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Abstract: Activation likelihood estimation (ALE) has greatly advanced voxel-based meta-analysis re-
search in the field of functional neuroimaging. We present two improvements to the ALE method. First,
we evaluate the feasibility of two techniques for correcting for multiple comparisons: the single threshold
test and a procedure that controls the false discovery rate (FDR). To test these techniques, foci from four
different topics within the literature were analyzed: overt speech in stuttering subjects, the color-word
Stroop task, picture-naming tasks, and painful stimulation. In addition, the performance of each thresh-
olding method was tested on randomly generated foci. We found that the FDR method more effectively
controls the rate of false positives in meta-analyses of small or large numbers of foci. Second, we propose
a technique for making statistical comparisons of ALE meta-analyses and investigate its efficacy on
different groups of foci divided by task or response type and random groups of similarly obtained foci.
We then give an example of how comparisons of this sort may lead to advanced designs in future
meta-analytic research. Hum Brain Mapp 25:155–164, 2005. © 2005 Wiley-Liss, Inc.
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INTRODUCTION

In the field of functional neuroimaging, the art of sum-
marizing previous results has progressed from simple
textual summaries to tabular or graphical reviews to so-
phisticated function-location meta-analysis. Function-lo-
cation meta-analysis has evolved into a quantitative
method for synthesizing independent bodies of work and
is critical in understanding the status of neuroimaging
research in a particular cognitive domain [Fox et al., 1998].
Activation likelihood estimation (ALE) is a quantitative
meta-analysis method that was developed concurrently
but independently by Turkeltaub et al. [2002] and Chein
et al. [2002].
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Turkeltaub et al. [2002] presented a meta-analysis of sin-
gle-word reading and verified their results with a functional
magnetic resonance imaging (fMRI) study of 32 subjects
performing aloud word reading. Similar activation patterns
were determined for both the ALE meta-analysis and the
fMRI experiment. Chein et al. [2002] presented a meta-anal-
ysis of working memory studies and determined the pres-
ence of functional dissociation in Broca’s area with regard to
performance or lexical status. The analysis of Chein et al.
[2002] was termed aggregated Gaussian-estimated sources
(AGES) and follows the same general procedure detailed by
Turkeltaub et al. [2002]. The simultaneous development by
two groups of the same voxel-based meta-analytic tool is
strongly indicative of the timeliness and utility of this form
of meta-analysis. For simplicity, we henceforth refer to this
method as an ALE meta-analysis.

Activation Likelihood Estimation

In ALE, 3-D coordinates in stereotactic space are pooled
from a number of like studies. These coordinates are gener-
ally published relative to Talairach [Talairach and Tour-
noux, 1988] or Montreal Neurological Institute (MNI) space
[Collins et al., 1994] and must be spatially renormalized to a
single template. This transformation is carried out using the
Brett transform [Brett, 1999]. Once all coordinates refer to
locations in a single stereotactic space, the ALE analysis
begins.

ALE statistic

Each reported coordinate (focus) is modeled by a 3-D
Gaussian distribution, defined by a user-specified full-width
half-maximum (FWHM). Let Xi denote the event that the ith
focus is located in a given voxel. The probability of Xi

occurring at voxel x, y, z is

Pr!Xi" !
exp! " di
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where di is the Euclidean distance from the center of the
voxel to the ith focus, # is the standard deviation of the
Gaussian distribution, and Pr(Xi) satisfies 0 # Pr(Xi) # 1. To
obtain the probability estimate for the entire voxel volume
instead of just its central point, the Gaussian probability
density is multiplied by %V & 8 mm3 (corresponding to
voxel dimensions of 2 mm ' 2 mm ' 2 mm). If X denotes
the event that any foci are located within a given voxel, then
it can be shown that Pr(X) is defined as the union of all
Pr(Xi), where Pr(Xi) is shown in equation (1). This value is
defined as the ALE statistic (see equation [9] in the Appen-
dix).

Permutation tests

The ALE statistic is computed at every voxel in the brain.
To make a valid assessment of the significance of the results,
a procedure for testing the statistic images was developed.

Because no assumptions can be made as to the distribution
of the ALE statistic, a nonparametric permutation test
[Good, 1994] was utilized to test the null hypothesis that the
foci are spread uniformly throughout the brain. In this test,
x random foci are generated, where x equals the number of
foci in the ALE meta-analysis, and the corresponding ALE
values for these random foci are computed. This process of
randomization and computation of relabeled statistics is
repeated 1,000–5,000 times. The set of ALE values calculated
from the random foci form the null distribution of the test
statistic. In Turkeltaub et al. [2002], 1,000 permutations were
used to determine which tests were statistically significant
and threshold the resultant ALE map. A whole-brain histo-
gram was computed in which the null hypothesis of uni-
formly distributed foci was rejected for voxels with an ALE
value greater than the critical threshold, defined as the 100(1
( ))th percentile of the permutation distribution, where )
refers to the desired level of significance.

Modifications to the ALE Approach

When ALE was introduced to the brain imaging commu-
nity, Turkeltaub et al. [2002] provided discussion of its lim-
itations and areas in need of further development. Several
factors that have not been addressed to date are the effects of
including articles with different numbers of subjects, vary-
ing intensities of activation across different clusters of acti-
vation (e.g., t statistics or Z values), or modeling foci using a
non-Gaussian distribution. In addition, it is unknown to
what extent the results may be affected by the inclusion of
articles that report a different number of activation foci. Any
group of studies selected for inclusion in a meta-analysis
will report a different number of foci (n) across experiments.
As all foci are weighted equally in the ALE method, this
gives stronger influence to those studies that report a larger
number of foci. Because obtaining a large number of re-
ported foci is often due in part to a lenient threshold, a
greater weighting toward statistically less rigorous studies
may occur.

Although the above issues are undoubtedly important, we
chose here to attend to the matters of thresholding the ALE
maps and performing a statistical comparison of two ALE
meta-analyses. Our first objective thus was to improve upon
the permutation test suggested by Turkeltaub et al. [2002] to
derive more accurately null distributions for the ALE statis-
tic and implement a correction for the multiple comparisons
problem. The second objective was to establish a reliable
method for testing for the differences between two ALE
meta-analyses, a goal that is dependent on the conclusions
reached in the first objective.

Correction for Multiple Comparisons

According to Turkeltaub et al. [2002], the values from the
ALE images were tested against null distributions derived
from “all values obtained from all randomizations.” Pooling
all values neglects the effects of testing all voxels simulta-
neously, and does not exert any control over the family-wise
Type I error. Turkeltaub et al. [2002] compensated for using
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uncorrected P values by applying a conservative threshold
of P * 0.0001. Under permutation test theory, there are
several options for controlling the rate of false rejections that
accompany standard voxel-by-voxel testing. We discuss two
of these methods, the single threshold test and a procedure
that controls the false discovery rate.

Single threshold test

One approach to correcting for multiple comparisons
within the framework of permutation testing is to perform a
single threshold test and generate the null distribution of the
maximal statistic [Holmes et al., 1996; Laird et al., 2002;
Nichols and Holmes, 2002]. The 95th percentile of the null
distribution of the maximal statistic can be used as a thresh-
old on the ALE statistic map; use of this threshold allows
one to reject the null at individual voxels while knowing that
the chance of family wise error (FWE; one or more false
positives) is controlled at 5%. Consideration of the maximal
statistic effectively solves the multiple comparison problem
because rejection of the omnibus hypothesis is determined
by the maximum value of the test statistic over the entire
image. That is, extending a voxel-level permutation test to
an image-level permutation test simply requires considering
a statistic that summarizes the voxel statistics, in this case
their maximum. For each permutation, instead of recording
all voxel statistic values, only the maximal statistic across the
brain is recorded. Corrected P values for each voxel are
obtained by evaluating the percentage of the permutation
distribution for the maximal statistic that is greater than or
equal to the voxel statistic.

Controlling the false discovery rate

A second method for correcting for multiple comparisons
is to determine an appropriate threshold while controlling
the false discovery rate (FDR), defined as the expected pro-
portion of falsely rejected voxels among those rejected [Ben-
jamini and Hochberg, 1995; Genovese et al., 2002]. The FDR
correction guarantees that in the set of voxels deemed sig-
nificant for a test of ) & 0.05, there are on average no more
than 5% voxels that are false positives. In this method, the
rate q is specified such that the mean FDR is no larger than
q. Typically, q is set to traditional significance levels that
range from 0.05 to 0.01. The uncorrected P values from all
voxels are ranked from smallest to largest and the image-
wise threshold is declared as the largest P for which:

P!i" #
i
V

q
c!V"

(2)

where i indexes the ranked P values, V is the total number of
voxels, and c(V) is a constant. Two choices exist for this
constant: c(V) & 1 for test statistics that have positive regres-
sion dependency on the test statistics corresponding to the
true null hypothesis, such as in multivariate normal data
where the covariance matrix has all positive elements, and

c!V" ! +i ! 1
V 1/i for all other forms of dependency [Ben-

jamini and Hochberg, 1995; Genovese et al., 2002].
It was stated previously that permutation tests generally

require 1,000–5,000 permutations. In an ALE meta-analysis
corrected for multiple comparisons using the FDR method,
the choice of this parameter depends on the desired preci-
sion of the voxelwise (uncorrected) P values. For example, if
1,000 permutations are used to generate a null distribution at
a particular voxel, and no relabeled statistic was found as
large or larger than the observed statistic, then it can be
concluded that the voxel in question is characterized by P
* 0.001. If the same is observed for 5,000 permutations, then
P * 0.0002 for that voxel. The number of permutations in
this type of ALE meta-analysis thus depends on the desired
trade-off between precision and computational time.

We propose that implementing an FDR-controlling proce-
dure for the permutation test method described above will
provide an effective technique for thresholding the ALE
meta-analysis maps by simultaneously minimizing Type I
error and maximizing sensitivity. It is our contention that
although the single threshold test greatly reduces the rate of
false positives inherent in standard voxel-based hypothesis
testing, ultimately this method is too conservative in its
estimation of the false-positive rate. Although the single
threshold test’s control of the FWE is very specific, it has
limited power. The FDR method uses a more lenient mea-
sure of false positives, hence has more power. The FDR
method is distinguished by the fact that it controls the
proportion of false rejections relative to the number of re-
jected tests, rather than the number of total tests, and thus
offers improved thresholding.

Statistical Comparison of ALE Maps

The second goal of this study is to establish a reliable
method for testing the differences between two ALE meta-
analyses. A typical meta-analysis in functional neuroimag-
ing assesses the activation results from a group of similar
studies. These studies may investigate neural responses by
way of a similar paradigm or within a common behavioral
domain. Even in a homogeneous group of studies there exist
differences in subject groups, presentation stimuli, or the
manner in which tasks are carried out. Further insight there-
fore may be gained by carrying out a number of sub-meta-
analyses that contrast the relative properties of different
groups of foci.

Several meta-analyses presented in this issue involve con-
trasting meta-analyses in this way. For example, in the stut-
tering meta-analysis, the overt speech patterns of controls
vs. stutterers were compared [Brown et al., 2005]. The Stroop
meta-analysis separated the studies by verbal and manual
response to examine the effects of response type [Laird et al.,
2005]. In the picture-naming meta-analysis, separate analy-
ses were carried out to test the effect of different baseline
conditions [Price et al., 2005]. Lastly, the meta-analysis of
pain studies determined the response-related differences
brought on by stimulating the right versus left side of the
body [Farrell et al., 2005].
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Each of these groups of foci can be analyzed to produce
individual ALE maps. Drawing conclusions based on the
results of these meta-analyses necessitates the ability to com-
pare ALE maps. Although some insight may be gained from
visual comparison between maps or overlaying the results
on a single image, certain circumstances may call for a
formal comparison of the difference between two ALE
maps. We propose that assessing the observed difference
under the null hypothesis that both sets of coordinates are
distributed uniformly will provide a technique for evaluat-
ing the differences between ALE meta-analyses.

MATERIALS AND METHODS

Correction for Multiple Comparisons

We carried out ALE meta-analyses using a FWHM of 10
mm (corresponding to a # & 4.2466) on four groups of
functional neuroimaging articles for a wide range of topics
that included varying numbers of foci: (1) overt speech in
stuttering subjects, n &154; (2) the color–word Stroop task, n
& 205; (3) picture-naming tasks, n & 288; and (4) painful
stimulation, n & 424. All four ALE maps were thresholded
in three ways as described below.

First, the threshold was applied as described in Tur-
keltaub et al. [2002], using no correction for multiple com-
parisons. All values from all randomizations were used to
generate the null distribution of the ALE statistic. For 5,000
permutations, the null distribution was composed of 5,000
' V values, for V number of voxels.

Second, we carried out the permutation test for each map
and recorded the maximum ALE value for each permuta-
tion. Once this null distribution for the maximal statistic was
generated, we utilized it to determine the appropriate
threshold for the ALE maps. According to this test, the null
distribution was composed of 5,000 maximal ALE values for
5,000 permutations.

Third, we computed the threshold according to an FDR-
controlled procedure. Whereas the two previous techniques
determined an appropriate threshold that was applied to the
ALE statistic, the FDR method thresholds the P values at
each voxel. To control the FDR in an ALE meta-analysis, the
uncorrected P values thus were computed. To determine the
P value at each voxel, voxelwise permutation distributions
were computed and P values were extracted by determining
the percentile of the observed ALE statistic. To alleviate
computational load, uncorrected P values were calculated
by tabulating the number of relabeled statistics that were as
large or larger than the ALE statistic computed from the real
data, divided by the number of permutations. Once the
uncorrected P values were obtained, we determined the
appropriate threshold according to the FDR method
[Genovese et al., 2002]. We chose to use the more conserva-
tive, distribution-free version of FDR in which c(V) !
+i ! 1

V 1/i so that no unwarranted assumptions were made
concerning the distribution of P values from the ALE statis-
tic.

For each of these three methods of determining the image-
wise threshold, 5,000 permutations were used to derive the
null permutation distributions. The number of random foci
used in the permutation tests was equal to the number of
foci used to generate the ALE map. Each map was thresh-
olded at P * 0.05 and overlaid onto an anatomical template
generated by spatially normalizing the International Con-
sortium for Brain Mapping (ICBM) template to Talairach
space [Kochunov et al., 2002]. An additional map was cre-
ated for each group and thresholded at an uncorrected P
* 0.0001 to make a fair comparison of the results presented
by Turkeltaub et al. [2002] to the methods that correct for
multiple comparisons.

To test further the relative performance of the threshold-
ing techniques, we obtained random sets of foci from the
BrainMap database (online at http://brainmap.org/). Using
a random experiment number generator in the workspace of
BrainMap Search&View, four groups were created: 168 foci,
233 foci, 274 foci, and 347 foci. ALE meta-analyses were
carried out on these randomly grouped foci and the ALE
maps were thresholded at P * 0.05 according to the three
different methods.

Statistical Comparison of ALE Maps

To determine the difference between two ALE images,
consider two groups of foci: group X with nx number of foci
and group Y with ny number of foci. As discussed previ-
ously, calculation of Pr(X) for all voxels gives an ALE map
for the coordinates from group X. Likewise, Pr(Y) can be
computed in a meta-analysis of the coordinates from group
Y. Subtracting the ALE values calculated from group Y from
the those calculated from group X, Pr(X) ( Pr(Y), gives a
measure of the difference in convergence in the two maps.
To test the null hypothesis that the observed difference is
zero for two sets of random foci, we carry out a permutation
test in which the null distribution for Pr(X) ( Pr(Y) is
generated using many sets of nx random foci and sets of ny

random foci.
We divided each of the four meta-analyses into groups.

Subtraction meta-analyses using a FWHM of 10 mm were
carried out for: (1) overt speech in stutterers (n & 154) and
controls (n & 73); (2) verbal (n & 153) and manual (n & 52)
responses in the Stroop task; (3) silent (n & 149) and speak-
ing (n & 139) baselines in picture-naming tasks; and (4) right
(n & 175) and left (n & 249) painful stimulation. Maps of the
differences between each group of foci were created. Sepa-
rate ALE meta-analyses were carried out for these groups of
studies as well and overlaid onto single image. All images
are thresholded at P * 0.05, corrected using the FDR
method.

To test the efficacy of this technique, we additionally
examined the group of coordinates collected from studies
that elicited painful stimulation on the left side of the body
(n & 249). These coordinates were divided randomly into
two groups (n & 124) and (n & 125) and difference maps
were generated for each group. It was hypothesized that the
percent of suprathreshold voxels in the resultant difference
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images would be very small because the difference in ALE
maps between such similar groups of foci was expected to
be negligible.

Software and Computing Resources

The algorithm for ALE analysis was obtained from Geor-
getown’s Center for the Study of Learning (online at http://
csl.georgetown.edu/software/). All ALE meta-analyses car-
ried out in this study utilized a Java software application
that was developed at the Research Imaging Center in San
Antonio. In this application, an extension for controlling the
FDR rate was added (according to the script available online
at http://www.sph.umich.edu/,nichols/FDR/), the statis-
tical comparison for two meta-analyses was implemented,
and a graphical user interface was created. All computations
were carried out on a cluster of Macintosh computers using
Apple Computer’s Xgrid Technology Preview 2 (online at
http://www.apple.com/acg/xgrid/). The cluster was com-
prised of seven Dual 1.8-GHz Power Mac G5s and three 1.6
GHz Power Mac G5s. Using this Apple cluster markedly
decreased the time required to carry out the permutation
tests. For example, the ALE meta-analysis of the Stroop task
(n & 205) was carried out in 23 min on the grid (which
translates to 3 hr, 56 min on one dual-processor 1.8-GHz
Power Mac G5). The comparison meta-analysis of verbal
and manual Stroop (153 foci and 52 foci, respectively) was
completed in 25 min using the grid, as compared to 4 hr, 14
min on one dual-processor 1.8-GHz Power Mac G5.

RESULTS

Correction for Multiple Comparisons

We compared three thresholding techniques on ALE
meta-analysis maps using: (1) uncorrected P values [Tur-
keltaub et al., 2002]; (2) P values corrected using the single
threshold test that requires generation of the null distribu-
tion of the maximal statistic [Nichols and Holmes, 2002]; and

(3) P values corrected using the FDR method [Genovese et
al., 2002]. As expected, a much larger number of voxels were
deemed significant when using uncorrected P values as
compared to corrected P values (Table I). Figure 1 shows the
comparison between each thresholding technique for each of
the four meta-analyses carried out: (1) overt speech in stut-
terers; (2) the Stroop task; (3) picture naming; and (4) painful
stimulation. These meta-analyses were chosen for their vary-
ing extent of activation and the total number of included
foci. It can be seen that although the use of uncorrected P
values results in an acceptable image in Figure 1a (stutter-
ing), this method is not an appropriate choice when involv-
ing a large number of foci such as seen in Figure 1d (pain).
Conversely, although the maximal statistic method seems an
acceptable if somewhat conservative approach in Figure 1d,
it is obviously too strict for a smaller number of foci as seen
in Figure 1a. Similar results were also obtained for testing
the difference between thresholding techniques in groups of
random foci (Table II). For the ALE maps that were created
with the same threshold (P * 0.0001) used in Turkeltaub et
al. [2002], the percent of suprathreshold voxels were 0.136%
(stuttering), 0.282% (Stroop), 1.393% (picture naming), and
2.521% (pain).

Statistical Comparison of ALE Maps

We carried out individual ALE meta-analyses for each
of the eight subgroups of foci and overlaid each pair of
maps onto a composite image. Figure 2i presents overt
speech (a) in stutterers (yellow) and controls (blue), the
Stroop task (b) with verbal (yellow) and manual (blue)
responses, picture-naming tasks (c) with silent (yellow)
and speaking (blue) baselines, and painful stimulation (d)
to the right (yellow) and left (blue). In this Figure the color
green indicates the regions of overlap between the sepa-
rate meta-analyses. Figure 2ii presents the results of the
comparison meta-analyses for these same subgroups. The
yellow and blue regions still refer to the groups of foci
specified above, but now indicate regions in which there
exists a statistical difference between subgroups. Regions
of overlap (areas in which ALE values were significant for
both meta-analyses) are no longer seen. This was ex-
pected, as the difference between the ALE values in these
regions was not determined to be significant.

In comparing groups of similar coordinates obtained
from studies of painful stimulation on the left side of the
body, the average percentage of suprathreshold voxels
was 0.996%, with a standard deviation of 0.173%. In con-
trast, the difference image between right (n & 175) and left
(n & 249) painful stimulation resulted in 2.072% of voxels
above threshold. In the comparison of silent (n & 149) and
speaking (n & 139) baselines in picture-naming tasks, the
percentage of voxels above threshold was 1.596%, which
is perhaps a more relevant comparison to the two groups
of left pain coordinates in terms of the number of included
foci.

TABLE I. Percent of voxels above threshold P < 0.05

Task (n)
Uncorrected

(%)

Single
threshold
test (%)

FDR
(%)

Stuttering (154) 5.956 0.005 1.399
Stroop (205) 7.052 0.051 1.647
Picture naming (288) 8.829 0.401 3.540
Pain (424) 10.462 1.179 4.185

Four meta-analyses were carried out on a variety of different tasks.
Each ALE map was thresholded using uncorrected P values, P
values computed using the single threshold test, and false discovery
rate (FDR)-corrected P values. For all meta-analyses, the single
threshold test found the smallest number of voxels to be significant.
As expected, using uncorrected P values found the largest number
of voxels to be significant.
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Figure 1.
Comparison of different thresholding techniques. Meta-analyses of
overt speech in stuttering subjects (a), the Stroop task (b), picture
naming (c), and painful stimulation were carried out (d) and the
resultant ALE maps were thresholded in three different ways at P
* 0.05: (i) using uncorrected P values; (ii) using P values that were
corrected using the single threshold test that generates the null

distribution for the maximal ALE statistic; and (iii) FDR-corrected
P values. Three contiguous slices are presented for each meta-
analysis result: z & 28–32 mm for stuttering; z & 40–44 mm for
Stroop; z & (16 to (12 mm for picture naming; and z & 6–10
mm for painful stimulation (n, number of foci)
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DISCUSSION

Correction for Multiple Comparisons

We have presented three methods of assessing statisti-
cal significance in an ALE meta-analysis of functional
neuroimaging data. Figure 1 gives evidence to the large
effect that the number of foci has on the ALE meta-
analysis results. A relatively large number of total foci
will result in relatively large clusters of significant activa-
tion likelihood. The single threshold test proved to exert
very strong control over Type I error and considerably
reduced the number of significant voxels in both random
groups of foci and groups obtained from similar studies in
the literature. As the number of foci included in a meta-
analysis increases, it becomes more difficult to control
Type I error. As the number of foci decreases, it is appar-
ent that the single threshold test is not capable of control-
ling Type II error. Although maximal statistic correction
reduces the high rate of false positives that occur when
testing voxelwise hypotheses, this method exerts strong
control over Type I error in that the chance of rejecting
one or more voxels in which the null hypothesis is true is
less than or equal to ). Due to the adaptive nature of the
method, thresholding ALE maps using FDR-corrected P
values represents an excellent compromise between using
uncorrected P values and applying a threshold that is too
conservative using the single threshold test.

Although applying a conservative threshold to uncor-
rected P values was effective for Turkeltaub et al. [2002]
whose meta-analysis used only 172 foci, this is not an ap-
propriate solution for ALE thresholding, especially for large
meta-analyses (n - 250). It is clear that thresholding the ALE
maps at P * 0.0001 (uncorrected) produced results that most
closely matched the FDR-corrected results. When establish-
ing the relative performance of these three different methods
of thresholding, comparisons should be made for images in
which the same threshold has been applied (P * 0.05). Even
though the ALE maps thresholded at P * 0.0001 (uncor-

rected) and P * 0.05 (corrected using the FDR method) may
seem similar, we argue in support of the latter method as it
is statistically more valid.

Turkeltaub et al. [2002] provided a thorough discussion of
the ALE method. When comparing their meta-analysis re-
sults to results from an fMRI study, a trend was noticed
toward high ALE values in more centrally located voxels in
the brain. This bias was attributed to the fact that voxels
located deeper in the brain are more likely to have higher
ALE values than are voxels on the edge of the brain, because
voxels deep within the brain have a larger number of exist-
ing neighbors in which activation foci may be located. Em-
ploying voxelwise null distributions in the FDR method
corrects for this central drift tendency because individual
distributions of the ALE statistic are estimated with respect
to each voxel, rather than relying on a single whole-brain
distribution.

It is clear that ALE results are dependent on the number of
foci in the analysis, and the FDR method is the best choice
for thresholding ALE maps for both large and small number
of foci. Although the dependency on n causes some diffi-
culty when assessing and making inferences on the results of
a meta-analysis of 75 foci and another of 375 foci, it is not
necessarily an artifact that invalidates the ALE method itself.
Rather, it exemplifies the difference between testing for sta-
tistical significance and examining the effect size. The num-
ber of foci is not a direct factor in the ALE meta-analysis but
rather an indirect result of the heterogeneous state of the
current design standards in functional neuroimaging. That
is, the number of foci produced in any single contrast is a
direct result of many factors, such as the number of subjects
studied, selected statistical threshold, statistical power of the
imaging paradigm, or the smoothness of the data. These
factors are interrelated and affect the outcome of any indi-
vidual activation study. Pooling multiple studies and
searching for function-location correspondences will always
be limited by these differences, but just in the same way that
individual studies are also limited. Each factor that contrib-
utes to the diverse nature of the meta-data in a complicated
and coupled fashion is a result of the meta-data itself and
represents a side effect of the larger problem of noncompli-
ance to rigid standards in data reporting. We do not suggest
a mechanism for normalizing ALE meta-analyses by the
number of foci, despite the fact that this would facilitate
comparison among meta-analyses. Instead, we suggest that
the dependence on this parameter should be preserved as a
valuable indicator of the robustness of the meta-analysis
results.

A question that should be addressed is the minimum
number of foci required for an ALE meta-analysis. One
factor that influences this issue is the nature of the pooled
studies. Studies that probe sensory tasks such as simple
auditory or visual stimulation typically only observe activa-
tion in a few primary sensory regions. More complex cog-
nitive tasks tend to activate a larger network of cortical
regions that often extend across multiple lobes; thus, a meta-

TABLE II. Percent of voxels above threshold P < 0.05 in
meta-analyses of random foci

Group (n)
Uncorrected

(%)

Single
threshold
test (%)

FDR
(%)

1 (168) 6.360 0.025 1.175
2 (233) 6.477 0.004 1.273
3 (274) 6.311 0.007 1.050
4 (347) 7.364 0.353 1.848

Four meta-analyses were carried out on random sets of foci gener-
ated in the BrainMap database environment. Each ALE map was
created according to the three methods of thresholding. Again, all
meta-analyses found that correcting P values using the false discov-
ery rate (FDR) method most effective fsin minimizing Type I error
while maximizing sensitivity.
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analysis of sensory studies will typically require a fewer
minimum number of foci than a meta-analysis of a cognitive
task would, because fewer nodes are involved in these sys-
tems. For example, a meta-analysis that included 82 foci
from studies that investigated activation due to monaural
auditory stimulation revealed robust agreement in the pri-
mary auditory cortex [Petacchi et al., 2005]. In contrast, the
results of the meta-analysis on the Stroop task with a manual
response displayed weaker concordance results as it in-
cluded only 52 foci spread throughout the brain.

At the essence of this question is the issue of how many
foci located within a few millimeters are necessary for con-

vergence of an ALE cluster. Unfortunately, this answer is
linked directly to the number of total foci being pooled
because the FDR method is adaptive to the signal strength of
each individual data set. For small numbers of foci, as few as
three to four nearby coordinates may contribute to a signif-
icant ALE cluster. Meta-analyses of larger numbers of foci
will require greater pooling of clusters of proximate foci to
constitute significant ALE peaks. We thus cannot resolve the
issue of a minimum number of foci to any finite degree.
Instead, we point out that the type of task and degree of
consistency across results all contribute to the answer and
must be inspected on a case-by-case basis.

Figure 2.
Statistical comparisons of ALE maps. ALE meta-analyses (P * 0.05)
for different groups of foci were carried out and are presented
here as overlays of separate meta-analyses (i) or as comparison
meta-analyses computed as a single ALE image (ii). Meta-analyses
carried out were for overt speech (a) in stuttering subjects (yel-
low) and controls (blue), the Stroop task (b) with a verbal (yellow)
and manual (blue) responses, picture-naming tasks (c) with a silent

(yellow) or speaking (blue) baselines, and painful stimulation to the
right (d) (yellow) and left (blue). Green indicates overlap between
the individual meta-analyses (blue . yellow). Three contiguous
slices are presented for each meta-analysis result: z & 28–32 mm
for stuttering; z & 40–44 mm for Stroop; z & (16 to (12 mm
for picture naming; and z & 6–10 mm for painful stimulation. (n,
number of foci).
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Statistical Comparison of ALE Maps

We have described a statistical method above for testing
the difference between two ALE meta-analyses. Ideally, this
technique will encourage the development of advanced
meta-analysis design. The potential use of this technique of
comparing meta-analyses can be illustrated using the meta-
analysis of picture naming presented by Price et al. [2005].

Friston et al. [1996] and Price et al. [1997] have shown that
cognitive subtraction is not always effective in isolating the
cognitive process of interest in cases where the application
of the pure insertion principle may be unwarranted due to
nonadditive factors. In such cases, factorial analysis is useful
in determining both the main effects and interactions of
interest.

The picture-naming meta-analysis first pooled all coordi-
nates obtained by contrasting an activation condition (nam-
ing) to a baseline condition, regardless of response type. A
secondary analysis was carried out in which picture-naming
foci were split into four groups:

• Group A: overt naming, silent baseline.
• Group B: covert naming, silent baseline.
• Group C: overt naming, speaking baseline.
• Group D: covert naming, speaking baseline.
Price et al. [2005] focused on the main effect of all studies

that pooled data from all four groups and the main effect of
baseline by comparing Groups A . B with Groups C . D.
However, using this design, it would also have been possi-
ble to extract the main effect of overt vs. covert responses
(A.C) – (B.D) and the interaction between the effect of
baseline and the effect of overt vs. covert (A(B) – (C(D).
This would conform to a classical analysis of a factorial
design [Friston et al., 1996]. It is our hope that future meta-
analyses will incorporate advanced designs of this type and
thus promote the growth of new methods in the field of
meta-analysis.

Caution should be exercised when carrying out formal
comparisons of ALE meta-analyses when the groups are
disparate in total number of foci. In these cases, it is impos-
sible to say with any certainty whether the difference maps
reflect activation difference across groups of studies or sim-
ply show the effect of one group having a greater number of
coordinates. To circumvent this, a subset of random exper-
iments should be extracted from the larger set and used as
foci for generating the difference map. In the meta-analysis
of the n-back task [Owen et al., 2005], the n-back coordinates
were divided into two groups based on the presentation of
verbal or nonverbal stimuli. Significantly more studies used
verbal stimuli (21 contrasts with 226 foci) and nonverbal
stimuli (9 contrasts with 76 foci), thus a random subset of
verbal coordinates were selected to be compared against the
nonverbal group. Instead of choosing 76 random foci, we
randomly chose 9 contrasts to preserve the overall structure
of the data. The comparison between verbal and nonverbal
stimuli in the n-back task therefore included 76 nonverbal
coordinates and 106 randomly chosen verbal coordinates,
which reduced the disparity in number of foci. Optimally,
many iterations of choosing random subsamples should

carried out to characterize fully the difference between the
two maps.

CONCLUSIONS

The ALE method was extended to include a correction for
the multiple comparisons problem that controls the FDR. In
addition, we presented a quantitative technique for assess-
ing the difference between two meta-analysis images to
facilitate advanced ALE meta-analyses. We chose to address
these two issues rather than undertaking some of the other
concerns raised by Turkeltaub et al. [2002] because we felt
the need for these specific developments was most pressing.
Future work will test the feasibility of incorporating a
weighting factor for the number of subjects in each study
and the intensity of activation for all clusters into the ALE
algorithm.
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APPENDIX

Computation of the ALE statistic

Each reported coordinate (focus) is modeled by a three-
dimensional Gaussian distribution, defined by a user-spec-
ified FWHM. Let Xi denote the event that the ith focus is
located in a given voxel. The probability of Xi occurring at
voxel x, y, z is

Pr!Xi" !
exp! " di

2/2#2"

!2$"3/2 #3 ! %V (a.1)

where di is the Euclidean distance from the center of the
voxel to the ith focus, # is the standard deviation of the
Gaussian distribution, and Pr(Xi) satisfies 0 # Pr(Xi) # 1. In
order to obtain the probability estimate for the entire voxel
volume, instead of just its central point, the Gaussian prob-

ability density is multiplied by %V & 8 mm3 (corresponding
to voxel dimensions of 2 mm ' 2 mm ' 2 mm)

Let X denote the event that any foci are located within a
given voxel. For mutually exclusive events, this probability
is equal to

Pr!X" ! Pr!X1" $ Pr!X2" $ · · · $ Pr!Xn" (a.2)

for n foci. However, since it is possible to have two clusters
of activation from different experiments that have centers of
mass located in the same voxel, the events Xi are not mutu-
ally exclusive. Thus, it is reasonable to assume that these
events are independent. The probability Pr(X) is defined as
the probability of the union if all Xi

Pr!X" ! Pr!X1 ! X2 ! · · · ! Xn" ! Pr! ! iXi" (a.3)

Pr!X" ! 1 " Pr! ! iXi". (a.4)

De Morgan’s law states that for two events, A and B, the
complement of their union is equal to the intersection of
their individual complements. That is,

A ! B ! A " B. (a.5)

Thus,

1 " Pr! ! iXi" ! 1 " Pr! " iXi". (a.6)

For independent events Xi

Pr! " iXi" ! Pr!X1"*Pr!X2"*· · ·*Pr!Xn". (a.7)

Thus, the probability that any foci are located within a given
voxel is defined as

Pr!X" ! 1 " /Pr!X1"*Pr!X2"*· · ·*Pr!Xn"0 (a.8)

Pr!X" ! 1 " /!1 " Pr!X1""*!1 " Pr!X2""*· · ·*!1 " Pr!Xn""0

(a.9)

where Pr(Xi) is defined above in equation [a.1].
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