if (and only if) its Suszko operator is globally injective, i.e., injective on

the S–filters of all algebras in the signature. It is not sufficient that this

operator be injective on the theories of S (Example 1). The result can be

rephrased as follows: if the truth predicate of ModSuS is implicitly definable

then it is equationally definable, i.e., explicitly definable by a (possibly infi-

nite) conjunction of equations. This conclusion is stronger than any general

variant of Beth’s Definability Theorem could have delivered. It completes

a sequence of less general definability theorems for truth predicates, es-

tablished by Blok and Pigozzi [9], by Herrmann [29], and by Czelakowski

and Jansana [22]. Each of these earlier theorems extended the scope of the

previous one, but all of them assumed protoalgebraicity and their proofs

made definite use of this assumption.

All of this prompts the question: is it sufficient for truth-equationality

that truth be implicitly definable in Mod∗S? Equivalently, does global

injectivity of the Leibniz operator guarantee truth-equationality? For pro-
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toalgebraic systems, this was confirmed in [22]. We confirm it for certain

classes of non-protoalgebraic logics also, e.g., Theorem 46. But in general,

a deductive system with a globally injective Leibniz operator need not be

truth-equational ; it need not even possess an algebraic semantics. This is

shown in Examples 2 and 3.

2 Algebras

Unless we say otherwise, L shall denote a given but arbitrary algebraic

language, i.e., a signature L together with an infinite set of variables, V ar.

For convenience, we fix one variable in V ar and denote it by x. The symbols

in the signature L are called the basic operation symbols or connectives of L,

depending on the algebraic or logical context in which they are mentioned.

Each has finite rank (alias ‘arity’). The L–constants are, as usual, the

symbols (if any) of L that have rank 0.

The models of the signature, i.e., the L–algebras, shall be denoted by

boldface capitals A,B, . . . , and their respective universes by A,B, . . . . As

usual, the universe of an algebra is assumed to be non-empty. We use

Te to symbolize the absolutely free L–algebra generated freely by V ar.

The elements of Te are therefore just the L–terms; in logical contexts we

sometimes call them the ‘L–formulas’. Endomorphisms of Te are called

substitutions. Of course, these are determined (and often specified) by

their restrictions to V ar. We use Te(x) to stand for the subalgebra of Te

generated by {x}.

The notation α = α(x1, . . . , xn) ∈ Te shall mean that α is an L–term

whose apparent variables are among the distinct variables x1, . . . , xn ∈ V ar;

in this case we call α an n–ary term. Thus, every 0–ary term is an L–

constant. The term function of an L–algebra A induced by an L–term

α ∈ Te shall be denoted as usual by αA. We omit the superscript when

A = Te.

By a unary polynomial function of an L–algebra A we shall mean a

function p : A → A for which the following is true: there exist a nonnegative

integer n, an L–term α = α(x1, . . . , xn) ∈ Te, and elements b2, . . . , bn of A

such that for all a ∈ A, we have p(a) = αA(a, b2, . . . , bn).

An expression of the form ‘~e ∈ A’ shall always signify that ~e is some

(finite or infinite) sequence of elements of the set A. The identity relation

on a set A will be denoted by idA. For any binary relation θ on A and any



100 JAMES G. RAFTERY

a ∈ A, we use a/θ to denote the ‘θ–class’ {b ∈ A : 〈a, b〉 ∈ θ}.

When discussing classes of algebras, we make standard use of the class

operator symbols I, H, S, P, PS and PU. These stand, respectively, for the

formation of isomorphic and homomorphic images, subalgebras, direct and

subdirect products, and ultraproducts. In addition, the class operator U =

UV ar is defined by

U(K) = {A : every subalgebra of A on ≤ |V ar| generators belongs to K}.

A class of L–algebras is called an ISP–class if it is closed under I, S and P.

An ISP–class is called a UISP–class if it closed under U; a quasivariety if

it closed under PU; and a variety if it is closed under H. For any class K of

L–algebras,

ISP(K) ⊆ UISP(K) ⊆ ISPPU(K) ⊆ HSP(K)

and these are, respectively, the smallest ISP–class, the smallest UISP–class,

the smallest quasivariety and the smallest variety containing K. We abbre-

viate HSP(K) as V(K), and V({A}) as V(A), etc.

It is well known that varieties are exactly the model classes of sets of

equations, and quasivarieties are the model classes of sets of finite quasi-

identities. The operator U is significant because UISP–classes are precisely

the model classes of sets of infinitary quasi-identities over V ar (see for

instance [6, Lec. 2] or [7]).

The congruence lattice of an L–algebra A is denoted by ConA. For any

class K of L–algebras, a congruence θ of A will be called a K–congruence

of A if A/θ ∈ K. When K is closed under subdirect products and isomor-

phisms, the set of K–congruences of A is a complete lattice, and it will

be denoted by ConK A. (Note that the empty set of K–congruences of A

has the total congruence A × A as its intersection, and the trivial factor

algebra belongs to IPS(∅), which is contained in IPS(K) = K.) The least

K–congruence containing a subset B of A is denoted by ΘA

K
B.

Suppose θ is a congruence of A, and let h : A → B : = A/θ be the

canonical surjective homomorphism. We say that θ is compatible with a

subset Y of A provided that Y is a union of congruence classes of θ, i.e.,

whenever 〈a, b〉 ∈ θ and a ∈ Y then b ∈ Y . This means just that Y =

h−1[h[Y ]]. When it is clear that θ is compatible with Y , we may use the

abbreviation

Y/θ := {y/θ : y ∈ Y }
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in lieu of h[Y ], without risk of notational confusion. For in this case, if

y/θ ∈ Y/θ then y ∈ Y , by compatibility.

3 Deductive Systems

Unless we say otherwise, S shall denote a given but arbitrary deductive

system over L, by which we mean a structural consequence relation in the

sense of [9] or [51]. In other words, S is a relation from sets of L–terms to

L–terms satisfying the three conditions set out below, for any set Γ∪Φ∪{α}

of L–terms. Here the expression Γ `S α abbreviates that 〈Γ, α〉 ∈ S.

• α ∈ Γ implies Γ `S α ;

• Γ `S α and Φ `S γ for all γ ∈ Γ implies Φ `S α ;

• (structurality) Γ `S α implies h[Γ] `S h(α) for every substitution

h.

From these conditions, the next one follows:

• (monotonicity) Γ `S α and Γ ⊆ Φ implies Φ `S α.

We call S finitary if it also satisfies

• (finitarity) Γ `S α implies Γ′ `S α for some finite Γ′ ⊆ Γ.

The finitary deductive systems all arise as the deducibility relations

of formal systems and are usually (but not always) specified in this way.

A formal system over L means any set F of expressions ‘Σ ` β’ such

that Σ ∪ {β} is a finite set of L–terms. These expressions are called the

postulated rules of F ; the axioms of F are the terms β for which ‘∅ ` β’ is

a postulated rule of F . The deducibility relation of F is the relation from

(possibly infinite) sets of L–terms to single L–terms that contains a pair

〈Γ, α〉 exactly when there is a proof of α from the ‘premisses’ in Γ that

uses only instances of the axioms and postulated rules of F . Here proofs

are assumed to have finite length and the sense of ‘proof from premisses’ is

as in classical logic. The deducibility relation of F is always the smallest

finitary deductive system S containing F [33]; this system S is said to

be axiomatized by F . See [20], [26] for details, history and non-finitary

analogies.

For (possibly non-finitary) deductive systems S, we use the following

terminology. We call Γ ` α a rule—or sometimes a derivable rule—of S

provided that 〈Γ, α〉 ∈ S. We call α a theorem of S if ∅ `S α, and we
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signify this fact briefly by the expression `S α. We call S consistent if not

all L–terms are theorems of S. By structurality, this is equivalent to the

requirement that 6`S x. We tend to abbreviate ‘ Γ ∪ {β1, . . . , βn} `S α’ as

Γ, β1, . . . , βn `S α, and ‘Γ `S ϕ for all ϕ ∈ Φ’ as Γ `S Φ.

By the fragment of S in an indicated subsignature of L we mean the

set of all rules of S that use only connectives from this subsignature. This

is clearly still a deductive system, and finitary if S was.

Given an L–algebra A, the S–filters of A are the subsets F of A that

are closed under the rules of S in the following sense: whenever Γ `S α

and h : Te → A is a homomorphism of L–algebras,

if h[Γ] ⊆ F then h(α) ∈ F.

When S is axiomatized by a formal system F , it is enough to check this

closure property for the (axioms and) postulated rules Γ ` α of F . We

shall need to use the following straightforward and well known facts about

filters.

Lemma 1. Let h : A → B a homomorphism of L–algebras.

(i) If G is an S–filter of B then h−1[G] is an S–filter of A.

(ii) If h is surjective and its kernel kerh is compatible with an S–filter

F of A then h[F ] is an S–filter of B.1

The complete lattice of all S–filters of an L–algebra A (ordered by set

inclusion) shall be denoted by FiS A. The S–filter of A generated by a

subset Y of A shall be written as FgA

S Y . The S–filters of Te are usually

called the theories of S, or the S–theories. We note that for any subset

Γ ∪ {α} of Te,

Γ `S α iff α ∈ FgTe

S Γ. (1)

It is common (but not universal) practice to define a ‘logic’ as a deduc-

tive system in sense of this section.

4 Translations and Algebraic Semantics

An (equational) L–translation is a set τ of pairs 〈δ, ε〉 of unary L–terms in

x. The set τ is not assumed to be finite. The pairs in τ may be thought

1Recall that ker h := {〈a, a′〉 ∈ A × A : h(a) = h(a′)}.
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of as formal equations δ(x) ≈ ε(x), and we sometimes write τ as τ (x).

Moreover, for the sake of readability, we sometimes write ‘τ is δ(x) ≈ ε(x)’

when we mean τ = {〈δ, ε〉}. The main purpose of a translation is to provide

a deductive system with an ‘algebraic semantics’ (defined below), when this

is possible.

For any L–translation τ and any subset Y ∪{b} of an L–algebra A, we

employ the abbreviations

τ
A[Y ] = {〈δA(a), εA(a)〉 : 〈δ, ε〉 ∈ τ and a ∈ Y }; τ

A(b) = τ
A[{b}].

We omit the superscript in τ
A when A = Te.

Definition 1. A class K of L–algebras is called a τ–algebraic semantics

for S provided that τ is an L–translation and for any Γ ∪ {α} ⊆ Te,

Γ `S α iff τ [Γ] |= K τ (α). (2)

The right hand side of (2) means, as usual, that for any homomorphism h

from Te to any algebra A ∈ K, if δA(h(γ)) = εA(h(γ)) for all γ ∈ Γ and all

〈δ, ε〉 ∈ τ then δA(h(α)) = εA(h(α)) for all 〈δ, ε〉 ∈ τ .

We say that K is an algebraic semantics for S if there exists an L–translation

τ such that K is a τ–algebraic semantics for S.

Now K and UISP(K) always satisfy the same infinitary quasi-identities

over V ar, so:

Lemma 2. Suppose K is a class of L–algebras with K ⊆ M ⊆ UISP(K).

If one of K, M, UISP(K) is a τ–algebraic semantics for S then all of them

are.

The above definition of algebraic semantics originates in [9], where it

was formulated for finitary systems. But in [9], translations were required

to be finite sets. When K is a τ–algebraic semantics for S and τ is finite,

the quasivariety ISPPU(K) will be a τ–algebraic semantics for S iff S is

finitary.

For a single translation τ , several different UISP–classes may each be

a τ–algebraic semantics for a fixed deductive system. For example, the

variety of Boolean algebras is clearly an algebraic semantics for classical

propositional logic with respect to the translation ¬¬x ≈ >—but so is
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the variety of Heyting algebras, by a variant of Glivenko’s Theorem (given

explicitly in [13]).

At present there is no known intrinsic characterization of the deduc-

tive systems that possess an algebraic semantics. (For partial results see

[9, Thm. 3.7] and [13].) For a characterization to be considered intrinsic,

it should avoid making existential demands about extrinsic objects such

as special classes of algebras that are not uniquely specified by the logic

itself. And if we want the characterization to be readily falsifiable, it should

exclude even existential demands like ‘there exists a translation . . . ’.

We give below two consequences of the demand ‘K is a τ–algebraic

semantics for S’. The first is independent of K; the second is independent

of τ . Both will be required later.

Proposition 3. ([13, Thm. 2.16]) If S has a τ–algebraic semantics

then for every 〈δ, ε〉 ∈ τ and every unary polynomial function p of Te,

x, p(δ(x)) `S p(ε(x)), and x, p(ε(x)) `S p(δ(x)).

The proof does not rely on the extra finiteness conditions assumed in

[13].

Proposition 4. Let K be an ISP–class that is an algebraic semantics

for S. Let X be an L–algebra (not necessarily in K) that is K–free over a

set Y of arbitrary cardinality.2

Then the least K–congruence of X is compatible with every S–filter of

X.

Proof. Recall that ΘX

K
∅ exists, because K is closed under subdirect

products and isomorphisms. Let F be an S–filter of X and let 〈a, b〉 ∈ ΘX

K
∅.

We need to show that a ∈ F iff b ∈ F . Now 〈a, b〉 = 〈αX(~y), βX(~y)〉 for

some α, β ∈ Te, where ~y is some finite sequence of distinct elements of Y

(see [15, Thm. II.10.3(c)] if necessary).

Suppose A ∈ K and ~a ∈ A, where the finite sequence ~a has the same

length as ~y, although its elements need not be distinct. The function as-

signing to each element in the sequence ~y the element in the correspond-

ing position of ~a may be extended to a homomorphism h : X → A, be-

cause X is K–free over Y . Now ker h is a K–congruence of X, because

2The existence of X tacitly implies that Y 6= ∅ or L contains a constant symbol.
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X/ker h ∼= h[X] ∈ S(A) ⊆ K. So ΘX

K ∅ ⊆ ker h, whence h(a) = h(b),

i.e., αA(~a) = h(αX(~y)) = h(βX(~y)) = βA(~a). This shows that K satisfies

α(~x) ≈ β(~x), where ~x ∈ V ar is any sequence of distinct variables of the

same length as ~y. It follows that for any L–translation τ ,

τ (α(~x)) |= K τ (β(~x)), and τ (β(~x)) |= K τ (α(~x)).

Since K is a τ–algebraic semantics for S with respect to some translation

τ , this tells us that α(~x) `S β(~x) and β(~x) `S α(~x). Consequently,

a = αX(~y) ∈ F iff b = βX(~y) ∈ F . �

5 The Leibniz and Suszko Operators

Let A be any L–algebra. For any subset F of A, there is a largest con-

gruence of A that is compatible with F . When F is an S–filter of A, this

congruence is denoted by ΩAF . The Leibniz operator of S on A, denoted

by ΩA, is the function with domain FiS A defined by F 7→ ΩAF . The func-

tions ΩA, taken over all L–algebras A, constitute the Leibniz operator of

S. Note that ΩA depends on S only insofar as S determines its domain by

restriction. Thus, the action of the Leibniz operator is determined by the

structure of the signature alone. But the extent to which a deductive sys-

tem may be ‘algebraized’ is closely correlated with transparent properties

of its Leibniz operator. This was one of the key discoveries of [9]. More

recent accounts of this relationship usually describe a ‘Leibniz hierarchy’

of broadly algebraic conditions on deductive systems, each characterized

intrinsically by a property of ΩTe. (See [26, Sec. 3.4] and Section 11.)

The injectivity and the isotonicity of the Leibniz operator are two de-

mands that turn out to carry significant information about a deductive

system. The former demand makes sense only for deductive systems that

possess theorems (as opposed to derivable proper rules), in view of the

following simple fact:

Lemma 5. If S has no theorem then its Leibniz operator is non-

injective on every L–algebra.

Proof. Clearly, the system S has no theorem iff the empty set is an

S–filter of every L–algebra. In this case, each L–algebra A has distinct

S–filters ∅ and A with ΩA∅ = A × A = ΩAA. �
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Even when S has theorems, its Leibniz operator need not be order

preserving , i.e., there may exist S–filters F,G of an L–algebra A with F ⊆

G but ΩAF 6⊆ ΩAG. This leads to the consideration of a second operator:

The Suszko operator of S on A is the function with domain FiS A that

maps each S–filter F of A to the congruence

Ω̃A

SF :=
⋂
{ΩAG : F ⊆ G ∈ FiS A}

of A. Note that Ω̃A

S
F ⊆ ΩAF . The functions Ω̃A

S
, taken over all L–algebras

A, together make up the Suszko operator of S. By [21, Thm. 1.8], Ω̃A

S
is

the ‘largest’ function H from FiS A into ConA such that

(i) for every S–filter F of A, H(F ) is compatible with F , and

(ii) H is order preserving (with respect to set inclusion).

That is to say, a function H : FiS A → ConA has these two properties iff

H(F ) ⊆ Ω̃A

S
F for all F ∈ FiS A. Because Ω̃A

S
is order preserving, we have

Ω̃A

S

⋂
F ⊆

⋂
F∈F

Ω̃A

SF ⊆
⋂

F∈F
ΩAF for all F ⊆ FiS A. (3)

If F is an S–filter of A then

F/Ω̃A

SF ∈ FiS (A/Ω̃A

SF ) and F/ΩAF ∈ FiS (A/ΩAF ), (4)

by Lemma 1(ii), because Ω̃A

S
F and ΩAF are both compatible with F .

For information on the Leibniz and Suszko operators (as well as moti-

vation, applications and history) see [20], [26] and their references. In the

case of the Suszko operator, see [21] also. All unproved statements about

these operators that will be used here are either easy to prove or can be

found in these sources.

Lemma 6. Let F be an S–filter of an L–algebra A and let a, b ∈ A.

(i) 〈a, b〉 ∈ ΩAF iff the following is true: for every unary polynomial

function p of A, we have p(a) ∈ F iff p(b) ∈ F.

(ii) 〈a, b〉 ∈ Ω̃A

S
F iff the following is true: for every unary polynomial

function p of A, the S–filters of A generated by F ∪ {p(a)} and by

F ∪ {p(b)} coincide.
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Lemma 7. For any homomorphism of L–algebras, h : A → B, and

for any S–filter G of B, the following statements are true.

(i) h−1[ΩBG] ⊆ ΩAh−1[G].

(ii) If h is surjective then h−1[ΩBG] = ΩAh−1[G].

The next result augments [13, Prop. 2.17].

Proposition 8. For any L–translation τ , the following conditions are

equivalent.

(i) For all 〈δ, ε〉 ∈ τ and for every unary polynomial function p of Te,

x, p(δ(x)) `S p(ε(x)), and x, p(ε(x)) `S p(δ(x)).

(ii) For any S–filter F of any L–algebra A, we have τ
A[F ] ⊆ Ω̃A

S
F.

(iii) τ (x) ⊆ Ω̃Te

S
FgTe

S {x}.

Note. We assume no relationship between S and τ here.

Proof. The equivalence of (i) and (iii) follows from (1), Lemma 6(ii)

and the fact that for any L–term α, if F = FgTe

S {x} then FgTe

S {x, α} =

FgTe

S (F ∪ {α}). Obviously, (ii)⇒ (iii).

(i)⇒ (ii): Let A and F be as described, and let a ∈ F and 〈δ, ε〉 ∈ τ .

Consider a unary polynomial function p of A, say p(e) = βA(e,~c) for all e ∈

A, where β = β(x, ~y) is an (n + 1)–ary term in Te whose distinct apparent

variables are among x, ~y ∈ V ar, where n ∈ ω, and ~c = c1, . . . , cn ∈ A. Then

the function p′ from Te to Te defined by p′(γ) = β(γ, ~y) (γ ∈ Te) is a unary

polynomial function of Te. By (i),

x, p′(δ(x)) `S p′(ε(x)) and x, p′(ε(x)) `S p′(δ(x)).

Let h be a homomorphism from Te to A such that h(x) = a and h(yi) = ci

for i = 1, . . . , n. It follows from the displayed statement that any S–filter

of A containing h(x) = a will contain h(p′(δ(x))) = p(δA(a)) iff it contains

h(p′(ε(x))) = p(εA(a)). In particular, since a ∈ F , we have

FgA

S (F ∪ {p(δA(a))}) = FgA

S (F ∪ {p(εA(a))}).

By Lemma 6(ii), 〈δA(a), εA(a)〉 ∈ Ω̃A

S
F . �

From Propositions 3 and 8, we deduce:
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Corollary 9. If S has a τ–algebraic semantics then for any S–filter

F of any L–algebra A, we have τ
A[F ] ⊆ Ω̃A

S
F.

We shall say that the Leibniz (or the Suszko) operator of S is globally

injective if it is injective on the S–filters of every L–algebra. The signif-

icance of this condition for the Suszko operator is partly revealed by the

following result of Czelakowski.

Theorem 10. ([21, Thm. 7.8]) The following conditions on S are equiv-

alent.

(i) The Suszko operator of S is globally injective.

(ii) For every S–filter F of any L–algebra A, the least S–filter of A/Ω̃A

S
F

is F/Ω̃A

S
F.

Definition 2. Let A be an L–algebra. We say that the Leibniz operator

of S is completely order reflecting on (the S–filters of) A provided that the

following is true: whenever F ∪ {G} is a set of S–filters of A,

if
⋂

F∈F
ΩAF ⊆ ΩAG then

⋂
F ⊆ G.

If this is true for all L–algebras, we say that the Leibniz operator of S is

globally completely order reflecting . If it is true when A = Te, we say that

the Leibniz operator is completely order reflecting on S–theories.

The condition just defined can be rephrased more economically using

the Suszko operator. It is easy to show, using (3), that the Leibniz operator

of S is completely order reflecting on A iff whenever F and G are S–filters

of A,

if Ω̃A

SF ⊆ ΩAG then F ⊆ G. (5)

When the Leibniz operator of S is completely order reflecting on A,

then ΩA and Ω̃A

S
are both order reflecting functions in the standard sense,

i.e., whenever F and G are S–filters of A with ΩAF ⊆ ΩAG or Ω̃A

S
F ⊆ Ω̃A

S
G

then F ⊆ G (use (5) in the latter case). Of course, every order reflecting

function between ordered sets is injective. So when ΩA is completely order

reflecting then both ΩA and Ω̃A

S
are injective on FiS A. In the case of the

Suszko operator, we establish a global converse of this statement:

Theorem 11. The Suszko operator of S is globally injective iff the

Leibniz operator of S is globally completely order reflecting.
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Proof. Assume that the Suszko operator of S is globally injective.

Let A be an L–algebra and let F and G be S–filters of A with Ω̃A

S
F ⊆

ΩAG. It follows that the rule a/Ω̃A

S
F 7→ a/ΩAG (a ∈ A) describes a well-

defined surjective homomorphism h : A/Ω̃A

S
F → A/ΩAG. It also follows

that Ω̃A

S
F is compatible with G, so we may safely use the abbreviation

G/Ω̃A

S
F for {g/Ω̃A

S
F : g ∈ G}. By (4), G/ΩAG is an S–filter of A/ΩAG.

So, by Lemma 1(i), h−1[G/ΩAG] is an S–filter of A/Ω̃A

S
F and, clearly,

h−1[G/ΩAG] = G/Ω̃A

S
F . By Theorem 10, the least S–filter of A/Ω̃A

S
F is

F/Ω̃A

S
F , so F/Ω̃A

S
F ⊆ G/Ω̃A

S
F . Now let a ∈ F . By the inclusion just

stated, we may choose g ∈ G such that 〈a, g〉 ∈ Ω̃A

S
F . Then a ∈ G, because

Ω̃A

S
F is compatible with G. So F ⊆ G, as required. �

For the main result of this paper (Theorem 28), we shall require one

more technical result about the Suszko operator:

Proposition 12. Let k be the L–substitution sending all variables to

x. Then

k [Ω̃Te

S FgTe

S {x}] = (Te(x) × Te(x)) ∩ Ω̃Te

S FgTe

S {x}.

In particular, k [Ω̃Te

S
FgTe

S {x}] is a congruence of Te(x).

Proof. The expression on the right of the equality is evidently a subset

of the one on the left, because elements of Te(x) are fixed points of k.

Obviously, also, the expression on the left is contained in Te(x)×Te(x), so

if we define F = FgTe

S {x}, it remains only to prove that k [Ω̃Te

S
F ] ⊆ Ω̃Te

S
F .3

To see that this is true, let 〈δ(x), ε(x)〉 = 〈k(α(x, ~y)), k(β(x, ~y))〉, where

〈α(x, ~y), β(x, ~y)〉 ∈ Ω̃Te

S
F , and ~y is a finite sequence of distinct variables

other than x. We must show that 〈δ(x), ε(x)〉 ∈ Ω̃Te

S
F . By Lemma 6(ii),

for every unary polynomial function p of Te,

FgTe

S (F ∪ {p(α(x, ~y))}) = FgTe

S (F ∪ {p(β(x, ~y))}),

i.e., FgTe

S {x, p(α(x, ~y))} = FgTe

S {x, p(β(x, ~y))}.

This means that for every n ∈ ω, every (n + 1)–ary L–term σ and every

n–sequence ~γ = γ1, . . . , γn of (not necessarily distinct) L–terms,

FgTe

S {x, σ(α(x, ~y), ~γ)} = FgTe

S {x, σ(β(x, ~y), ~γ)},

3This actually follows from a more general result, reported in [20, Remark. 1.5.6] and

in [21, Prop. 1.5(8)], but these sources do not give a detailed proof.
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i.e., both of the following are true (see (1)):

x, σ(α(x, ~y), ~γ) `S σ(β(x, ~y), ~γ), and x, σ(β(x, ~y), ~γ) `S σ(α(x, ~y), ~γ).

Consider the substitution that maps all variables in the sequence ~y to x

and that leaves all other variables fixed. We apply this to all rules of the

two forms displayed above. Invoking the structurality of S, we obtain

x, σ(δ(x), ~µ) `S σ(ε(x), ~µ), and x, σ(ε(x), ~µ) `S σ(δ(x), ~µ) (6)

whenever n, σ are as previously described and ~µ is an n–sequence of L–

terms in which the variables of ~y do not occur. We use here the obvious

fact that every term in such a sequence ~µ belongs to the range of the

substitution. (Recall that the domain of a substitution is, by definition, Te

and not V ar.)

Let ~z denote the sequence of all variables in V ar other than x and ~y,

ordered in any way. Since V ar is infinite and ~y is finite, there is a bijection

from the range of ~z onto the union of the ranges of ~y and ~z. Consider the

substitution h that extends both this bijection and the identity function

on the variables x, ~y. Apply h to all possible cases of (6). By structurality,

we conclude that (6) holds for all n, σ as previously described and for all

n–sequences ~µ of L–terms. Again, the point is that every L–term in such

a sequence ~µ is the image under h of an L–term in which the variables ~y

do not occur. But this means that

x, p(δ(x)) `S p(ε(x)), and x, p(ε(x)) `S p(δ(x))

for all unary polynomial functions p of Te. So 〈δ(x), ε(x)〉 ∈ Ω̃Te

S
F , by

Proposition 8. �

6 Matrix Semantics

Although a deductive system need not possess an algebraic semantics, it

always possesses a ‘matrix semantics’, and this can always be chosen to

consist of relatively simple objects called ‘reduced matrices’. We give a

brief account of matrix semantics here. For more thorough expositions see

[51] and [20].

An L–matrix is a pair 〈A, F 〉, where A is an L–algebra and F ⊆ A. If

in addition, F is an S–filter of A, we call 〈A, F 〉 a matrix model of S. A
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class M of L–matrices is called a matrix semantics for S if it satisfies the

condition set out immediately below.

For every set Γ ∪ {α} of L–terms, we have Γ `S α iff the fol-

lowing is true: for every 〈A, F 〉 ∈ M and every homomorphism

h : Te → A, if h[Γ] ⊆ F then h(α) ∈ F .

Clearly, a matrix semantics for S must consist of matrix models of S. When

M is a matrix semantics for S, we may call S the consequence relation of

M.

We may consider an L–matrix 〈A, F 〉 as a structure for the first order

language without equality containing the operation symbols of L and one

unary relation symbol. The unary predicate, which is realised as F , admits

the intuitive interpretation ‘it is true that’ when 〈A, F 〉 is a matrix model of

S, and it is often called the truth predicate. This perspective on sentential

logics originates with Bloom [14] and is fruitful for finitary systems; see

[26, Sec. 3.1, 4.3] and its references. For non-finitary deductive systems, it

is sometimes more convenient to think of the matrix models as models of

infinitary languages, with or without equality, rather than first order ones.

We shall return to this point in Section 9.

Recall that a strict homomorphism between similar structures is re-

quired to preserve all indicated operations and to preserve and reflect all

indicated relations. So a surjective strict homomorphism h : 〈A, F 〉 →

〈h[A], h[F ]〉 between L–matrices is essentially a surjective homomorphism

of algebras h : A → h[A] such that h−1[h[F ]] = F . It is an isomorphism if,

in addition, h is an embedding, i.e., h is injective on the elements of A.

For any S–filter F of an L–algebra A, we may characterize ΩAF as the

largest congruence θ of A for which the canonical surjective homomorphism

of algebras h : A → A/θ defines a surjective strict homomorphism from

〈A, F 〉 to 〈A/θ, h[F ]〉.

A matrix model 〈A, F 〉 of S is called Suszko-reduced if Ω̃A

S
F = idA; it

is called Leibniz-reduced if ΩAF = idA.

It follows that 〈A, F 〉 is Leibniz-reduced iff every surjective strict ho-

momorphism with domain 〈A, F 〉 is an isomorphism. Obviously, every

Leibniz-reduced matrix model of S is Suszko-reduced. The converse is

false. The next proposition is well known and easily verified.
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Lemma 13. The Suszko- [resp. Leibniz-] reduced matrix models of S

are, up to isomorphism, just the L–matrices of the form 〈A/Ω̃A

S
F, F/Ω̃A

S
F 〉

[resp. 〈A/ΩAF, F/ΩAF 〉], where F is an S–filter of A.

By a Suszko- [resp. Leibniz-] reduced formula matrix model of S, we

mean an L-matrix of the form

〈Te/Ω̃Te

S F, F/Ω̃Te

S F 〉 [resp. 〈Te/ΩTeF, F/ΩTeF 〉],

where F is an S–theory. The Suszko-reduced formula matrix models gen-

eralize the ‘Lindenbaum-Tarski matrices’ determined by the theories of fa-

miliar logics: see [26, Sec. 1]. We use each of the expressions listed on the

left below to stand for the class of all objects of the kind listed on its right.

ModSuS Suszko-reduced matrix models of S

Mod∗S Leibniz-reduced matrix models of S

LModSuS Suszko-reduced formula matrix models of S

LMod∗S Leibniz-reduced formula matrix models of S

(The ‘L’ stands for Lindenbaum.) For each of the above classes M, the class

of all algebra reducts A of matrices 〈A, F 〉 ∈ M is denoted, respectively, by

AlgS, Alg∗S, LAlgS, LAlg∗S.

Note that while LMod∗S ⊆ Mod∗S ⊆ ModSuS, the class LMod∗S need not

be contained in the isomorphic closure of LModSuS. This is witnessed by

Example 1 below. The following result is also well known.

Proposition 14. Each of ModSuS, Mod∗S, LModSuS, LMod∗S is a

matrix semantics for S.

Model-theoretic constructions on L–matrices are defined just as for

structures with a single unary relation. Thus, a submatrix of an L–matrix

〈B, G〉 is an L–matrix of the form 〈A, G ∩ A〉, where A is a subalgebra

of B, and the direct product of a family of L–matrices 〈Aα, Fα〉 is defined

as 〈Πα Aα, Πα Fα〉. A submatrix 〈A, F 〉 of this direct product is called a

subdirect product of the same family if A is a subdirect product of the fam-

ily of algebras Aα, i.e., if πβ[A] = Aβ for each of the projection functions

πβ : Πα Aα → Aβ. The definition of ultraproducts is as expected (see, e.g.,

[20, p. 33]).
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The class ModSuS is closed under subdirect products [21, Thm. 5.2].

A Suszko-reduced matrix model 〈A, F 〉 of S is naturally isomorphic to a

subdirect product of Leibniz-reduced matrix models 〈A/ΩAJ, J/ΩAJ〉 of

S, indexed by the S–filters J of A containing F ; this is essentially [25,

Thm. 2.23]. Consequently:

Proposition 15. ([21], [25])

(i) ModSuS is exactly the closure of Mod∗S under subdirect products and

isomorphisms.

(ii) LModSuS is contained in the closure of LMod∗S under subdirect prod-

ucts and isomorphisms.

(iii) AlgS = IPS(Alg∗S) and LAlgS ⊆ IPS(LAlg∗S).

Using Lemma 2, we deduce:

Corollary 16. Alg∗S is a τ–algebraic semantics for S iff AlgS is.

Recall that a class of structures for a fixed language is called elementary

if it is axiomatized by a set of first order sentences. In general, Mod∗S need

not be an elementary class, even when S is finitary: see for instance [20,

p. 50]. Rautenberg [41] has shown that for finitary systems S, the class

Mod∗S is elementary iff it is closed under ultraproducts, and that this is

true iff the Leibniz operator of S is finitizable. This last demand means that

there is some finite set of L–terms Σ such that for any L–algebra A, the

characterization of ΩA on FiS A, given in Lemma 6(i), remains true even

when we restrict the unary polynomials to those of the form p(x) = σA(x,~c),

σ ∈ Σ, ~c ∈ A.

7 Definability of Truth

Definition 3. Let M be a class of L–matrices.

(i) The assertion ‘truth is implicitly definable in M’ shall mean that the

matrices in M are uniquely determined by their algebra reducts, i.e.,

whenever 〈A, F 〉, 〈A, G〉 ∈ M then F = G.
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(ii) The assertion ‘truth is equationally definable in M’ shall mean that

there exists an L–translation τ such that for every 〈A, F 〉 ∈ M and

every a ∈ A, we have

a ∈ F iff [ δA(a) = εA(a) for all 〈δ, ε〉 ∈ τ ].

In this case, we say that τ defines truth in M.

Here ‘truth’ really abbreviates ‘the truth predicate of M’. Obviously,

over any class M of L–matrices, the equational definability of truth entails

its implicit definability. We aim to investigate the definability of truth in the

various naturally occurring matrix semantics for deductive systems, such

as Mod∗S and ModSuS. Lemma 13 and an easy compatibility argument

yield:

Proposition 17.Truth is implicitly definable in ModSuS [resp. in Mod∗S]

iff the Suszko [resp. Leibniz ] operator of S is globally injective.

Thus, global injectivity of the Suszko operator implies global injectivity

of the Leibniz operator , because Mod∗S ⊆ ModSuS.

Beth’s Definability Theorem (see [18, Thm. 2.2.22]) shows that over

an elementary class M of L–matrices, the implicit definability of the truth

predicate entails its explicit first order definability. That is, it entails the

existence of a formula Φ with just one free variable, belonging to the first

order language with equality determined by L (which excludes the truth

predicate), such that for all 〈A, F 〉 ∈ M and all a ∈ A, we have a ∈ F iff

Φ[a] is true in A. As we have mentioned, however, Mod∗S—and similarly

ModSuS—need not be an elementary class.

Proposition 18.

(i) A translation defines truth in Mod∗S iff it defines truth in ModSuS.

(ii) If truth is equationally definable in LMod∗S then it is equationally

definable, by the same translation, in LModSuS.

Proof. In (i), sufficiency is obvious, because Mod∗S ⊆ ModSuS. Ne-

cessity in (i) and in (ii) follows because Suszko-reduced matrix (or formula

matrix) models are subdirect products of Leibniz-reduced ones, by Propo-

sition 15. The point is that subdirect products preserve infinitary special

Horn sentences, such as

(∀x) [Px ⇐⇒
∧

〈δ, ε〉 ∈ τ
δ(x) ≈ ε(x) ]
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(where P is any unary predicate symbol). �

The converse of Proposition 18(ii) is false, as Example 1 will witness.

(This confirms that we can sometimes have LMod∗S 6⊆ I(LModSuS).) Each

of the conditions in Proposition 18(ii) has a syntactic characterization which

makes no direct reference to any semantics. This is the content of the next

result, which follows from (1), Lemma 6 and easy compatibility arguments.

Proposition 19. Let τ = {〈δi, εi〉 : i ∈ I} be any L–translation.

(i) τ defines truth in LModSuS iff the underivable rules Γ 6`S α of S

are precisely those where S can ‘refute’ at least one of the equations

δi(α) ≈ εi(α) on the basis of Γ, in the sense that there is a unary

polynomial function p of Te for which Γ, p(δi(α)) 6`S p(εi(α)) or

Γ, p(εi(α)) 6`S p(δi(α)).

(ii) τ defines truth in LMod∗S iff the underivable rules Γ 6`S α of S are

just those where S can ‘strongly refute’ at least one of the equations

δi(α) ≈ εi(α) on the basis of Γ, in the sense that there is a unary

polynomial function p of Te for which exactly one of Γ `S p(δi(α))

and Γ `S p(εi(α)) holds.

The connection between algebraic semantics and the equational defin-

ability of truth is described in the next result, taken essentially from [9].

Proposition 20. A class of algebras is an algebraic semantics for S

iff it is the class of all algebra reducts of some matrix semantics for S in

which truth is equationally definable.

Any translation that witnesses one of these equivalent conditions wit-

nesses the other also.

Proof. Let K be a τ–algebraic semantics for S. For each L–algebra A,

define

EqA
τ = {a ∈ A : δA(a) = εA(a) for all 〈δ, ε〉 ∈ τ}.

Then {〈A, EqA
τ 〉 : A ∈ K} is clearly a matrix semantics for S in which

truth is equationally definable (by τ ). Conversely, if τ defines truth in a

matrix semantics M for S, it follows from the definitions that

{A : 〈A, F 〉 ∈ M for some F}

is a τ–algebraic semantics for S. �
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Corollary 21. If some translation τ defines truth in any one of

LModSuS, LMod∗S, Mod∗S

then S has a τ–algebraic semantics. Indeed, the corresponding one of

LAlgS, LAlg∗S, Alg∗S (equivalently AlgS)

is then a τ–algebraic semantics for S.

With regard to converses, the following should be noted. It may happen

that Alg∗S (say) is a τ–algebraic semantics for S, forcing τ to define truth

in the matrix semantics {〈A, EqA
τ 〉 : A ∈ Alg∗S}, but this class need not

coincide with Mod∗S. The situation is illustrated by the next example,

which shows that, in general:

(i) When truth is equationally definable in LModSuS, it need not follow

that truth is equationally—or even implicitly—definable in LMod∗S.

(Contrast this with Proposition 18.)

(ii) When Alg∗S is a τ–algebraic semantics for S, it need not follow that

τ defines truth in Mod∗S, nor even that truth is implicitly definable

in Mod∗S. (Contrast this with Corollary 21.)

(iii) The injectivity of the Suszko operator on just the theories of a deduc-

tive system does not force the existence of any theorems. (Contrast

this with Lemma 5.)

Example 1. Let L denote the algebraic language with one unary op-

eration symbol � and no other operation symbols. Here and in the sequel,

we use the abbreviations �0x = x and �n+1x = �(�nx) for n ∈ ω.

Let S be the finitary L–deductive system axiomatized by the single rule

x ` �x. Let τ be the translation x ≈ �x.

For every L–algebra A, the S–filters of A are evidently just the subsets

of A that are closed under the term function �A (including the empty set).

Because S has no theorem, ΩTe is not injective on S–theories (Lemma 5).

So truth fails to be implicitly definable in LMod∗S—and therefore also in

all larger semantics, such as Mod∗S and ModSuS. In particular, the Suszko

operator of S is not globally injective (see Proposition 17).
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Certainly, then, truth is not equationally definable in any of the three

semantics just mentioned. We shall show, however, that in LModSuS, truth

is equationally definable (by τ ) and therefore implicitly definable.

Consider an L–algebra A. For any n ∈ ω, we shall use �n to abbreviate

the term function of A defined by the L–term �nx. Because � is the sole

connective of L, it follows from Lemma 6(i) that for any S–filter G of A,

ΩAG = {〈a, b〉 ∈ A × A : (∀n ∈ ω) (�na ∈ G iff �nb ∈ G)} (7)

and consequently, for all a ∈ A,

〈a,�a〉 ∈ ΩAG iff (∀n ∈ ω) (�n+1a ∈ G implies �na ∈ G). (8)

Now the variety V of all L–algebras is a τ–algebraic semantics for S:

soundness is obvious and completeness is proved in [13, p. 170]. Because

a τ–algebraic semantics for S exists, it follows from Corollary 9 that for

every S–filter F of A, we have τ
A[F ] ⊆ Ω̃A

S
F , i.e., 〈a,�a〉 ∈ Ω̃A

S
F for all

a ∈ F .

Let F be an S–theory and α an L–term. Suppose α /∈ F ; we shall argue

that 〈α,�α〉 /∈ Ω̃Te

S
F . We define

G := F ∪ {�nα : 0 < n ∈ ω}.

Since G is clearly closed under �, it is an S–theory. Note that α /∈ G, but

�α ∈ G so, by (8), 〈α,�α〉 /∈ ΩTeG. It follows that

〈α,�α〉 /∈
⋂

{ΩTeM : F ⊆ M ∈ FiS Te} = Ω̃Te

S F.

We have shown that for any α ∈ Te, we have α ∈ F iff 〈α,�α〉 ∈ Ω̃Te

S
F .

Now we apply Lemma 13, remembering that Ω̃Te

S
F is always compatible

with F . We conclude: for all 〈B, G〉 ∈ LModSuS and all b ∈ B, we have

b ∈ G iff b = �Bb. Thus, τ defines truth in LModSuS. In particular,

the Suszko operator of S, although not globally injective, is injective on

S–theories.

Because τ defines truth in LModSuS, it follows from Corollary 21 that

LAlgS is another τ–algebraic semantics for S. In fact this is true of

all the classes of algebras mentioned in Corollary 21, despite the nega-

tive observations above. It is enough to verify this for LAlg∗S, because

LAlg∗S ⊆ Alg∗S ⊆ AlgS ⊆ V. And on the same grounds, for LAlg∗S, we
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need only verify completeness. We modify [13, p. 170]. Suppose Γ 6`S �nv,

where v ∈ V ar and n ∈ ω. Then Γ cannot contain a term of the form

�mv where 0 ≤ m ≤ n, otherwise repeated use of the rule x ` �x would

yield a contradiction. The set F : = �n+1[Te] is clearly an S–theory. Let

B = Te/ΩTeF . Using (7), we see that

〈B, F/ΩTeF 〉 = 〈〈{V ar, �[V ar], . . . , �n[V ar], F};�B〉, {F}〉.

Let h : Te → B be the homomorphism such that h(v) = V ar and h(w) = F

whenever v 6= w ∈ V ar. Then h(γ) = F = �Bh(γ) for all γ ∈ Γ but

h(�nv) = �n[V ar] 6= F = �Bh(�nv). Since B ∈ LAlg∗S, this completes

the argument.

8 Testing for Equational Definability

By Example 1, the Suszko-reduced formula matrix models of S are not a

reliable guide to whether truth is equationally definable in the full semantics

ModSuS or, equivalently, in Mod∗S. In contrast, we shall show here that

the Leibniz -reduced formula matrix models are a reliable guide.

Definition 4. For each L–algebra A, we define

A–Mod∗S := {〈A/ΩAF, F/ΩAF 〉 : F ∈ FiS A}.

Thus, LMod∗S = Te–Mod∗S and Mod∗S is the isomorphic closure of

the union of all A–Mod∗S, where A ranges over all L–algebras. Because

ΩAF is always compatible with F , we have:

Proposition 22. A translation τ defines truth in A–Mod∗S iff

(∗)A (∀F ∈ FiS A) (∀a ∈ A) [ a ∈ F iff τ
A(a) ⊆ ΩAF ].

Consequently, τ defines truth in Mod∗S iff (∗)A holds for all L–algebras

A.

Sometimes, a deductive system S is defined in terms of an ISP–class K of

algebras, which then serves as an algebraic semantics for S (see Section 12).

In this case, it is convenient to have a test involving only the algebras in

K which can establish whether a translation τ defines truth in Mod∗S. We

shall show that it is sufficient for τ to define truth in
⋃

A∈K
A–Mod∗S,

provided that K is a τ–algebraic semantics for S. We require two lemmas.
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Lemma 23. Let h : A → B be a surjective homomorphism of L–

algebras. If a translation τ defines truth in A–Mod∗S then τ defines truth

in B–Mod∗S. The converse holds if kerh is compatible with all S–filters

of A.

Proof. Assume (∗)A. Let G be an S–filter of B, so h−1[G] is an S–filter

of A, by Lemma 1(i). Since h is surjective to B, every element of B has

the form h(a) for some a ∈ A. Now for each a ∈ A, we have h(a) ∈ G

iff a ∈ h−1[G] iff τ
A(a) ⊆ ΩAh−1[G] (by (∗)A) iff τ

A(a) ⊆ h−1[ΩBG] (by

Lemma 7(ii)) iff h[τ A(a)] ⊆ ΩBG iff τ
B(h(a)) ⊆ ΩBG. This shows that

(∗)B holds.

Conversely, suppose ker h is compatible with all S–filters of A and that

(∗)B holds. Let F be an S–filter of A. Since ker h is compatible with F ,

the set h[F ] is an S–filter of B (Lemma 1(ii)) and F = h−1[h[F ]]. Conse-

quently, for any a ∈ A, we have τ
A(a) ⊆ ΩAF = ΩAh−1[h[F ]] iff τ

A(a) ⊆

h−1[ΩBh[F ]] (by Lemma 7(ii)) iff h[τ A(a)] ⊆ ΩBh[F ] iff τ
B(h(a)) ⊆ ΩBh[F ]

iff h(a) ∈ h[F ] (by (∗)B) iff a ∈ h−1[h[F ]] = F . This proves (∗)A. �

Lemma 24. Let A be an L–algebra and τ a translation. Suppose τ

defines truth in B–Mod∗S for every finitely generated subalgebra B of A.

Then τ defines truth in A–Mod∗S.

Proof. Let F ∈ FiS A, and a ∈ A with τ
A(a) ⊆ ΩAF . Let B be the

subalgebra of A generated by a, so δA(a), εA(a) ∈ B for all 〈δ, ε〉 ∈ τ . By

assumption, (∗)B holds. Let G = F ∩ B and note that G is an S–filter of

B. Also, the congruence (B × B) ∩ ΩAF of B is clearly compatible with

G, so it is contained in ΩBG. Since τ
A(a) ⊆ (B × B) ∩ ΩAF , it follows

that τ
B(a) ⊆ ΩBG. Then, by (∗)B, a ∈ G, whence a ∈ F .

Conversely, suppose a ∈ F and let 〈δ, ε〉 ∈ τ . We need to show that

〈δA(a), εA(a)〉 ∈ ΩAF . We shall use the criterion of Lemma 6(i). Let p be

a unary polynomial function of A, so there exist n ∈ ω, an (n + 1)–ary

L–term α ∈ Te and a sequence ~c of n (not necessarily distinct) elements of

A such that p(e) = αA(e,~c) for all e ∈ A. Suppose that p(δA(a)) ∈ F . It is

enough (by symmetry) to show that p(εA(a)) ∈ F .

Let B be the subalgebra of A generated by a together with the range of

~c. Then δA(a), εA(a), p(δA(a)), p(εA(a)) ∈ B. Also G := F ∩ B is an S–

filter of B with a ∈ G and p(δB(a)) = p(δA(a)) ∈ G. Since, by assumption,

(∗)B holds, τ
B(a) ⊆ ΩBG. In particular, 〈δB(a), εB(a)〉 ∈ ΩBG. Now the
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restriction of p to B is a unary polynomial function of B, by definition of B.

So from p(δB(a)) ∈ G we may infer that p(εA(a)) = p(εB(a)) ∈ G. Thus,

p(εA(a)) ∈ F . �

Theorem 25. Let τ be an L–translation. Then the following condi-

tions on S are equivalent:

(i) τ defines truth in Mod∗S.

(ii) τ defines truth in LMod∗S.

(iii) S has a τ–algebraic semantics and for any ISP–class K that is a

τ–algebraic semantics for S, τ defines truth in
⋃

A∈K
A–Mod∗S.

Note. In (iii), the phrase ‘for any’ could be replaced by ‘for some’, without

affecting the equivalence of the three conditions.

Proof. (i)⇒ (ii) is trivial, as LMod∗S ⊆ Mod∗S.

(ii)⇒ (iii): By (ii) and Corollary 21, S has a τ–algebraic semantics.

So, by Lemma 2, there is an ISP–class (in fact a UISP–class) that is a

τ–algebraic semantics for S. Let K be any ISP–class with this property.

Let A ∈ K. Since our set of variables, V ar, is infinite and Te is K–free over

V ar, every countably generated algebra in K is a homomorphic image of

Te. Consequently, by (ii) and Lemma 23, τ defines truth in B–Mod∗S for

every countably generated algebra B ∈ K—in particular, for every finitely

generated subalgebra B of A. Using Lemma 24, we may infer that τ defines

truth in A–Mod∗S. Since A was an arbitrary member of K, this establishes

(iii).

(iii)⇒ (i): Let K be an ISP–class that is a τ–algebraic semantics for

S, and assume that τ defines truth in B–Mod∗S for all B ∈ K. Let A

be any L–algebra. Let X be the absolutely free L–algebra generated by

the elements of A. Then there is a surjective homomorphism h : X → A.

By the first assertion of Lemma 23, it is enough to show that τ defines

truth in X–Mod∗S. Since B : = X/ΘX

K
∅ ∈ K, we know that τ defines

truth in B–Mod∗S. Now, by Proposition 4, ΘX

K ∅ is compatible with all

S–filters of X. Thus, by the second assertion of Lemma 23, τ defines truth

in X–Mod∗S.

The proof given here justifies the above Note as well. �

It follows that the demand ‘τ defines truth in Mod∗S’ is also character-

ized by the syntactic condition in Proposition 19(ii). The same applies to
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‘τ defines truth in ModSuS’, by Proposition 18(i). Combining Theorem 25

with Corollaries 21 and 16, we get:

Corollary 26. If an L–translation τ defines truth in LMod∗S then

each of LAlg∗S, Alg∗S and AlgS is a τ–algebraic semantics for S.

9 Truth-Equational Systems

Definition 5. A deductive system S will be called truth-equational if

truth is equationally definable in its class of Leibniz-reduced formula matrix

models, LMod∗S. Any translation that defines truth in LMod∗S is said to

witness the truth-equationality of S.

Note that when S is truth-equational then truth is also equationally

definable (by the same translation) in the much larger matrix semantics

ModSuS, and therefore in Mod∗S and in LModSuS. This follows from Theo-

rem 25 and Proposition 18(i) and it serves to justify the definition. Recall,

in contrast, that the equational definability of truth in LModSuS does not

imply its equational (or even implicit) definability in any of the other ma-

trix semantics mentioned, by Example 1. We shall take no further interest

in LModSuS.

Truth-equationality has received attention in the literature, partly be-

cause it defines the difference between ‘equivalential’ and ‘algebraizable’

logics. Study of the condition has been confined almost entirely to systems

that are ‘protoalgebraic’, a restriction that we do not impose here. (The

adjectives in quotation marks will be defined in Section 11.)

Theorem 27. If the Leibniz operator is completely order reflecting on

the theories of S (see Definition 2) then S is truth-equational.

Proof. Let ΩTe be completely order reflecting on FiS Te. Let k be the

L–substitution such that k(y) = x for all variables y ∈ V ar. Define

τ = τ (x) := k [Ω̃Te

S FgTe

S {x}].

This makes τ an L–translation and we shall show that it defines truth

in LMod∗S. By Proposition 22, it is enough to prove the condition (∗)Te

for this τ . By Proposition 12, τ (x) ⊆ Ω̃Te

S
FgTe

S {x}. By Proposition 8,

therefore, we have τ [F ] ⊆ Ω̃Te

S
F ⊆ ΩTeF , whenever F is an S–theory.
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Conversely, let G be an S–theory and suppose that τ (γ) ⊆ ΩTeG. We

must show that γ ∈ G. Let h be an L–substitution such that h(x) = γ, so

h[τ (x)] = τ (h(x)) = τ (γ) ⊆ ΩTeG.

We therefore have k [Ω̃Te

S
FgTe

S {x}] = τ (x) ⊆ h−1[ΩTeG], i.e.,

Ω̃Te

S FgTe

S {x} ⊆ k−1h−1[ΩTeG] = (hk)−1[ΩTeG] ⊆ ΩTe(hk)−1[G],

by Lemma 7(i). Since ΩTe is completely order reflecting on S–theories,

it follows that FgTe

S {x} ⊆ (hk)−1[G] (see (5)) and, in particular, x ∈

(hk)−1[G], i.e., γ = h(x) = hk(x) ∈ G, as required. �

Putting together Theorems 11 and 27, we obtain some characterizations

of truth-equational deductive systems that do not mention translations and

that are in the spirit of the ‘Leibniz hierarchy’ (see [26]). The situation is

summarized below in what may be considered the main theorem of this

paper. Recall that S continues to denote an arbitrary deductive system

over L.

Theorem 28. The following conditions on S are equivalent.

(i) S is truth-equational.

(ii) Truth is equationally definable in ModSuS.

(iii) The Suszko operator of S is globally injective.

(iv) The Leibniz operator of S is globally completely order reflecting.

(v) The Leibniz operator is completely order reflecting on S–theories.

(vi) For every S–filter F of any L–algebra A, the least S–filter of A/Ω̃A

S
F

is F/Ω̃A

S
F.

In this case S has a globally injective Leibniz operator, an algebraic seman-

tics, and some theorems.

Proof. Note first that the equivalence of (iii) and (vi) is Czelakowski’s

result, Theorem 10. The implication (i)⇒ (ii) was noted after Definition 5.

(ii)⇒ (iii) follows from Proposition 17, while (iii)⇒ (iv) is just Theorem 11

and (iv)⇒ (v) is trivial. (v)⇒ (i) is Theorem 27. The last assertion is
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justified by the remark after Proposition 17, together with Corollary 21

and Lemma 5. �

Bearing Proposition 17 in mind, we see that (iii)⇒ (ii) says:

Corollary 29. When truth is implicitly definable in the class of all

Suszko-reduced matrix models of a deductive system, it is equationally de-

finable in the same class, i.e., it is explicitly definable by a (possibly infinite)

conjunction of equations.

This result is essentially a consequence of the structurality of deductive

systems. Recall that even when ModSuS is an elementary class and (iii)

holds, the Beth Definability Theorem predicts only the explicit first order

definability of the truth predicate, not its equational definability. Previ-

ously, Corollary 29 was known only for protoalgebraic deductive systems;

references will be given in Section 11.

The last statement of Theorem 28 prompts the question: are the truth-

equational deductive systems characterized by the global injectivity of their

Leibniz operators—possibly in conjunction with their possession of an al-

gebraic semantics? This in turn prompts the question: must a deductive

system with a globally injective Leibniz operator possess an algebraic se-

mantics? The next two examples answer both of these questions in the

negative.

Example 2 shows that global injectivity of the Leibniz operator does not

entail truth-equationality , i.e., it does not entail global injectivity of the

Suszko operator. Thus, the analogue of Corollary 29 for Leibniz -reduced

matrix models is false. Moreover, the counter-example is a finitary sys-

tem that has an elementary class of Leibniz-reduced matrix models and an

algebraic semantics with respect to a finite translation.

Example 2. Let L be a language with a constant symbol >, two (dis-

tinct) unary connectives �,♦ and no other connective. Let S be the finitary

deductive system over L axiomatized by the (axioms and) rules

(S1) ` > (S4) ` ♦♦x

(S2) ` ��x (S5) �x ` ♦x

(S3) �> ` x (S6) ♦x ` �x.
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It is not difficult to show that S is strongly finite in the sense of Wójcicki

[51]: it is the consequence relation of a single three-element matrix, viz.,

〈〈{⊥, 0,>}; �,♦,>〉, {⊥,>}〉, (9)

where �⊥ = ⊥ = �0 and �> = 0, and ♦ coincides with �. But we shall

not rely on this fact in what follows.

The reader will wonder why the connective ♦ was included in the sig-

nature, as ♦α is interderivable with �α, and ♦ has no feature that � lacks.

The reason is that, as we shall show, the presence of ♦ forces S to possess

an algebraic semantics, whereas the ♦–free fragment of S has no algebraic

semantics.

We shall say that an L–term is deep if it has the form α(β(γ)) where

α, β ∈ {�,♦} and γ is any L–term. Let Dp be the set of all deep L–terms.

From `S ��x and (S5), we get `S ♦�x. Similarly, `S ♦♦x and (S6)

give `S �♦x. Applying structurality, we see that every deep L–term is a

theorem of S. Evidently, Dp ∪ {>} is an S–theory, so the only theorem of

S that is not deep is >. In particular, x, �x and �> are not S–theorems.

Let A be an L–algebra. We shall abuse notation by writing α for the

term function αA of A induced by an L–term α. For each a ∈ A, every

S–filter of A contains both or neither of �a,♦a, by (S5) and (S6). By (S3),

the proper S–filters of A all exclude �> and ♦> but contain {>}∪Dp[A],

where Dp[A] := {σ(a) : σ ∈ Dp and a ∈ A}.

Let F be an S–filter of A. By Lemma 6(i) and the above observations,

ΩAF = {〈a, b〉 ∈ A×A : (a ∈ F iff b ∈ F ) and (�a ∈ F iff �b ∈ F )}. (10)

This shows that the class of all Leibniz-reduced matrix models of S is

elementary (see the remarks preceding Section 7).

Let a ∈ F . If �a ∈ F then, by (10), 〈a,�2a〉 ∈ ΩAF . If �a /∈ F then

F 6= A, whence �> /∈ F , so again by (10), 〈a,>〉 ∈ ΩAF . Conversely, if

〈a,�2a〉 ∈ ΩAF or 〈a,>〉 ∈ ΩAF then, since �2a,> ∈ F , we have a ∈ F ,

by compatibility. We have shown that for any a ∈ A,

a ∈ F iff [ 〈a,�2a〉 ∈ ΩAF or 〈a,>〉 ∈ ΩAF ]. (11)

It follows immediately that ΩA is injective on the S–filters of A, so the

Leibniz operator of S is globally injective, i.e., truth is implicitly definable

in Mod∗S.
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Notice that (11) could be rephrased as asserting that the truth predicate

P of Mod∗S is explicitly first order definable by the sentence

(∀x) [Px ⇐⇒ (x ≈ �2x or x ≈ >) ], (12)

in view of Lemma 13 and the definition of factor algebras.

To disprove truth-equationality, we use the subalgebra B = Te(x) of

Te, so

B = {>, �>, ♦>, x, �x, ♦x} ∪ Dp[B].

Consider the chain F ⊆ G ⊆ H of proper S–filters of B, where

F = {>} ∪ Dp[B] ; G = {>, x} ∪ Dp[B] ; H = {>, x,�x,♦x} ∪ Dp[B].

We claim that the congruence θ := ΩBG ∩ ΩBH is compatible with F .

To see this, suppose 〈α, β〉 ∈ θ and α ∈ F , hence α ∈ G. Then β ∈ G,

because 〈α, β〉 ∈ ΩBG. We need to show that β ∈ F . Suppose β /∈ F .

Then β = x. Now 〈α, x〉 ∈ ΩBH, whence 〈�α,�x〉 ∈ ΩBH, and �x ∈ H

but �> /∈ H, so α 6= >. Since α ∈ F − {>}, it follows that �α ∈ G, but

�x /∈ G. This contradicts the fact that 〈α, x〉 ∈ ΩBG. We conclude that

β ∈ F , vindicating the above claim. Consequently, ΩBG ∩ ΩBH ⊆ ΩBF ,

but G ∩ H = G 6⊆ F .

This shows that the Leibniz operator of S is not completely order re-

flecting on the S–filters of B so, by Theorem 28, S is not truth-equational.

In other words, the positive formula on the right of the biconditional in

(12) cannot be replaced by any conjunction of unary equations in x.

We still need to justify the claim that S has an algebraic semantics. To

do this we invoke the following result of Blok and Rebagliato.

Theorem 30. ([13, Thm. 3.1]) Let M be a matrix semantics for a

finitary deductive system S over L. Suppose that L contains an n–ary

connective δ, where 1 ≤ n < ω, and a unary term ε(x) whose main symbol

(if any) is different from δ. If for every 〈A, F 〉 ∈ M and every a ∈ F, we

have

δA(a, . . . , a) = εA(a)

then S has a τ–algebraic semantics, where τ is δ(x, . . . , x) ≈ ε(x).

Returning to our example, we recall that Mod∗S is a matrix semantics

for S, by Proposition 14. Note that for any S–filter F of an L–algebra
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A and any a ∈ A, we have 〈♦Aa,�Aa〉 ∈ ΩAF , by (10), (S5) and (S6).

Thus, the algebra A/ΩAF satisfies ♦x ≈ �x. Then by Lemma 13, Alg∗S

satisfies ♦x ≈ �x. Also, ♦ and � are distinct unary connectives of S, so

Theorem 30 shows that S has an algebraic semantics with respect to the

translation ♦x ≈ �x.4

We shall now show that a deductive system with a globally injective

Leibniz operator need not have an algebraic semantics (even if it is finitary,

with an elementary class of Leibniz-reduced matrix models).

Example 3. Let S ′ be the finitary deductive system got from the sys-

tem S of Example 2 by deleting ♦ from the signature and (S4)–(S6) from

the axiomatization. It is quite easy to show that S ′ is the consequence

relation of the ♦–free reduct of the matrix displayed in (9), but again we

shall not rely on this knowledge. Let L
′ be the language of S ′. Following

Example 2 but ignoring ♦, we can establish the condition (10) and deduce

that S ′ has a globally injective Leibniz operator. We claim that S ′ has no

algebraic semantics.

Suppose, on the contrary, that K is a τ–algebraic semantics for S ′,

where τ = {〈δi, εi〉 : i ∈ I} is an L
′–translation. There are only four kinds

of value that each 〈δi(x), εi(x)〉 may have, viz.

(i) 〈δi(x), εi(x)〉 = 〈�ni>, �mi>〉

(ii) 〈δi(x), εi(x)〉 = 〈�nix,�mix〉

(iii) 〈δi(x), εi(x)〉 = 〈�nix,�mi>〉

(iv) 〈δi(x), εi(x)〉 = 〈�ni>,�mix〉,

for suitable integers ni,mi ∈ ω in each case.

We claim that K satisfies δi(�>) ≈ εi(�>) for all i ∈ I. Then, because

K is a τ–algebraic semantics for S ′, it will follow that `S′ �>, a contra-

diction. Thus we will conclude that S ′ has no algebraic semantics. So it

remains only to verify the above claim.

Since `S′ > and `S′ �2x and K is a τ–algebraic semantics for S ′, we

4If we apply the proof in [13] of Theorem 30 directly to the singleton matrix semantics

for S displayed in (9), we get a singleton {〈♦x, �x〉}–algebraic semantics {A} for S, where

A is a four-element algebra.
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have

|= K δi(>) ≈ εi(>) and (13)

|= K δi(�
2x) ≈ εi(�

2x) (14)

for all i ∈ I.

Let i ∈ I. In Case (i) above, (13) says that K satisfies �ni> ≈ �mi>,

which is precisely the same equation as δi(�>) ≈ εi(�>).

In Case (ii), (13) says that K satisfies �ni> ≈ �mi>. Therefore K

satisfies

�ni(�>) ≈ �(�ni>) ≈ �(�mi>) ≈ �mi(�>),

i.e., K satisfies δi(�>) ≈ εi(�>).

In Case (iii), (13) and (14) say that K satisfies

�ni> ≈ �mi> (15)

�ni+2x ≈ �mi>. (16)

Using (15) and (16), we see that K satisfies

�ni(�>) ≈ �(�ni>) ≈ �(�mi>) ≈ �(�ni+2x) ≈ �ni+2(�x) ≈ �mi>,

the last equality being a substitution instance of (16). In other words, K

satisfies δi(�>) ≈ εi(�>). The same conclusion follows in Case (iv), by a

symmetric argument, and this completes the proof.

In view of Example 2, it is natural to ask: when the Leibniz operator

of S is globally injective, but Mod∗S is not necessarily elementary, is truth

explicitly definable in some ‘weaker-than-equational’ sense in Mod∗S?

To answer this, let us define κ = κ(L) = max {|L|, |V ar|}. In general,

Mod∗S is merely an ‘L(2κ)+ |V ar|+ class’ in the sense of infinitary model

theory. That is, it is the class of all models of a ‘sentence’ of the infinitary

language L(2κ)+ |V ar|+(L∪ {P}), where P is the unary truth predicate. The

sentences of this language are defined recursively like those of the first

order language with equality induced by L∪{P}, except that conjunctions

of up to 2κ formulas and quantification over up to |V ar| variables may

occur.5 No reasonable analogue of Beth’s Definability Theorem holds for

5It is understood that the infinitary language has (2κ)+ + |V ar|+ variables of its own.
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L(2κ)+ |V ar|+ classes, even if we assume that V ar is denumerable (see [23,

Counterex. 2.4.5]).

Now let us define λ = λ(L) = max{|L|, ω}. When S is finitary, |V ar|

may as well be assumed denumerable; then Mod∗S becomes an Lλ+ ω class.

The proof makes use of Proposition 14 and Lemma 6(i). In this case,

by Malitz’ extension of Beth’s Theorem ([34] or [23, pp. 132–3, 149]), if

the truth predicate of Mod∗S is implicitly definable then it is explicitly

definable by some L(2λ)+ λ+ formula Φ in one free variable. Note that a

conjunction of unary L–equations in x is logically equivalent to an Lλ+ ω

formula (because λ = |Te |).

When S is finitary, if |L| and |V ar| are countable then a variant of

Beth’s Theorem due to López-Escobar ([32] or [30, Thm. 5, p. 21]) gives a

better conclusion than Malitz’ Theorem. In this case, if truth is implicitly

definable in Mod∗S then it is explicitly defined by an Lω1ω formula, i.e., by

a formula Φ in one free variable that may involve denumerable conjunctions

but in which only finite quantification occurs. Herrmann [29] has drawn

attention to this fact. The point of Example 2 is that, even under these

favourable conditions, Φ need not amount to a conjunction of equations.

The following corollary of Theorem 28 indicates how we should streng-

then the demand that a system have an algebraic semantics and an injective

Leibniz operator, in order to ensure that the system be truth-equational.

Corollary 31. The following conditions on S are equivalent :

(i) S is truth-equational.

(ii) S has an algebraic semantics K such that on every L–algebra A, the

Leibniz operator of S defines a function from FiS A into ConUISP(K) A,

and this function has a left inverse that commutes with arbitrary

meets.

(iii) Some homomorphism from the complete meet semilattice reduct of

ConUISP(LAlg∗S) Te to that of FiS Te serves as a left inverse for the

Leibniz operator on S–theories.

Proof. (i)⇒ (ii): Set K = Alg∗S and let τ witness the truth-equationa-

lity of S. For each L–algebra A and each θ ∈ Con UISP(K) A, define Λθ =

{a ∈ A : τ
A(a) ⊆ θ}. By Corollary 21, K is a τ–algebraic semantics for

S, and from this it follows easily that Λθ is an S–filter of A. Obviously
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Λ commutes with arbitrary intersections of UISP(K)–congruences. Note

that for any S–filter F of A, the congruence ΩAF is a K–congruence, by

Lemma 13, and therefore a UISP(K)–congruence. Finally, Λ is a left inverse

for ΩA, because τ defines truth in Mod∗S.

(ii)⇒ (iii): By (ii) and Lemma 13, LAlg∗S ⊆ UISP(K). Then setting

A = Te in (ii), we get (iii).

(iii)⇒ (i): Let Λ denote a homomorphism as described in (iii). We

show that ΩTe is completely order reflecting. Suppose
⋂

ΩTe[F ] ⊆ ΩTeG,

where F ∪ {G} ⊆ FiS Te. Recall that whenever K is a class of L–algebras

that is closed under subdirect products, then the K–congruences of any

L–algebra are closed under arbitrary intersections. In particular,
⋂

ΩTe[F ]

is a UISP(LAlg∗S)–congruence of Te. Now

⋂
F =

⋂
ΛΩTe[F ] = Λ

⋂
ΩTe[F ] ⊆ ΛΩTeG = G,

as required. By Theorem 28, therefore, S is truth-equational. �

The following problem is open. (Partial solutions are discussed in Sec-

tions 11 and 14 below.)

Problem 1. If the Leibniz operator of S is injective on the theories of S,

must it be globally injective?

Equivalently, if truth is implicitly definable in LMod∗S, must it be im-

plicitly definable in Mod∗S?

10 Finite Translations

It seems at present that in all interesting applications of the theory of

algebraic semantics, the translations used are finite, or can be chosen fi-

nite. In fact they are almost always singletons. This is rather at odds

with the extravagant choice of τ that we made when proving Theorem 27.

Some remarks about the existence of adequate finite translations for truth-

equational systems are therefore in order (see Proposition 39 also).

Recall that S is a fixed (but arbitrary) deductive system over L. We

define

τ∞ = (Te(x) × Te(x)) ∩ Ω̃Te

S FgTe

S {x} = k [Ω̃Te

S FgTe

S {x}],
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where k is the substitution sending all variables to x. The equality of the

second and third expressions displayed above was demonstrated in Propo-

sition 12.

Proposition 32. If S is truth-equational then τ∞ is the largest L–

translation τ satisfying either one of the following conditions.

(i) τ witnesses the truth-equationality of S.

(ii) S has a τ–algebraic semantics.

Proof. Let S be truth-equational. We know that (i) implies (ii).

By Theorem 28 and the proof of Theorem 27, τ∞ witnesses the truth-

equationality of S. Also, whenever S has a τ–algebraic semantics, where

τ is an L–translation, we must have τ ⊆ τ ∞, by Corollary 9. �

Now assume that S is truth-equational and let K := UISP(LAlg∗S). By

Corollary 21 and Lemma 2, K is a τ–algebraic semantics for S whenever τ

witnesses the truth-equationality of S. In particular K is a τ ∞–algebraic

semantics for S. Note that K contains LAlgS, by Proposition 15(iii). By

the Homomorphism Theorem, Te(x)/τ ∞ can be embedded into

Te/Ω̃Te

S FgTe

S {x} ∈ K,

so τ∞ is a K–congruence of Te(x). Using the definition of LAlg∗S, we

can easily see that for any L–translation τ , the following conditions are

equivalent (assuming still that S is truth-equational):

(i) τ witnesses the truth-equationality of S.

(ii) τ ⊆ τ∞ and τ (x) |= LAlg∗S τ∞(x).

(iii) τ∞ = ΘTe(x)

UISP(LAlg∗S) τ .

Consequently, we have:

Proposition 33. The following conditions on S are equivalent.

(i) Some finite translation witnesses the truth-equationality of S.

(ii) S is truth-equational and the UISP(LAlg∗S)–congruence τ∞ of Te(x)

is finitely generated in ConUISP(LAlg∗S) Te(x).
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Theorem 34. Suppose S is a finitary deductive system for which Mod∗S

is closed under ultraproducts (and is therefore an elementary class).6

If S is truth-equational then some finite translation τ witnesses its

truth-equationality, and S has a τ–algebraic semantics that is a quasivari-

ety.

Proof. Let S be truth-equational, so τ ∞ witnesses its truth-equationa-

lity and S has a τ∞–algebraic semantics. Corollary 9 and Lemma 13 show

that whenever 〈A, F 〉 ∈ Mod∗S and a ∈ F then δA(a) = εA(a) for all

〈δ, ε〉 ∈ τ∞.

Suppose the first claim in the theorem is false. Then for every finite sub-

set τ of τ∞, there is a Leibniz-reduced matrix model 〈B, G
τ
〉 = 〈B

τ
, G

τ
〉

of S and an element b
τ
∈ B such that δB(b

τ
) = εB(b

τ
) for all 〈δ, ε〉 ∈ τ ,

but b
τ

/∈ G
τ
.

Let Λ be the set of all finite subsets of τ ∞ and 〈C,H〉 the direct product

of all the matrices 〈B
τ
, G

τ
〉, τ ∈ Λ. The sets of the form {τ ∈ Λ : 〈δ, ε〉 ∈

τ}, ranging over all 〈δ, ε〉 ∈ τ∞, constitute a family F with the finite

intersection property, so F is contained in an ultrafilter U over Λ. The

ultraproduct 〈D, J〉 = 〈C,H〉/U also belongs to Mod∗S, by assumption.

Set d = c/U , where c(τ ) = b
τ

for each τ ∈ Λ. Then, by the construction

of 〈D, J〉 and standard properties of ultraproducts, we have d /∈ J .

On the other hand, for each 〈δ, ε〉 ∈ τ∞, the indices τ ∈ Λ for which

δB(b
τ
) = εB(b

τ
) form a superset of a member of U , viz. {τ ∈ Λ : 〈δ, ε〉 ∈ τ},

so δD(d) = εD(d). Since τ∞ defines truth in Mod∗S and 〈D, J〉 ∈ Mod∗S,

it follows that d ∈ J , a contradiction.

So some finite τ must witness the truth-equationality of S, whence S

has a τ–algebraic semantics, K say. Since S is finitary and τ is finite, the

quasivariety ISPPU(K) is also a τ–algebraic semantics for S. �

11 Protoalgebraic Systems

The class of ‘protoalgebraic’ deductive systems was introduced in [8] and

has been studied extensively. It has a number of natural and appealing

characterizations, of which the following may as well serve here as a defi-

nition:

6See the remarks preceding Section 7.
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Definition 6. A deductive system S is called a protoalgebraic logic if

there is a set ∆ = ∆(x, y) of binary L–terms ∆(x, y) such that

`S ∆(x, x), i.e., `S ∆(x, x) for all ∆(x, y) ∈ ∆(x, y); (17)

{x} ∪ ∆(x, y) `S y. (18)

Consequently, whenever a deductive system S has a connective → for

which x → x is a theorem and modus ponens is a derivable rule, then S is

protoalgebraic. The ‘almost inconsistent’ deductive systems, i.e., those for

which x ` y is a derivable rule, are evidently protoalgebraic (with ∆ =

∅). Except for these systems, all protoalgebraic logics must clearly possess

theorems, and their languages must give rise to some strictly binary terms

(not merely projections and unary terms with fictitious extra variables).

The following alternative characterizations of protoalgebraic logics are well

known. For the proofs and origins of these and other properties mentioned

below, see [10], [20], [26].

Theorem 35. The following conditions on S are equivalent :

(i) S is protoalgebraic.

(ii) The Leibniz operator of S is globally order preserving, i.e., whenever

F,G are S–filters of an L–algebra A, if F ⊆ G then ΩAF ⊆ ΩAG.

(iii) The Leibniz operator is order preserving on S–theories.

(iv) The Leibniz and Suszko operators of S coincide.

(v) Mod∗S is closed under subdirect products, i.e., ModSuS = Mod∗S.

(vi) Whenever Γ, α 6`S β or Γ, β 6`S α, there is a unary polynomial func-

tion p of Te such that exactly one of Γ `S p(α) and Γ `S p(β) is

true.

Condition (vi) is usually phrased contrapositively: over any theory, the

‘indiscernibility’ of formulas implies their interderivability. The name ‘pro-

toalgebraic’ derives from a further characterization of the same class of

systems, which is a filter-theoretic analogue of the Correspondence Theo-

rem of universal algebra: see [20, Thm. 1.1.8]. In a protoalgebraic logic, the

Leibniz (i.e., the Suszko) operator commutes with arbitrary intersections

of S–filters, so it could be described as ‘completely’ order preserving.
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With regard to Problem 1 of Section 9: Czelakowski and Jansana have

shown that when S is protoalgebraic, if its Leibniz operator is injective

on S–theories then it is globally injective: see [22, Thm. 3.6]. So, when

S is protoalgebraic, we may use the expression ‘S has an injective Leibniz

operator ’, without fear of ambiguity. We can now explain a further result

of Czelakowski and Jansana in a more general way:

Theorem 36. ([22, Thm. 3.8]) The following conditions on a protoal-

gebraic system S are equivalent :

(i) S has an injective Leibniz operator.

(ii) S is truth-equational.

Proof. We already know that (ii) implies (i), regardless of protoal-

gebraicity. Conversely, since S is protoalgebraic, its Leibniz and Suszko

operators coincide on all algebras. If in addition, this common operator is

globally injective, then S is truth-equational, by Theorem 28. �

A protoalgebraic deductive system S is called a weakly algebraizable logic

if it satisfies the equivalent conditions of this theorem. This terminology is

justified by further characterizations of the notion in [22], which we shall

not discuss here. The above result is itself a generalization of narrower

theorems published earlier by Herrmann [28], [29] (for the ‘equivalential

logics’ defined below) and by Blok and Pigozzi [9] (for the finitary ‘finitely

equivalential logics’). The following definition has its origins in [40].

Definition 7. A deductive system S is said to be equivalential if there

is a set ∆ = ∆(x, y) of binary L–terms ∆(x, y) such that conditions (17)

and (18) hold and, moreover,

∆(x, y) `S ∆(y, x) (19)

∆(x, y) ∪ ∆(y, z) `S ∆(x, z) (20)
⋃n

i=1 ∆(xi, yi) `S ∆(α(x1, . . . , xn), α(y1, . . . , yn)) (21)

whenever α is an n–ary basic operation symbol of L, where 0 < n ∈ ω. We

call ∆ a set of equivalence terms for S when this is true. We call S finitely

equivalential if it has a finite set of equivalence terms.
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Of course, every equivalential deductive system is protoalgebraic. It

is known that S is equivalential iff Mod∗S is closed under submatrices

and direct products; it is finitely equivalential iff for every algebra A, the

function ΩA commutes with the unions of those directed families of S–

filters for which the union is again an S–filter: see for instance [20]. In

a finitary and finitely equivalential deductive system S, the class Mod∗S

is elementary: see [19] or [20]. So, when a system of this kind is truth-

equational, some finite translation must witness this fact, by Theorem 34.

(This was pointed out by Herrmann in [28, Remark 3.5].)

Suppose that ∆ is a set of equivalence terms for an equivalential de-

ductive system S. It is well known that in this case, for every L–algebra A

and every S–filter F of A,

ΩAF = {〈a, b〉 ∈ A × A : ∆A(a, b) ⊆ F} ; (22)

see for instance [20, Thm. 3.1.2]. For our purposes this observation com-

bines usefully with Theorem 30 to give the next result, which is implicit in

[13].

Corollary 37. Suppose that a finitary deductive system S has binary

connectives → and ∧ such that {x → y, y → x} is a set of equivalence

terms for S and x → (x ∧ x) and (x ∧ x) → x are theorems of S. Then S

has a τ–algebraic semantics, where τ is x ∧ x ≈ x.

Proof. Recall that Mod∗S is a matrix semantics for S, by Proposi-

tion 14. Let F be an S–filter of an L–algebra A, and let a ∈ A. Since

`S (x∧x) → x and `S x → (x∧x), we have (a∧a) → a, a → (a∧a) ∈ F .

Because {x → y, y → x} is a set of equivalence terms for S, it follows from

(22) that 〈a∧a, a〉 ∈ ΩAF . Thus A/ΩAF satisfies x∧x ≈ x. By Lemma 13,

Alg∗S satisfies x∧x ≈ x. Choosing ∧ for δ and setting ε(x) = x, we deduce

from Theorem 30 that S has a {〈x ∧ x, x〉}–algebraic semantics. �

A finitary and finitely equivalential deductive system can fail to possess

an algebraic semantics, in which case it cannot be truth-equational. This

is shown by the next example. A protoalgebraic logic with no algebraic

semantics was already exhibited in [13], but that example is not equivalen-

tial.

Example 4. We denote by P–W the deducibility relation of the formal

system from relevance logic that is known variously as P–W or T→–W or
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BB′I. This finitary system has a binary implication connective → and no

other connective; it is axiomatized by

(B) ` (x → y) → ((z → x) → (z → y)) (prefixing)

(B)′ ` (x → y) → ((y → z) → (x → z)) (suffixing)

(I) ` x → x (identity)

(MP) x, x → y ` y (modus ponens)

Obviously, P–W is consistent, as it is contained in the implication fragment

of classical logic. It is straightforward to show that {x → y, y → x} is a

set of equivalence terms for P–W, so P–W is finitely equivalential.

The ‘P–W Problem’ was the conjecture, formulated in [1], that there

do not exist syntactically distinct implicational terms α and β such that

both α → β and β → α are theorems of P–W. The correctness of this

conjecture was proved by semantic methods in [35]; see [31] for a syntactic

proof.

Proposition 38. P–W has no algebraic semantics.

Proof. Suppose K is a τ–algebraic semantics for P–W, where τ is

some {→}–translation. Let 〈δ, ε〉 ∈ τ . As a special case of Proposition 3,

x, δ(x) → δ(x) `P–W ε(x) → δ(x) ;

x, ε(x) → ε(x) `P–W δ(x) → ε(x) .

Structurality permits us to substitute x → x for x and, invoking (I), we see

that ε(x → x) → δ(x → x) and δ(x → x) → ε(x → x) are both theorems

of P–W. It follows from the solution to the P–W Problem that δ(x → x)

and ε(x → x) are identical terms. It is then easy to show (by induction if

necessary) that δ(x) = ε(x), whence of course K satisfies δ(x) ≈ ε(x). Since

we chose 〈δ, ε〉 ∈ τ arbitrarily, and since K is a τ–algebraic semantics for

P–W, it follows that x is a theorem of P–W, contradicting consistency.

Thus, P–W has no algebraic semantics. In particular, P–W is not truth-

equational. �

Roughly speaking, a deductive system S is called ‘algebraizable’ if it

is essentially the equational consequence relation |= K of some class K of

similar algebras. When this is true, AlgS = Alg∗S is a UISP–class and it

is the only UISP–class K that is interchangeable with S in the intended
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sense (see [6] or [7]); it is called the equivalent algebraic semantics of S.

For our purposes, however, the [finitely ] algebraizable deductive systems

may be defined as the [finitely] equivalential deductive systems that are

truth-equational. (These definitions are equivalent to the ones given in

[20] and [26].) When S is finitary, it is finitely algebraizable iff Alg∗S is a

quasivariety.

It follows from Theorem 36 that an equivalential deductive system is

algebraizable iff it has an injective Leibniz operator. This result appears al-

ready in Herrmann’s paper [29]. The implication from left to right yields a

frequently used strategy for disproving the algebraizability of an equivalen-

tial logic and, as Herrmann observes in [28], it instantiates Padoa’s method

of proving non-definability (see [37], [45]). All of these results about alge-

braizability generalize earlier findings of [9]; different proofs can be found

in [22] and in [20]. The term ‘algebraizable logic’ comes from [9], where the

theory of finitary finitely algebraizable deductive systems was developed.

Even when a finitary finitely equivalential deductive system has an al-

gebraic semantics, it may fail to be truth-equational (i.e., algebraizable).

The known counter-examples include the deducibility relation of Anderson

and Belnap’s formal system E for ‘Entailment’ (axiomatized in [1]) and the

pure implication fragments of linear and relevance logic. The existence of

algebraic semantics for these systems was proved in [13] and, in the case of

E, Corollary 37 provides the explanation. Non-algebraizability was proved

in [9].

12 Assertional Logics

Definition 8. (Pointed Assertional Logics) Let K be a class of L–algebras

and c an L–constant, or at least an L–term that is constant over K. The

c–assertional logic S(K, c) of K is the deductive system over L defined by

Γ `S(K, c) α iff {γ ≈ c : γ ∈ Γ} |= K α ≈ c.

This definition is a variant of one introduced by Pigozzi [39]. Note that

S(K, c) is indeed a deductive system and that K is a τ–algebraic semantics

for S(K, c), where τ is the ‘pointed’ translation x ≈ c. It is easy to show

directly that S(K, c) is truth-equational (with τ as witness) but this will

also follow from a more general result, Corollary 40, given below.
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The pointed assertional logics obviously include classical and intuition-

istic propositional logic and the normal modal logics. They also encompass

those ‘substructural logics’ whose theorems include the ‘weakening’ axiom

(K) ` x → (y → x),

in particular, BCK–logic. (See [36], [42] for background on substructural

logics.) All of these examples are algebraizable systems, so the equivalent

algebraic semantics Alg∗S is the natural choice for K. In each case, the

constant c is equationally definable as x → x over K.

A number of significant deductive systems—such as the principal sys-

tems of linear and relevance logic—cannot be represented as pointed asser-

tional logics S(K, c), regardless of how we choose K and c. In fact this is

true of any deductive system S with a binary connective → such that

`S x → x and 6`S (x → x) → (y → y). (23)

For if `S(K, c) x → x then the term x → x is constantly c over K, whence

(x → x) → (y → y) is also constantly c over K, making it a theorem of

S(K, c). Nevertheless, the following generalization of pointed assertional

logics encompasses many systems that satisfy (23).

Definition 9. For any class K of L–algebras and any L–translation τ ,

we define a deductive system S(K, τ ) over L, as follows:

Γ `S(K, τ) α iff τ [Γ] |= K τ (α).

Again, note that for any such K and τ , the relation S(K, τ ) is indeed a

deductive system and K is a τ–algebraic semantics for S(K, τ ). Conversely,

every deductive system that has an algebraic semantics arises in this way.

In particular, Corollary 21 and Lemma 2 show that:

Fact. Every truth-equational deductive system has the form S(K, τ ) for

some UISP–class K and some translation τ .

The notion of a truth-equational deductive system can therefore be reduced

in principle to a condition on a class of algebras K and a translation—and

we can safely test for it in the ISP–closure of K alone, i.e., it is enough

to prove (∗)A for all A ∈ ISP(K), by Theorem 25. The next result goes a

little way toward explaining why the applications almost invariably involve

singleton translations.
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Proposition 39. Let K be a τ–algebraic semantics for S. Suppose τ

contains a pair 〈δ, ε〉 such that δ(x) `S x and `S ε(x).

Then S = S(K, {〈δ, ε〉}). Also, S is truth-equational, with δ(x) ≈ ε(x)

as witnessing translation.

Proof. Let τ = {〈δi, εi〉 : i ∈ I}. By assumption, S = S(K, τ ),

|= K δi(ε(x)) ≈ εi(ε(x)) and (24)

{δj(δ(x)) ≈ εj(δ(x)) : j ∈ I} |= K δi(x) ≈ εi(x) (25)

for all i ∈ I. Using (24), we obtain

δ(x) ≈ ε(x) |= K δj(δ(x)) ≈ δj(ε(x)) ≈ εj(ε(x)) ≈ εj(δ(x))

for all j ∈ I. This, together with (25), yields

δ(x) ≈ ε(x) |= K δi(x) ≈ εi(x)

for all i ∈ I. It follows that S = S(K, {〈δ, ε〉}).

Let F be an S–filter of an L–algebra A. If a ∈ F then 〈δA(a), εA(a)〉 ∈

ΩAF , by Corollary 9. Conversely, suppose 〈δA(a), εA(a)〉 ∈ ΩAF . Now

εA(a) ∈ F, because `S ε(x), and ΩAF is compatible with F , so δA(a) ∈ F .

Then a ∈ F , because δ(x) `S x. �

The hypotheses of this proposition, when phrased as conditions on K

and τ , are rather complicated. The following specialization of the result is

simpler and still widely applicable.

Corollary 40. Let K be a class of L–algebras with a unary term ε such

that K satisfies ε(x) ≈ ε(ε(x)). Then the deductive system S(K, {〈x, ε(x)〉})

is truth-equational, with x ≈ ε(x) as witnessing translation.

Proof. In Proposition 39, set δ(x) = x. Let τ be x ≈ ε(x) and

S = S(K, τ ), and observe that `S ε(x), because K satisfies ε(x) ≈ ε(ε(x)).

�

Note that when S is as in the above proof, we have:

Γ `S α iff {γ ≈ ε(γ) : γ ∈ Γ} |= K α ≈ ε(α).

For convenience, we make the following definition.
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Definition 10. (Normal Assertional Logics) Let ε be a unary L–term,

let τ be x ≈ ε(x) and let K be a class of L–algebras. If K satisfies ε(x) ≈

ε(ε(x)), we say that the deductive system S(K, τ ) is a normal assertional

logic, and we call τ a normal translation for K.

Thus, the normal assertional logics are all truth-equational. Note that

they include all pointed assertional logics. The assumption of normality

simplifies the algebraic analysis and makes for a relatively smooth theory

of logical filter generation, worked out in [12], which we shall not discuss

here.

Example 5. (Substructural Logics) The principal formal systems LL

and R for linear and relevance logic (respectively) axiomatize normal as-

sertional logics (see [47] and [1] for the axioms). These systems are finitely

algebraizable: see [9], [27]. So, as in the case of BCK–logic, the equivalent

algebraic semantics Alg∗S is the natural candidate for the class K in the

normal representation. For LL and R, this class K is a variety of enriched

residuated lattice-ordered commutative semigroups. The residuation oper-

ator interprets the implication connective → of the logic, and

Mod∗S = {〈A, F 〉 : A ∈ K and F = {a ∈ A : a → a ≤ a}}

(see, e.g. [48, Sec. 6]). The normal translations τ therefore encode the

inequality x → x ≤ x in equational form. For instance, we can take τ to

be

x ≈ x ∨ (x → x).

When dealing with fragments of these systems that include implication and

conjunction but not disjunction, we may instead use

x ≈ (x ∧ (x → x)) → x

for τ . It can be shown that these two translations are indeed normal for

K. All of these remarks apply equally to many neighbouring substructural

logics that lack the weakening axiom (K), such as LR and RW.

In the case of linear logic, the enriched semigroups in K are in fact

monoids; their identity elements interpret a constant t of the signature

(denoted by 1 in [47]). Also, the inequality x → x ≤ x is equivalent over K

to t ≤ x, so either of the simpler normal translations

x ≈ x ∨ t ; x ≈ (x ∧ t) → x
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may be used instead of the previous two.

Example 6. (Mingle) In certain extensions of LL, R and their relatives,

the lattice-like connectives can be dispensed with in the normal representa-

tion, because the order ≤ can be defined equationally over K without using

them. This applies in particular to extensions in which the ‘mingle’ axiom

(M) ` x → (x → x)

is provable. These may be represented as normal assertional logics using

the translation x ≈ x → x, because K already satisfies x ≤ x → x. Even

the pure implication fragment of the system is then a normal assertional

logic. The ‘semi-relevant’ logic R–mingle (RM) [24], [1], [9] is an example

of this kind, and so are the alternative relevance logics RMI min and RMI

[3], [4] which cannot accommodate the constant t.

If a class of algebras K with a unary term ε satisfies εn(x) ≈ εn+1(x)

for some positive integer n, then clearly S(K, {〈x, εn(x)〉}) is a normal

assertional logic, and therefore truth-equational. But the following slightly

stronger result is also true, and will be useful in Section 14. It generalizes

Corollary 40 in a direction different from Proposition 39.

Theorem 41. Let ε be a unary L–term, let τ be x ≈ ε(x) and let K

be a class of L–algebras.

If K satisfies εn(x) ≈ εn+1(x) for some nonnegative integer n, then

the deductive sytem S(K, τ ) is truth-equational, with witnessing translation

τ .

Proof. Let S = S(K, τ ). If n = 0 then `S x, so for every L–algebra

A, the only S–filter of A is A. In this case, the result is trivially true. We

may therefore assume that n > 0.

Let F be an S–filter of an L–algebra A. We omit the superscript A

from term functions of A of the form εm, m ∈ ω. Since K is a τ–algebraic

semantics for S, it follows from Corollary 9 that τ
A[F ] ⊆ ΩAF . Conversely,

let a ∈ A with 〈a, ε(a)〉 ∈ ΩAF . Then for all m ∈ ω, since ΩAF is a

congruence of A, we have 〈εm(a), εm+1(a)〉 ∈ ΩAF . Also `S εn(x), by

definition of S, since K satisfies εn(x) ≈ ε(εn(x)). Consequently, εn(a) ∈ F .

Now because ΩAF is compatible with F , it follows that εn−1(a) ∈ F . If

n = 1, this tells us that a ∈ F . If not, we repeat the argument a further

n − 1 times, eventually getting a ∈ F , as required. �
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13 Non-Protoalgebraic Systems

The abstract study of non-protoalgebraic systems is a recent development.

Czelakowski lists a number of significant examples in [21], and others can

be found in papers cited in [26, p. 35] and in [25]. Several of these logics

lack theorems, so they cannot be truth-equational. But non-protoalgebraic

systems with theorems are to be found, for instance, among the so-called

‘subintuitionistic logics’ (see [16] and its references). These systems have

been a focus of recent interest, and some of them are truth-equational.7

We have noted that every pointed assertional logic is truth-equational.

The examples of this kind discussed thusfar were all protoalgebraic logics.

We mention two non-protoalgebraic examples.

Example 7. Let IPL∗ denote the implication-less fragment of intu-

itionistic propositional logic (IPL). The signature of IPL∗ is {∧,∨,¬,⊥,>}.

If K denotes the variety of pseudocomplemented distributive lattices then,

by [9, Thm. 2.6], IPL∗ coincides with S(K,>) and is therefore truth-

equational. It is not protoalgebraic; this was demonstrated in [9, Thm. 5.13].

Note that the ‘material conditional’ x ⊃ y : = (¬x) ∨ y of IPL∗ satisfies

modus ponens, but for ⊃, the ‘reflexivity’ demand (17) of Definition 6 is

just the law of the excluded middle, which of course fails in IPL.

Example 8. Visser’s Propositional Logic VPL is a subintuitionistic

logic, defined in [50] and motivated by considerations of constructivity. It

can be embedded into the ‘basic modal logic’ K4 by a well known trans-

lation that also embeds IPL into S4, and classical propositional logic into

S5. Unlike IPL∗, the system VPL has a reflexive implication →, but it

lacks modus ponens. It is not protoalgebraic [44]. It is the >–assertional

logic of a variety—called the variety B of ‘Basic algebras’ in [2], [16] and

[17]—so it is truth-equational. In B, the constant > may be defined by

x → x.8

Obviously, any number of distinct non-protoalgebraic pointed asser-

tional logics can be produced using languages that contain no connective

7A logic is called subintuitionistic if it has the language of intuitionistic propositional

logic (IPL) and can be defined semantically in terms of Kripke frames, where the con-

nectives satisfy the truth conditions used to define IPL but the binary relation of a frame

is not required to satisfy all of the postulates from the intuitionistic case.
8
VPL is called the ‘Basic Propositional Calculus’ BPC in [2].
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of binary or higher rank, and classes that include at least one nontrivial

algebra.

It is useful to have some nontrivial criteria of a purely algebraic kind

for the failure of protoalgebraicity. The following result, proved in [12],

identifies a class of non-pointed normal assertional logics that cannot be

protoalgebraic.

Proposition 42. Let V be a variety of L–algebras and τ an L–

translation. Suppose V contains a three-element algebra A, with universe

A = {–1, 0, 1}, say, such that the following statements are true.

(i) Whenever α is a basic operation symbol in L of rank n > 0, and

αA(a1, a2, . . . , an) = 0 then ai = 0 for all i.

(ii) For each 〈δ, ε〉 ∈ τ , the term functions δA and εA are, respectively,

the identity function and the absolute value function on A.

Then S(V, τ ) is not protoalgebraic.

Note that under the assumptions of Proposition 42, S(V(A), τ ) is a normal

assertional logic and is therefore truth-equational.

A simple example of an algebra A as described in Proposition 42 is a

pointed join semilattice 〈{–1, 0, 1};∨, 0〉 in which –1 and 0 are incompara-

ble. The term x∨0 defines the absolute value function. A more interesting

example is:

Example 9. Let Z3 be the universe of the three-element idempotent

commutative totally ordered monoid on the set {–1, 0, 1}, where 0 is the

identity element, –1 < 0 < 1 and –1 · 1 = –1. Let ¬ denote the usual

additive inverse operation on Z3, and define x → y = ¬(x ·¬ y). Then

x → x defines the absolute value function on Z3, so we shall abbreviate

x → x as |x |. The algebra Z3 = 〈Z3;→,¬〉 is called the Sobociński algebra

in [12], in recognition of a detailed logical study of it in [43]. In Z3, the

element 0 is irreducible in the sense of Proposition 42(i). Now let τ be

x ≈ |x | and define S = S(V(Z3), τ ).

By Proposition 42, S is not protoalgebraic; this was proved directly in

[11]. But since Z3 satisfies |x | ≈ ||x ||, S is a normal assertional logic,

and is therefore truth-equational. The theorems of S are known to be

exactly the theorems of the implication-negation fragment of RM [38], but
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when it comes to rules, S is much weaker than this fragment, e.g., S lacks

modus ponens. (On the other hand, if we replace V(Z3) by ISP(Z3) in the

definition, the resulting system has some rules not derivable in RM, e.g.

¬(x → ¬ y) ` x [5].)

Observe that |x | is a theorem of S, but |x | → | y | is not (e.g., in Z3,

we have | 1 | → | 0 | = –1 6= |–1 |). Thus, S cannot be represented as a

pointed assertional logic—see the remarks preceding Definition 9.

14 Mono-unary Systems

A deductive system is called mono-unary if its signature consists of just one

connective and this connective has rank 1. (Constants are not permitted.)

A mono-unary deductive system has no genuinely binary terms, so it cannot

be protoalgebraic, unless it contains the rule x ` y. Because mono-unary

systems are relatively easy to analyze, they are a natural laboratory for

testing conjectures about deductive systems that have already been con-

firmed in the case of protoalgebraic logics. Problem 1 of Section 9 meets

this description, and we shall settle the mono-unary case of this problem

affirmatively here. In fact, we shall prove a stronger theorem: if the Leibniz

operator is injective on the theories of a mono-unary deductive system S

then S is truth-equational.

From now on, when discussing an unspecified mono-unary system S, we

shall always denote its sole connective by ε. In this case, obviously, every

L–term has the form εm(v) for some v ∈ V ar and some m ∈ ω. We shall

need the following result of Blok and Rebagliato, which was formulated in

[13] with additional finiteness assumptions not invoked in the proof:

Theorem 43. ([13, Thm. 2.20]) A mono-unary deductive system S

has an algebraic semantics iff x `S ε(x). In this case S has a τ–algebraic

semantics, where τ is x ≈ ε(x).

Blok and Rebagliato point out that, by Theorem 43, the pure negation

fragments of classical and intuitionistic propositional logic have no algebraic

semantics (regardless of the choice of translation), whereas they each have a

translation τ such that the conclusion of Proposition 3 holds, viz. x ≈ ¬¬x

and ¬x ≈ ¬¬¬x, respectively. Thus, we cannot upgrade Proposition 3 to

a characterization of the deductive systems having an algebraic semantics.



144 JAMES G. RAFTERY

Example 1 shows that a mono-unary deductive system with an algebraic

semantics need not be truth-equational. In contrast:

Corollary 44. If a mono-unary deductive system has an algebraic se-

mantics and at least one theorem then it is truth-equational, with witnessing

translation x ≈ ε(x).

Proof. Let S satisfy the hypotheses of the corollary. By structurality,

S must have a theorem of the form εn(x) for some n ∈ ω. By Theorem 43, S

has a τ–algebraic semantics, K say, where τ is x ≈ ε(x). Now S = S(K, τ ),

and the theoremhood of εn(x) in S forces K to satisfy εn(x) ≈ εn+1(x).

Then by Theorem 41, S is truth-equational, with τ as witness. �

Incidentally, it is easy to show that a mono-unary deductive system

with at least one theorem must be finitary , so we could have chosen the

class K in the above proof to be a quasivariety . The next result should be

contrasted with Example 3, where the signature was ‘almost’ mono-unary

but had a constant symbol as well.

Theorem 45. If the Leibniz operator of a mono-unary deductive system

S is injective on the theories of S then S has an algebraic semantics.

Proof. Let ΩTe be injective on S–theories, so S must have at least one

theorem, by Lemma 5. As in the previous proof, structurality ensures that

S has a theorem of the form εn(x) for some n ∈ ω. Let n be the least

nonnegative integer such that `S εn(x).

Suppose that S has no algebraic semantics. Then x 6`S ε(x), by Theo-

rem 43. So n ≥ 2 and, by structurality, V ar 6`S ε(x). Using structurality

again, we see that `S εm(v) for all v ∈ V ar and all integers m ≥ n, so

every S–theory contains εn[Te].

Let F be the S–theory generated by V ar. Let k be the least nonnegative

integer such that εk[Te] ⊆ F . By the previous remarks, k exists and k ≤ n.

Also k > 1, because V ar 6`S ε(x). Moreover, εk−1[V ar] ∩ F = ∅, by the

minimality of k (using structurality and monotonicity).

Let G be the S–theory generated by εk[Te], so G ⊆ F . We claim that

x /∈ G. To see this, suppose x ∈ G, i.e., εk[Te] `S x. Substituting εn−k(x)

for all variables and using structurality, we get εn[Te(x)] `S εn−k(x). It

follows that `S εn−k(x) (because εn[Te(x)] consists of S–theorems). But

this contradicts the minimality of n, so x /∈ G. Since x ∈ F , we have F 6= G

and so ΩTeF 6= ΩTeG, by assumption.
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Now for any S–theory H, we have

ΩTeH = {〈α, β〉 ∈ Te × Te : (∀i ∈ ω) (εi(α) ∈ H iff εi(β) ∈ H)},

by Lemma 6(i), because ε is the sole connective of S. But since εn[Te] ⊆ H,

this becomes

ΩTeH = {〈α, β〉 ∈ Te × Te : (∀i < n) (εi(α) ∈ H iff εi(β) ∈ H)}. (26)

Let θ be the equivalence relation on Te corresponding to the partition

{V ar, ε[V ar], ε2[V ar], . . . , εk−1[V ar], εk[Te]}.

Clearly, θ is a congruence of Te. Also, θ is compatible with F and with G;

this follows easily from the definitions, using structurality. So

θ ⊆ ΩTeF and θ ⊆ ΩTeG. (27)

We intend to show now that ΩTeF = ΩTeG, contradicting the already

established fact that these congruences are distinct. This contradiction

will allow us to conclude that S must have an algebraic semantics after all,

completing the proof. In view of (27), it is enough to prove the following

Claim. ΩTeF ⊆ θ and ΩTeG ⊆ θ.

To prove this claim, consider any two L–terms that lie in different θ–

classes. These must have the form εl(v) and εr(w) where v, w ∈ V ar and,

necessarily, l and r are distinct nonnegative integers at least one of which

is less than k. We must show that εl(v) and εr(w) are separated both by

ΩTeF and by ΩTeG. By symmetry, we may assume that l < r and that

l < k.

By (26), it is enough to find a nonnegative integer p such that εp(εl(v)) /∈

F and εp(εr(w)) ∈ G (whence εp(εl(v)) /∈ G and εp(εr(w)) ∈ F , because

G ⊆ F ). The integer p = k − 1 − l has these properties. Indeed, for this

p, the term εp(εl(v)) belongs to εk−1[V ar], which is disjoint from F , but

because r > l, the term εp(εr(w)) belongs to εk[Te], which is contained in

G. �

From the previous three results, Theorem 28 and Lemma 5, we deduce:

Theorem 46. For a mono-unary deductive system S, the following

conditions are equivalent :
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(i) S is truth-equational.

(ii) The Leibniz operator of S is globally injective.

(iii) The Leibniz operator is injective on the theories of S.

(iv) S has an algebraic semantics and some theorems.

(v) x `S ε(x) and `S εn(x) for some n ∈ ω.

In this case the translation x ≈ ε(x) witnesses (i) and (iv).

We note that a multi -unary system with theorems and an algebraic se-

mantics need not be truth-equational. Indeed, it follows from Example 2

that the >–free fragment of the system discussed there has a {〈♦x,�x〉}–

algebraic semantics. But the Leibniz operator of this fragment is not injec-

tive on its theories: the least theory and the theory generated by V ar can

easily be shown to have the same Leibniz congruence.
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