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Abstract
The inferior frontal junction (IFJ) area, a small region in the posterior lateral prefrontal cortex (LPFC), has received increasing
interest in recent years due to its central involvement in the control of action, attention, andmemory. Yet, both its function and
anatomy remain controversial. Here, we employed a meta-analytic parcellation of the left LPFC to show that the IFJ can be
isolated based on its specific functional connections. A seed region, oriented along the left inferior frontal sulcus (IFS), was
subdivided via cluster analyses of voxel-wise whole-brain co-activation patterns. The ensuing clusters were characterized by
their unique connections, the functional profiles of associated experiments, and an independent topic mapping approach.
A cluster at the posterior end of the IFS matched previous descriptions of the IFJ in location and extent and could be
distinguished from amore caudal cluster involved inmotor control, amore ventral cluster involved in linguistic processing, and
3more rostral clusters involved in otheraspects of cognitive control. Overall, our findings highlight that the IFJ constitutes a core
functional unit within the frontal lobe and delineate its borders. Implications for the IFJ’s role in human cognition and the
organizational principles of the frontal lobe are discussed.
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Introduction
The inferior frontal junction (IFJ) is located in the posterior lateral
prefrontal cortex (LPFC) at the intersection of the inferior precen-
tral and the inferior frontal sulci. Initially, this areawas identified
as exhibiting activation associated with cognitive control in the
Stroop task and during task-switching (Brass and von Cramon
2002, 2004a, 2004b; Derrfuss et al. 2004, 2005; Neumann et al.

2005). Based on these findings, Brass, Derrfuss, et al. (2005) pro-
posed that the IFJ constitutes “a separable area” within the
LPFC that “plays a pivotal role in cognitive control” (p. 314). In par-
ticular, it was assumed that this area is involved in the activation
of currently relevant task representations. More recent studies
indicate that the function of the IFJ is evenmore general than ori-
ginally assumed given its involvement in a number of additional
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capacities, among them the control of selective visual attention
(Asplund et al. 2010; Baldauf and Desimone 2014), dual-tasking
(Dux et al. 2006, 2009; Tombu et al. 2011), the implementation
of novel instructions (Ruge and Wolfensteller 2010; Hartstra
et al. 2011), the detection of behaviorally salient events (Chikazoe
et al. 2009; Verbruggen et al. 2010; Levy andWagner 2011), and the
encoding of stimuli into short-term memory (Zanto et al. 2010,
2011; Sneve et al. 2013).

While these findings clearly indicate that the IFJ is involved in
very basic cognitive control processes, they also emphasize that
its precise role in human cognition remains elusive. One particu-
lar reason for this ambiguity is the location of this area at the
intersection of seemingly disparate functional domains (Fig. 1).
Ventrally it borders Broca’s area (Brodmann area [BA] 44),
which is implicated in linguistic processing (Hagoort 2005;
Friederici and Gierhan 2013), caudally the precentral gyrus (BA
6), which is associated withmotor control and action recognition
(Wise 1985; Rizzolatti et al. 2002; Davare et al. 2006), dorsally the
frontal eye field (FEF; BA 8), which is involved in spatial attention
and the control of saccadic eye movements (Paus 1996; Corbetta
et al. 1998; Corbetta and Shulman 2002), and rostrally the mid-
dorsolateral prefrontal cortex (mid-DLPFC; BA 9/46v), which is
also implicated in cognitive control (MacDonald et al. 2000;
Petrides 2000; Curtis and D’Esposito 2003). The close proximity
of the IFJ to these different domains, along with the fact that
empirically derived activations frequently spread acrossmultiple
regions, has hindered a more precise characterization of its
function.

Functional neuroimaging studies indicate that some of the
aforementioned domains might be distinguishable within the
LPFC. For instance, cognitive control-related foci in the IFJ have
been spatially separated from linguistic functions of Broca’s
area (Fedorenko et al. 2012) as well as from oculomotor functions
of the inferior FEF (Derrfuss et al. 2012). However, the transition
from the IFJ to the mid-DLPFC is still poorly understood. Some
evidence points toward an organization of the LPFC along its ros-
trocaudal axis, with more rostral regions being involved in in-
creasingly abstract control functions (Koechlin et al. 2003; Badre
and D’Esposito 2007, 2009; Koechlin and Summerfield 2007; Nee
and Brown 2012; Nee et al. 2013). From this perspective, the
mid-DLPFC might impose higher-order constraints upon more
concrete computations in the IFJ. Yet, other findings emphasize

the broad domain generality of LPFC regions across diverse
types of cognitive demand, questioning the idea of regionally
specialized control functions (e.g., Woolgar et al. 2011; Reynolds
et al. 2012; Fedorenko et al. 2013; Crittenden and Duncan 2014).
Overall, task-based neuroimaging might be limited in revealing
the exact subdivisions of the LPFC. For the most part, it is used
as a confirmatory method, that is, for the mapping of predefined
functions onto neural structures. As such, it presupposes knowl-
edge about the relevant functional properties and it is controver-
sial to what extent current psychological concepts map onto the
human brain [see Poldrack (2006)].

Data-driven parcellation techniques provide a complemen-
tary approach toward the delineation of cortical modules. This
methodology is motivated by the notion that the function of a
brain region is ultimately constrained by its connections with
other areas (Passinghamet al. 2002), which implies that function-
al units should be distinguishable based on the dissimilarity of
their connections. Various parcellation techniques have been
employed in the literature, reflecting the multiplicity of concepts
that are used to quantify connections between brain regions such
as diffusion-weighted tractography (e.g., Johansen-Berg et al.
2004), resting-state functional connectivity (RSFC; Kelly et al.
2010; Power et al. 2011; Yeo et al. 2011; Kahnt et al. 2012; Gordon
et al. 2014), task-based co-activation (Laird et al. 2013), or combi-
nations of those modalities (Mars et al. 2011; Neubert et al. 2013;
Sallet et al. 2013). The unifying principle of these methods is to
initially divide a volume-of-interest (VOI) into subregions,
based on a particular algorithm to quantify connections, which
is typically followed by a post hoc characterization of the ensuing
divisions (e.g., by comparing the location, extent, and connec-
tions of each subregion with existing data from the literature).
Thus, parcellation studies cannot only provide anatomical land-
marks, but also generate new functional hypotheses that can
subsequently be tested in mapping studies. Accordingly, task-
based neuroimaging and connection-based parcellation ap-
proaches follow different inferential principles and should thus
be considered as mutually informative.

Recent parcellation studies have also examined the organiza-
tion of the LPFC (e.g., Amunts et al. 2010; Kelly et al. 2010; Power
et al. 2011; Yeo et al. 2011; Cieslik et al. 2012; Sallet et al. 2013;
Neubert et al. 2014), yielding partly inconclusive results. Multiple
RSFC studies have examined modularization at the level of the
entire neocortex via clustering (Yeo et al. 2011), community de-
tection (Power et al. 2011), or independent-component analyses
(Smith et al. 2009). These studies consistently point toward a ra-
ther large and homogenous region spanning the inferior frontal
sulcus (IFS) as part of a distributed fronto-parietal network.
Recent studies have utilized more constrained seed regions
(Neubert et al. 2014) or employed more detailed analysis ap-
proaches that permit the identification of within-network
boundaries (Gordon et al. 2014; Wig et al. 2014). These investiga-
tions indicate that a more fine-grained organization may exist
within the IFS. For instance, Neubert et al. (2014) employed a
comprehensive parcellation of the ventrolateral frontal cortex
on the basis of diffusion-weighted tractography and RSFC. They
identified a subregion that resembled previous descriptions of
the IFJ in extent and location (e.g., Derrfuss et al. 2005, 2009), in-
dicating that it may indeed constitute a separable cortical entity
with unique anatomical and functional connections. However,
another study that parcellated the left inferior frontal cortex, on
the basis of its receptorarchitecture, identified 2 distinct subre-
gions at the junction of the inferior frontal and the inferior pre-
central sulci (Amunts et al. 2010), suggesting that the IFJ may
itself comprise multiple divisions. These divergent findings

Figure 1. Illustration of the anatomical locations of the IFJ and adjacent areas

within the LPFC.
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illustrate both the unclear functional anatomical basis of the IFJ
and the challenge of obtaining stable parcellation schemes that
generalize across different methods and modalities. Further-
more, the functional relevance of the aforementioned studies
for human cognition remains an open issue, as they were based
either solely on structural or architechtonical criteria, or on func-
tional connectivity during the task-free “resting state.” Although
the lattermay reflect the statistical historyof regional co-activation
(Donsenbach et al. 2007), its precise correspondence to task-based
cognitive states remains challenging to establish.

In the present study,we thereforewished to shednew light on
the functional neuroanatomical basis of the IFJ. To this end, we
employed a co-activation-based parcellation (CBP) of the left IFS
and the adjacent parts of the precentral, inferior frontal, andmid-
dle frontal gyri (MFG) with the goal of isolating the IFJ. CBP is a
relatively new meta-analytic technique that accesses the foci of
several thousand experiments that are documented in the Brain-
Map database and establishes neural modularization via cluster
analyses of voxel-wise co-activation patterns [see Eickhoff et al.
(2011), Laird et al. (2013), and Fox et al. (2014)]. Thus, in contrast
tomost other parcellationmethods (e.g., DTI, RSFC, cytoarchitec-
ture, and receptorarchitecture), CBP relies on functional brain ac-
tivation during task performance. Furthermore, the systematic
taxonomic labeling of studies in the BrainMap database permits
a post hoc functional characterization of the ensuing clusters.
Thus, CBP cannot only reveal anatomical entities, but also char-
acterize the differential task sets that reliably engage these units.
As such, it provides a powerful tool for revealing functional organ-
ization in a data-drivenmanner. Here,weusedCBP to examine if it
is possible to delineate one or multiple IFJ regions on the basis of
specific task-dependent co-activation patterns, and to reveal the
borders to adjacent functional domains with a particular focus
on the transition from the IFJ to the more rostral mid-DLPFC.

Materials and Methods
Definition of the VOI

The seed VOI was generated on the basis neuroanatomical cri-
teria using the Mango software (“multi-image analysis GUI”;
http://ric.uthscsa.edu/mango) and the MNI152 template in
2-mm resolution. The VOI was oriented along the left IFS (L IFS;
Y-coordinates between −6 and +36) and designed to cover a suf-
ficient cortical surface to identify one or multiple IFJ regions, and
to delineate its borders to neighboring areas in all directions. As a
consequence, it extended deep into the cortex (X-coordinates
between −26 and −60), and encompassed parts of the adjacent

inferior frontal, middle frontal, and precentral gyri. The insular
cortex/frontal operculum was omitted from the seed region.
Altogether, the resulting volume included parts of BAs 6, 9, 44,
45, and 46with a total size of 3815 voxels (voxel size = 4 × 4 × 4 mm;
see Fig. 1 for an illustration). Note that our aim was not to provide
a comprehensive large-scale parcellation of the entire LPFC [see,
e.g., Power et al. (2011), Yeo et al. (2011), Sallet et al. (2013), and
Neubert et al. (2014)], but instead to test if one or multiple IFJ
regions can be identified as exhibiting unique functional connec-
tions, and to characterize the borders with adjacent modules.
Moreover, our focus in this study was on the left hemisphere
because studies from our laboratories have found activation of
the left IFJ more frequently (e.g., Brass and von Cramon 2004a,
2004b; Derfuss et al. 2012; Muhle-Karbe, De Baene, et al. 2014),
and this permitted us to reveal borders of the IFJ(s) to the lan-
guage domain (see Discussion; Fig. 2).

Meta-Analytic Co-Activation Modeling

In the first analysis step, a whole-brain co-activation profile was
generated for each voxel within the VOI. These profiles should
display the co-activation probability of a given seed voxel with
every other voxel in the target brain volume. To this end, we
used the BrainMap database to identify studies that reported
foci at the respective locations (www.brainmap.org; Fox and
Lancaster 2002; Laird et al. 2005; Fox et al. 2014). BrainMap con-
tains the archived foci of several thousand published neuroima-
ging experiments. These studies are furthermore coded with
regard to formal characteristics such as sample sizes, population,
or the employed behavioral domain (BD) and paradigm class (PC)
in a standardized taxonomy. For the given purposes, studieswere
only included in the analysis if the samples consisted of healthy
adults (i.e., studies with pathological populations or children
were excluded) and if they were coded as “normal mapping stud-
ies” (i.e., intervention studies and group comparisons were ex-
cluded). Moreover, we restricted the analysis to peaks reflecting
task-based activations, and discarded deactivations from the
analysis. This resulted in approximately 7500 eligible experi-
ments. Moreover, given that the number of studies that report
foci at a particular voxel is typically too small and variable for re-
liable meta-analyses [see Cieslik et al. (2012), Bzdok et al. (2013),
and Clos et al. (2013)], we employed spatial filtering across neigh-
boring voxels. That is, in order to obtain a sufficient number of ex-
periments for each seed voxel, we pooled across experiments
that reported the most proximate foci, as measured by Euclidian
distances. Importantly, the extent of this spatial filter was sys-
tematically varied, including the closest 20–200 experiments in

Figure 2. Illustration of the seed VOI in the sagittal, coronal, and transversal plane.
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steps of 5, resulting in 37 different filter sizes. This initial range
was selected to exclude filter sizes that are unlikely to be useful
for the given purposes. As such, meta-analyses with very few ex-
periments do not produce reliable co-activation patterns. Con-
versely, filtering over extremely large numbers of experiments
ultimately prevents the detection of local differences.

For each voxel and filter size, an activation likelihood estima-
tion (ALE) meta-analysis was performed across the respective
set of experiments, to reveal concordance of whole-brain co-
activation. The general principle of the ALE method is to treat
the foci of single studies as 3D Gaussian probability density dis-
tributions rather than as single coordinates, reflecting the spatial
uncertainty of neuroimaging data (Turkeltaub et al. 2002). For
each contributing experiment, amodeled activationmap is com-
puted by combining the Gaussian distributions of all reported
foci. The voxel-wise union of modeled activation maps across
all selected experiments then yields an ALE score for each voxel
of the brain (Turkeltaub et al. 2012). This score reflects the prob-
ability of the target voxel being co-activated with the seed voxel.
Notably, ALE scores were not thresholded at this point to retain
all quantitative information about the whole-brain patterns of
co-activation. As a consequence of the selected filter range, this
procedure resulted in 37 Ns ×NT co-activation matrices, where
Ns refers to the number of seed voxels in the VOI (3815 voxels)
and NT refers to the number of target voxels in the reference
brain volume at 4 × 4 × 4 mm (∼30 000 voxels).

K-Means Cluster Analyses

Having generated co-activation profiles for all seed voxels, the
subsequent series of analyses aimed at parcellating the VOI into
clusters of voxels based on the similarityof their co-activationpro-
files. To this end, the K-means cluster methodwas used. K-means
is a nonhierarchical cluster method that uses an iterative algo-
rithm to divide the seed region into a pre-selected number of K
non-overlapping clusters (Hartigan and Wong 1979), with the
aim of minimizing the variance within clusters and maximizing
the variance between clusters. Initially, the cluster centroids are
placed at randomandseedvoxels are then assigned to the clusters
difference from the centroid. One minus the correlation between
the co-activation profiles of 2 voxels was used as distance metric.
The advantage of the K-means cluster method, in comparison
with hierarchical cluster methods, is its reduced sensitivity to
local features. In hierarchical cluster methods, the assignment
of voxels to clusters cannot change anymore after their first

assignment, which may result in locally optimal but globally
suboptimal solutions. We performed K-means clustering for 8
different cluster numbers K, ranging from 2 up to 9 clusters. For
each cluster number K, we performed 10 iterations of the cluster-
ing with different randomly selected locations of the initial clus-
ter centroids. Moreover, to further minimize the effects of
potential local minima, each iteration was replicated 250 times
and only the most stable solution (i.e., the solution with the low-
est total sum of distances) was retained (see http://mathworks.
com/help/stats/k-means-clustering.html#brah7f_-1 for details).
Thus, altogether, the K-means cluster analysis yielded a total of
2960 cluster solutions (i.e., 10 iterations × 8 numbers of clusters ×
37 spatial filters).

Selection of the Optimal Filter Range

Prior to determining the optimal number of clusters, we reduced
the overall range of spatial filters to select a set of filter sizes that
produced the most stable cluster solutions [see Clos et al. (2013)
and Eickhoff et al. (2014)]. Specifically, we assessed the consist-
ency of the cluster assignments for individual voxels across
different filter sizes and selected the range with the lowest num-
ber of deviants (i.e., voxels that were assigned differently, when
compared with the cluster that a voxel was most frequently as-
signed to across all filter sizes). In other words, we sought to
select filter sizes that produced solutionsmost similar to the con-
sensus solution. As illustrated in Figure 3, the proportion of devi-
ant voxels was smallest with an intermediate filter size and
increased with very small filter sizes, but also with very large fil-
ter sizes. The number of deviant voxels was z-normalized within
each cluster solution K, and the borders of the optimal filter range
(45–190 experiments) were defined on the basis of the increase of
z-scores before and after the values (i.e., filter sizes with a z-score
greater than 0were removed; Fig. 3B). Accordingly, all subsequent
analyses were restricted to this filter range. Note, however, that
this selection might depend to some degree on the initial filter
range specified above. Although this range is empirically plaus-
ible (see considerations above), the exact determination of its
borders is ultimately arbitrary. Previous CBP studies have often
observed a central tendency in the selection of the optimal filer
range (i.e., the optimal range is located in the intermediate part
of the initial range), yet the exact ranges still vary considerably
across investigations (e.g., Clos et al. 2013; Bzdok et al. 2015;
Wang et al. forthcoming).

Figure 3. (A) Illustration of the consistency in the assignment of individual voxels to clusters as a function of thefilter size and thenumberof clusters.Warmcolors indicate

high numbers of deviant voxels (i.e., instable solutions) and cold colors indicate a low number of deviant voxels (i.e., stable solutions). The vertical line represents the

ultimately selected filter range that yielded the most stable clustering. (B) Z-scores on median filtered deviants (normalized for K).
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Selection of the Optimal Cluster Solution

In the following series of analyses, the optimal number of K clus-
ters was determined based on the evaluation of several cluster
quality criteria. These analyses were restricted to the optimal fil-
ter range, defined in the previous step. To reveal the optimal
number of clusters, we examined a combination of topologic, in-
formation theoretic, and cluster separation characteristics of the
different cluster solutions. Importantly, each of these metrics
captures different aspects of the quality of the cluster separation,
and the selection of an optimal solution should thus be based on
convergent evidence across metrics.

The first topologic criterion was the percentage of misclassified
voxels. This criterion indicates the stability of a cluster solution
across different filter sizes. Specifically, it reflects the proportion
of voxels that are assigned to a different cluster compared with
the most frequent assignment (i.e., the cluster mode) across all
filter sizes. This indirectly reflects the amount of noise and
potentially local effects in the clustering. A good solution K is in-
dicated by a percentage that is not significantly higher than that
of the previous K− 1 solution, especially if the subsequent K + 1
solution leads to a significant increase.

Second, we examined the percentage of voxels not related to the
dominant parent cluster, when compared with the K − 1 solution.
This metric, which is related to the hierarchy index (Kahnt
et al. 2012), indicates the number of voxels that are lost when
only voxels are considered that are consistent in hierarchy (com-
pared with the previous solution). For example, with K = 3, voxels
assigned to Cluster 3 would be excluded if they were previously
assigned to Cluster 2 (with K = 2) and the majority of voxels in
Cluster 3 actually stemmed from Cluster 1 (with K = 2). A good so-
lution K is indicated by a percentage of lost voxels that is lower
than the median across all solutions, and that represents a
local minimum (i.e., the percentage is lower than those of the
previous K− 1 solution and the subsequent K + 1 solution).

Third, as a information theoretic criterion, we examined
the variation of information metric [VI; see Meila (2007)]. The VI
assesses the similarity of cluster assignments, based on their mu-
tual information, and has been used before in determining the op-
timal numbers of subdivisions of a brain region (Kelly et al. 2010;
Kahnt et al. 2012). Here, we applied the VI metric in 2 contexts.
First, we assessed the VI between filter sizes (i.e., 45–190 experi-
ments) for each cluster number K. In this context, the VI indicates
the stability of a cluster solution, indexed as its independence from
a particular filter size. Good cluster solutions should not show an
increase in VI, comparedwith the previous solution, and/or exhibit
an increase with the subsequent solution. Second, we computed
the VI across different numbers of K clusters (averaged across filter
sizes). In this context, the VI indicates the amount ofmutual infor-
mation between neighboring cluster solutions. Good solutions are
indicated by a significant increase in the VI whenmoving from the
current solution K to the subsequent solution K + 1 (primary criter-
ion), and/or a decrease in VI whenmoving from the previous solu-
tion K− 1 to the current solution K (secondary solution).

Finally, as a cluster separation criterion, we computed silhou-
ette values. This score indicates, for each voxel, the similarity to
voxels in the same cluster, when compared with voxels in
other clusters. As the goal of cluster analysis is to obtain solutions
with high intracluster similarity and low intercluster similarity,
good solutions are indicated by silhouette values that are signifi-
cantly higher than those in the K − 1 solution, especially if the
K + 1 solution yields no further increase.

Importantly, every metric used captures different aspects of
cluster separation quality. Hence, an optimal solution should
be identified based on convergent evidence across metrics.

Illustration of the Optimal Cluster Solution

The application of the aforementioned cluster metrics consist-
ently identified the two-cluster solution and the six-cluster solu-
tion as the most stable parcellations of the seed VOI, at different
levels of detail (Fig. 4). All subsequent analyses were restricted to
voxels that were hierarchically and spatially consistent and lo-
cated in the gray matter. In addition, we used multidimensional
scaling (MDS) to visualize the similarity of the different clusters,
as measured by their whole-brain co-activation profiles (Fig. 7).
MDS allows the visualization of N-dimensional data into a two-
dimensional space. For each of the 30 optimal filter sizes (i.e.,
45–190 experiments in steps of 5), we computed Ns ×Ns matrices
that indicate the correlation distances between the co-activation
profiles of the respective seed voxels using the same distance
metric as above (i.e., one minus the pairwise correlation). MDS
was then performed on the eigenimage of these distance matri-
ces using Sammon’s nonlinear mapping as a goodness-of-fit
criterion.

Shared and Distinct Co-Activation Patterns

After the parcellation of the VOI, we conducted follow-up meta-
analytic co-activation modeling (MACM) analyses to reveal clus-
ter-wise patterns of whole-brain co-activation. Thus, for each
cluster, we first identified studies in the BrainMap database that
contained at least one activation focuswithin the respective clus-
ter borders using the same restrictions as described above (i.e.,
only “normal mapping” studies with healthy adults). Thereafter,
an ALE meta-analysis was performed on the resulting number of
experiments to reveal statistically significant convergence of co-
activation. These meta-analyses were conducted analogously to
the procedures described above, except that we now performed
statistical inference on the resulting ALE maps. To this end, we
compared the ALE maps of experiments associated with a given
cluster with a null distribution that reflects a random spatial asso-
ciation between experiments with a fixed within-experiment dis-
tribution of foci [see Eickhoff et al. (2009)]. This random-effects
inference reveals above-chance convergence between experi-
ments rather than clustering of foci within experiments. The ob-
served ALE scores were tested against this null distribution
yielding a map of P-values (Eickhoff et al. 2012) that were trans-
formed to z-values and thresholded (cluster-level: family-wise
error-corrected P < 0.05; voxel level: uncorrected P < 0.001).

Upon completion of the cluster-wise MACM analyses, we per-
formed a series of conjunction and contrast analyses to reveal
commonalities and differences between the co-activation pat-
terns of the clusters. We first conducted a minimum-statistic
conjunction between the thresholded ALE maps of all clusters
to reveal the overlap of co-activation patterns (Nichols et al.
2005; Caspers et al. 2010). Thereafter, we computed the voxel-
wise differences between ALE maps to reveal statistically signifi-
cant differences in co-activation patterns between all pairs of
clusters (similar to Eickhoff et al. 2011). These difference maps
were then compared with a null distribution. To generate this
distribution, we pooled all experiments that contributed to either
MACM analysis (i.e., all experiments associated with the 2 clus-
ters) and assigned them randomly to 2 groups of equal size. ALE
scores were then calculated for both groups and a voxel-wise dif-
ference test was conducted for each voxel. This procedurewas re-
peated 10 000 times, yielding the final null distribution of the
difference between the ALE scores of the MACM analyses of the
2 clusters. We then conducted a voxel-wise test of the observed
difference map against this null distribution, yielding a posterior
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probability that an observed difference is not attributable to
random noise. The resulting values were thresholded at P > 0.95
(i.e., a 95% chance that an observed difference reflects a true dif-
ference) and inclusively masked with the respective main effect
(i.e., the significant effect of the MACM of the particular cluster).
Finally, we sought to delineate the patterns of co-activation that
are specific for each cluster. To this end, we calculated conjunc-
tion maps across the difference maps of a given cluster with all
the other clusters, revealing voxels that exhibited significantly
stronger co-activation with a particular cluster compared with
all other clusters.

Functional Characterization

In the last set of analyses, we aimed at specifying the functional
characteristics of the previously delineated clusters by examin-
ing the functional profiles of experiments that activate each clus-
ter. To this end, we accessed the taxonomic categories “BD” and
“PC” based onwhich studies in the BrainMap database are coded.

BDs include the relatively broad categories “cognition,” “action,”
“perception,” “emotion,” and “interoception” as well as their
subcategories. PCs denote the specific tasks that were used (see
http://brainmap.org/scribe for more details). To establish a func-
tional characterization of differences between the final clusters,
we quantified “forward inference” and “reverse inference” on
the BDs and PCs of each cluster. Forward inference refers to the
probability of observing activity in a particular brain region,
given the knowledge of a psychological state (i.e., the consistency
of a link between state and brain activation). Thus, in this
approach, we determined a cluster’s functional profile by identi-
fying taxonomic labels for which the probability of activating a
specific cluster was higher than by chance (i.e., across the entire
database). This was achieved by the means of a binomial test
(P < 0.05; Bonferroni-corrected for multiple comparisons) that as-
sessed whether or not the conditional probability of the cluster’s
activation given a particular label [P(Activation|Task)] was higher
than the baseline probability of activating that cluster per se
[P(Activation)]. Reverse inference, on the other hand, refers to the

Figure 4.Clustermetrics thatwere used for the identification of the optimal solution K. (A) Percentage ofmisclassified voxels: The six-cluster solution is considered a good

solution because it does not lead to a significant increase in the percentage of misclassified voxels (n.s.) when compared with the K− 1 solution, and the subsequent K + 1

solution yields a significant increase (asterisks). (B) Percentage of voxels that are not related to the parent cluster: The six- and seven-cluster solutions are considered good

solutions because the percentages of lost voxels are lower than the median across all solutions (horizontal bar). (C) VI between filter sizes: The six- and the eight-cluster

solutions are considered good solutions because they do not show an increase in VI compared with the previous solution (n.s.). (D) VI across cluster solutions: The six-

cluster solution is considered the optimal solution because it displays a significant decrease in VI compared with the previous solution (−) and the subsequent solution

leads to a significant increase in VI (asterisks). (E) Silhouette values: The six-cluster solution is considered the optimal solution, as it displays a significantly higher

silhouette value than the previous solution (asterisks) and the subsequent solution leads to significant decrease. Each cluster metric is described in detail in the

Materials and Methods section.
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probability of a psychological state being present given the
knowledge of a particular brain activation (i.e., the specificity of
a link between state and brain activation). Thus, in this approach,
we determined a cluster’s functional profile by identifying
the most likely BDs and PCs given the activation of a specific
cluster. This likelihood P(Task|Activation) was derived from the
previously used conditional probability P(Activation|Task)
as well as the task’s and the cluster’s baseline probabilities
P(Task) and P(Activation) using Bayes rule. Significance was es-
tablished via a χ2 test (P < 0.05, Bonferroni-corrected for multiple
comparisons).

In a second series of post hoc analyses, we further specified
the functional characterization of selected clusters using Neuro-
synth (www.neurosynth.org/). Neurosynth is another database
for the large-scale analysis of neuroimaging data [see Yarkoni
et al. (2011)] that is based on different conceptual principles
than BrainMap [see Laird et al. (2013) and Fox et al. (2014) for com-
parison]. Instead of analyzing manually coded taxonomic labels,
Neurosynth applies text-mining techniques to access frequency-
based weightings of specific terms in published neuroimaging
articles (e.g., “working memory,” “pain,” or ”emotion”) and re-
lates them to the foci that are reported in the respective studies
to derivemeta-analyses [seeYarkoni et al. (2011) for an overview].
This “topic-mapping” approach permits to establish quantitative
associations between particular terms and neuroanatomical
locations. Two major types of analyses are implemented in the
Neurosynth web interface: Location-based analyses reveal terms
that are frequently used in studies that report activation at a par-
ticular brain region, and term-based analyses reveal brain regions
that are associated with a particular search term. Both types of
analyses can be quantified either in terms of consistency (for-
ward inference) or in terms of specificity (reverse inference; see
above). To further explore and validate the functional profiles of
the ensuing clusters of our parcellation, we performed location-
based searches (forward and reverse inference) using the peak
coordinates of the respective clusters as input.

Results
Selection of an Optimal Filter Range

Analyzing the consistency of the cluster assignment for individ-
ual voxels across different filter sizes revealed that a range of 45–
190 experiments produced the most stable results (see Fig. 3
above). Accordingly, all further analyses were based on this
range of filter sizes.

Selection of an Optimal Cluster Solution

The subsequent application of topologic, information theoretic,
and cluster separation metrics (see the Materials and Methods
section) consistently identified both the two-cluster solution
and the six-cluster solution as optimal parcellations of the VOI
at different levels of detail (Fig. 4). In particular, the percentage
of misclassified voxels exhibited 2 minima with the two-cluster
solution and the six-cluster solution. That is, after monotonous
increase from the 2 clusters up to the 5 clusters, the percentage
did not increase further whenmoving to the six-cluster solution.
In addition, the percentage was significantly lower than with
the subsequent seven-cluster solution (Fig. 4A). A similar pattern
was found for the percentage of voxels that are not related to the parent
cluster. The proportion of lost voxels with the six-cluster solution
was below the median across all 8 solutions, and it was signifi-
cantly lower than with the preceding and the subsequent

solutions (Fig. 4B). In the same vein, the variation of information be-
tween filter sizes increased monotonously from 2 up to 5 clusters
where it reached a local maximum and numerically decreased
with the six-cluster solution. Moving to the seven-cluster solu-
tion lead to a significant increase in the variation of information
(Fig. 4C). The variation of information across clusters also identified
the maximum of stability with the six-cluster solution, as indi-
cated by a local minimum (Fig. 4D). Finally, silhouette values dis-
played a maximum with the two-cluster solution, followed by a
drop when moving to the three-cluster solution. Subsequently,
the values increased continuously from 3 up to 6 clusters, but
additional clusters yielded no further increase (Fig. 4E). Taken to-
gether, the high degree of consistency among different topologic-
al, information theoretic, and cluster separationmetrics provides
very strong support for the parcellation of the VOI into either 2 or
6 clusters. Obtaining multiple solutions, at different levels of de-
tail, that fit the data equally well is a common observation in par-
cellation studies and cluster analyses more generally [see, e.g.,
Yeo et al. (2011)]. As can be seen in Figure 5 and in the Supple-
mentary material, the two-cluster solution cleanly separated
the premotor sections of the seed regions from theprefrontal sec-
tions, whereas the six-cluster solution also revealed subdivisions
within the LPFC. Given our focus on prefrontal cortex organiza-
tion, we will focus primarily on the more detailed six-cluster
solution here (see Supplementary material for an overview of
the two-cluster solution). Moreover, note that although it is prin-
cipally possible that cluster analyses with K > 9 would yield
solutions with even better fit, the employed cluster metrics con-
sistently indicate a decreasing fit with higher numbers of K.

Anatomical Description of Clusters

The locations of the 6 resulting clusters are illustrated in Figure 5
andTable 1. Cluster 1was located at the posterior end of the IFS. It
was situated deep in the cortex at the intersection of the inferior
frontal and the inferior precentral sulci, spanning the adjacent
parts of the precentral, inferior frontal, and MFG. The cluster’s
location and extent both correspond with previous anatomical
definitions of the IFJ that were based on group or single-subject
fMRI studies (Derrfuss et al. 2004, 2009). Cluster 2 was located
on the precentral gyrus. It lay caudally and laterally of Cluster 1

Figure 5. Anatomical location of the 6 clusters that resulted from the K-means

clustering of the L IFS VOI.
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anddid not extend beyond the precentral sulcus. Cluster 3was lo-
cated on the inferior frontal gyrus (IFG), rostrally and ventrally of
Cluster 1. It extended slightly on the adjacent IFS. Cluster 4 was
located on the posterior end of the MFG. Ventrally it was delim-
ited by the IFS, and caudally (in large parts) by the precentral sul-
cus. Cluster 5 was located deep in the more anterior parts of the
IFS. The progression of this cluster followed the IFS in anterior
direction. Finally, Cluster 6 was located in the anterior part of
the MFG, directly rostral of Cluster 3 and dorsal of Cluster 5, at a
location typically referred to as “mid-DLPFC.”

We also examined the stepwise division of the seed region
into the 6 ensuing clusters at different levels of K. This sequence
is informative about the similarity among the different clusters
and further illuminates the organization within the VOI from a
different perspective. As can be seen in Figure 6A, atK = 2, the pre-
motor section (Cluster 2) was separated from the remaining VOI
and did not change further in the subsequent clustering steps. At
K = 3, the IFG region (Cluster 3) was separated from the remaining
anterior portion of the VOI and did not change further at subse-
quent clustering steps. At K = 4, the dorsolateral section of the
VOI (i.e., Clusters 4 and 6) was dissociated from the remaining
seed region. At K = 5, the anterior inferior frontal sulcus (aIFS) re-
gion (Cluster 5) was separated from the IFJ region (Cluster 1). Fi-
nally, at K = 6, the 2 sections along the MFG (Clusters 4 and 6)
separated from one another. Overall, this separation sequence
is consistent with the assumption that the clusters on the

precentral gyrus and the IFG constitute rather distinct functional
modules, when compared with the remaining clusters along the
IFS and the MFG that differ only on a finer scale. This is also evi-
dent in theMDS results (Fig. 6B), which indicate a clear separation
of Cluster 2 (PMC) and Cluster 3 (IFG) from the remaining VOI,
whereas the co-activation profiles of Clusters 1 (IFJ), 4 (pMFG), 5
(aIFS), and 6 (mid-DLPFC) are much more similar.

Common and Specific Co-Activation Patterns

After the delineation of the 6 final clusters, we performed cluster-
wiseMACManalyses to reveal each clusters’whole-brain co-acti-
vation pattern (see theMaterials andMethods section for details).
The resulting thresholded ALE maps were used to identify both
common and specific co-activation patterns. In the first step,
we computed a conjunction analysis across all 6 MACM maps
in order to reveal commonalities in co-activation patterns across
the different clusters (Fig. 7 and Table 2). This analysis revealed 2
large clusters along the bilateral IFS that encompassed large
parts of the adjacent inferior frontal, middle frontal, and precen-
tral gyri as well as the insular cortices. In addition, there was a
cluster in the medial frontal wall covering the supplementary
motor area (SMA), pre-supplementary motor area (pre-SMA),
and the anterior cingulate cortex (ACC), and another cluster
along the left intraparietal sulcus (IPS). Taken together, these
areas correspondwell with previous descriptions of a fronto-par-
ietal “cognitive control network” (Cole and Schneider 2007) or
“multiple demand system” (Duncan 2010) that is implicated in
the coordination of goal-oriented cognition and action.

Thereafter, we computed conjunctionmaps across each clus-
ter’s difference maps to reveal co-activation patterns that are
specific for each cluster (see description in the Materials and
Methods section). Cluster 1 (IFJ) exhibited specific co-activation
with its right homotope, the pre-SMA, the left IPS, and the right
anterior insula. For Cluster 2 (PMC), specific co-activation was
found in 2 large bilateral clusters that covered the pre- and post-
central gyri. The left cluster extended to the parietal lobe, cover-
ing the supramarginal gyrus (SMG) and the anterior IPS. In
addition, there was specific co-activation in the medial frontal
wall in the SMA, and bilaterally in the putamen and the thalami.
Finally, therewere 2 additional clusters on the temporal lobe. One
covered the left superior andmiddle temporal gyri, and the other
one was located on the right temporal pole. Cluster 3 (IFG) dis-
played specific co-activation with large parts of the left IFG, as

Table 1 Overview of the size, anatomical location, and
cytoarchitechtonic mapping of each cluster

Region Label Size MNI coordinates

x y z

Cluster 1 IFJ 765 −37 5 31
Cluster 2 PMC 671 −52 2 39
Cluster 3 IFG 777 −51 25 21
Cluster 4 pMFG 539 −43 14 39
Cluster 5 aIFS 529 −36 25 19
Cluster 6 mid-DLPFC 385 −40 31 25

Note: MNI coordinates refer to the respective centers of gravity of each cluster.

IFJ, inferior frontal junction; PMC, premotor cortex; IFG, inferior frontal gyrus;

aIFS, anterior inferior frontal sulcus; pMFG, posterior middle frontal gyrus; mid-

DLPFC, mid-dorsolateral prefrontal cortex.

Figure 6. Illustration of the best cluster solution (K = 6). (A) Pattern of cluster assignment and cluster splitting at different levels of K. (B) Visualization of the six-cluster

solution by the means of multidimensional scaling. The axes represent dimensionless factors representing the two-dimensional projection of the data. Points

represent voxels and their proximity indicates the similarity of their co-activation profiles. Color coding: red = Cluster 1, green = Cluster 2, blue = Cluster 3,

yellow =Cluster 4, cyan =Cluster 5, violet = Cluster 6.
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well as with 2 clusters located on the left middle and inferior
temporal gyri (MTG, ITG). For Cluster 4 (pMFG), therewas a single
focus of specific co-activation, located in the left posterior infer-
ior parietal lobule (IPL). Cluster 5 (aIFS) exhibited specific co-
activation with its right homotope and with the rostral anterior
cingulate cortex (ACC). Finally, for Cluster 6 (mid-DLPFC), specific
co-activation was found within its right homotope, as well as
bilaterally on the medial IPL. Figure 8 and Table 3 illustrate the
specific co-actication patterns of all 6 clusters.

Functional Characterization

To examine functional characteristics of the different clusters,
we employed a post hoc analysis of the functional profiles of ex-
periments that activate each cluster. To this end, we quantified
forward and reverse inference of BDs and PCs separately for
each cluster (see the Materials and Methods section). Of note,
this inference is constrained by the taxonomy and categorization
scheme of the BrainMap database and should therefore be con-
sidered as explorative. Overall, the data confirmed the strong
link between the left frontal lobe and linguistic functions, as re-
flected in the frequent and strong association of language-related
categories with all 6 clusters. In addition, some marked differ-
ences in the clusters’ profiles were evident. In brief, Cluster 2
was strongly related with action processing, both action execu-
tion as well as action observation and imagination. Cluster 3
showed the strongest association with language and semantic

memory. Finally, Clusters 1, 4, 5, and 6 all showed a reliable asso-
ciationwith tasks requiring cognitive control across a rather wide
array of subprocesses, including conflict resolution (Stroop task),
flexibility (task-switching or Wisconsin card sorting test), and
working memory (n-back task), with little evidence for pro-
nounced differences between the clusters (see Supplementary
Figs 1 and 2 for a complete overview).

In the next step, we further specified the functional char-
acterization of Cluster 1 (IFJ), Cluster 5 (aIFS), and Cluster 6
(mid-DLPFC) using a location-based topic-mapping analysis via
Neurosynth (see theMaterials andMethods section).We focused
on these 3 clusters because they correspond most closely to ac-
tivation foci in the cognitive control literature and are often trea-
ted similarly. As in the previous analyses, we examined both
forward inference and reverse inference to reveal the consist-
ency and the specificity links between the clusters and func-
tions, as reflected in the respective terms (see the Materials
and Methods section). Replicating the previous set of analyses,
all 3 clusters exhibited strong links with both executive and lin-
guistic functions. Yet, with regard to control functions, subtle
differentiations were evident between the clusters’ profiles.
The IFJ cluster was primarily associated with functions related
to the selection and specification of task demands (e.g., “task-
relevant,” “stop”, “congruency”, “rules”, or “contextual”). The
aIFS cluster, on the other hand, was most strongly associated
with functions related to interference resolution (e.g., “competi-
tion,” “task-irrelevant,” and “violations”) and attention shifts (e.
g., “shifting,” or “ switching”). Finally, the mid-DLPFC cluster
clearly showed the strongest link to working memory (e.g., “1-
back,” “2-back,” “n-back,” and “visuospatial”) and higher-order
planning functions (e.g., “maintenance,” planning,” “prepar-
ation,” and “task-irrelevant”; see Supplementary Tables 1 and
2 for a complete overview).

External Validation

In the last series of analyses, we sought to validate our parcella-
tion of the IFJ (Cluster 1) with independent data. To this end, we
compared this cluster with several parcellation schemes and co-
ordinates from the literature. Only the IFJ clusterwas subjected to
these analyses, as the outer boundaries of the adjacent clusters
are likely incomplete due to the arbitrary boundaries of our
seed region (see the Materials and Methods section). We first ex-
amined the parcellation by Neubert et al. (2014). As mentioned
above, this study employed a combination of RSFC and diffu-
sion-weighted imaging to identify the subdivision of the ventro-
lateral frontal cortex. In this study, a cluster was identified at the
caudal end of the IFS, directly rostral to the precentral gyrus,
which was similarly labeled as IFJ. As can be seen in Figure 9A,
the 2 clusters showed good overlap, which was confirmed by a
Dice coefficient of 0.58. The cluster from the present study ex-
tended slightly further caudally, though it covered the adjacent
ventral premotor cortex (displayed in green) only minimally.
Next, we examined the parcellation by Yeo et al. (2011). This
study subdivided the entire neocortex based on cluster analyses
of RSFC data, yielding one large cluster along the entire IFS. Fig-
ure 9B shows that Cluster 1 from the present study cleanly
matched into the caudal end of this IFS region, in particular
at the caudal and dorsal transitions to the precentral gyrus and
MFG, respectively. Finally, we examined the parcellation by
Gordon et al. (2014) who employed RSFC-boundary mapping to
the entire neocortex. As shown in Figure 9C, they identified 3 par-
cels along the IFS in rostrocaudal orientation. The most caudal
parcel overlapped with Cluster 1 from the present study. In

Table 2 Overview of the conjunction analysis across the co-activation
maps of all 6 clusters

Region Size MNI coordinates

x y z

L IFS 4383 −43 16 21
R IFS 2787 43 20 21
MFC 188 10 16 48
L IPS 1579 −34 −54 46

Note:MNI coordinates refer to the respective centers of gravity and the cluster size

is indicated in the number of voxels.

IFS, inferior frontal sulcus; MFC, medial frontal cortex; IPS, intraparietal sulcus.

Figure 7. Conjunction map of the co-activation patterns across all 6 clusters.
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particular, the dorsal boundary to the caudal MFG, the rostral
boundary to the intermediate IFS parcel, and the caudal bound-
ary to the precentral gyrus aligned closely. Overall, therefore,
the IFJ cluster from our study matched well with existing parcel-
lation schemes of the LPFC. As the latterwere derived fromdiffer-
ing data modalities and with different parcellation criteria, this
corroborates the validity and functional anatomical plausibility

of our results. Differences between parcellations were evident
primarily with regard to ventral boundaries, which were more
dorsal in our cluster and that by Neubert et al. (2014) compared
with the schemes by Yeo et al. (2011) and Gordon et al. (2014). Al-
though only speculative at this point, this may reflect methodo-
logical differences across investigations (e.g., between seed-
based and non-seed-based analyses).

Figure 8. Specific patterns of co-activation for each cluster (i.e., regions that show significantly stronger co-activation with a given cluster than with all other 5 clusters).

Patterns for the Clusters 1–6 are displayed from top to bottom.
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In the final set of validation analyses, we compared our
parcellation of the IFJ with different paradigm-based meta-ana-
lyses of executive functions from the literature. This confirmed
that foci related to different control functionswere locatedwithin
the boundaries of the IFJ cluster, including task-switching
(Derrfuss et al. 2005; located at −40, 4, 30; Niendam et al. 2012; lo-
cated at −38, 6, 28), Stroop interference (Derrfuss et al. 2005; lo-
cated at −40, 4, 32), response inhibition (Niendam et al. 2012; 2
peaks located at −42, 4, 32; and at −44, 6, 26; Levy and Wagner
2001; located at −46, 10, 28), and working memory (Niendam
et al. 2012; located at −42, 16, 24; Rottschy et al. 2012; located at
−46, 10, 26). Altogether, these results support the existence of a
“core” IFJ region at the caudal and dorsal end of the IFS that
possesses unique functional connections and contributes to a
variety of cognitive demands.

Discussion
In the present study, we conducted a CBP of the left IFS and its
adjacent sectionswithin the LPFC. Our results show that a single
IFJ region can be distinguished from neighboring areas on the
basis of specific whole-brain co-activation patterns. Moreover,
our data specify the IFJ’s borders to the premotor cortex, the
IFG, and the aIFS/mid-DLPFC. We discuss in the following sec-
tion how our findings elucidate the role of the IFJ in human cog-
nition, the organization of cognitive control functions in the

frontal lobe, and the relationship between control and language
in the left LPFC.

The IFJ as a Distinct Module in the LPFC

Our finding that the IFJ can be identified on the basis of a specific
pattern of whole-brain co-activation solidifies the hypothesis
that this brain region constitutes a core functional unit within
the human frontal lobe [see Brass, Derrfuss, et al. (2005)]. This no-
tion was further substantiated by the correspondence of the IFJ
cluster with different parcellations from the literature, especially
the one by Neubert et al. (2014). These parcellations converged
not only in terms of location and extent, but also yielded very
similar connections of the IFJ region (including pre-SMA, anterior
insula, and the IPS). Our data therefore strongly imply that there
is a core IFJ region that possesses specific anatomical and func-
tional connections. This may serve as a template for future neu-
roimaging studies and help elucidating whether or not a given
focus is likely to be located in the IFJ.

Importantly, the resulting borders between the IFJ and neigh-
boring areas, along with the co-activation profiles of these re-
gions, were anatomically plausible and converge with the
existing literature. Caudally, the IFJwas dissociated fromacluster
that occupied large parts of the premotor cortex (Cluster 2). This
cluster exhibited specific co-activation with the SMA, the left an-
terior IPS/SMG, bilateral putamen and thalami, and showed a
clear involvement in basic motor control functions. This finding
is consistent with a large body of literature on a parietal–pre-
motor network involved in action planning (Jeannerod et al.
1995; Wise et al. 1997; Rushworth et al. 2003; Desmurget and
Sirigu 2009) and RSFC delineations of a “sensorimotor network”
(Smith et al. 2009; Power et al. 2011). Ventrally, the IFJ bordered
a cluster that extended on the IFG (Cluster 3). This cluster exhib-
ited specific co-activationwith the ITG/MTG and showed a strong
link with linguistic and semantic processing, largely matching
the locations reported in recent meta-analyses on language pro-
duction and semantic memory (Vigneau et al. 2006; Binder et al.
2009; Clos et al. 2013). Finally, the IFJ could also be distinguished
from more rostral regions in the vicinity of the IFS that were also
implicated in cognitive control. One of these clusters was located
more dorsally on the posterior end of the MFG and exhibited spe-
cific co-activation with the left posterior IPL (Cluster 4). Interest-
ingly, this resembles 2 recent investigations that have identified
very similar regions as being functionally connected both during
memory retrieval (Nelson et al. 2010) and in the resting state
(Power et al. 2011). Thus, although these regions donot constitute
a commonly described network, they seem to form a replicable
module that should be further examined with future research.
Another cluster (Cluster 5) was located rostrally of the IFJ within
the aIFS. This cluster was specifically co-activated with its right
homotope and the ACC, and showed a clear involvement in cog-
nitive control functions, most clearly in aspects related to the
resolution of cognitive interference. The distinction of the aIFS
from the IFJ is relevant, as a number of studies have reported par-
allel foci in both of these regions (e.g., Zysset et al. 2001; Ruge and
Wolfensteller 2010; Kuo et al. 2014; Bahlmann et al. 2015). Our
finding indicates that this may reflect activity in 2 related but
nonetheless distinct cortical entities (see also the next section).
The specific co-activation of the aIFS cluster with the ACC is
also of interest. Notably, although both cingulate and frontolat-
eral cortices are generally considered pivotal regions for control,
current accounts make rather different assumptions about their
respective contributions. Some frameworks emphasize their
similarity in dynamically coding task-relevant variables (e.g.,

Table 3 Overview of specific co-activation patterns of each cluster

Region Size MNI coordinates

x y z

Cluster 1
L IFJ 764 −38 4 32
R IFJ 96 42 9 27
Pre-SMA 131 2 17 46
L IPS 253 −27 −58 43
R anterior insula 101 34 28 −3

Cluster 2
L pre- and postcentral gyri/SMG 2954 −49 −8 37
R pre- and postcentral gyri 1710 51 1 36
SMA/pre-SMA 1270 −1 2 55
L SPL 142 −32 −51 59
L Putamen 350 26 0 1
R Putamen 177 25 3 4
L Thalamus 330 −10 −22 3
R Thalamus 137 12 −18 8
L STG/MTG 157 −55 −38 14
R Temporal pole 73 52 10 −8

Cluster 3
L IFG 1530 −50 26 9
L ITG/MTG 96 −52 −46 −9

Cluster 4
L pMFG 1530 −41 14 43
L IPL 137 −40 −65 41

Cluster 5
L IFS 811 −37 27 14
R IFS 129 39 26 14
R ACC 106 8 25 25

Cluster 6
L MFG 944 −38 34 29
R MFG 794 40 37 27
L IPL 93 −50 −48 49
R IPL 464 48 −49 47

SPL, superior parietal lobule; STG, superior temporal gyrus.
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Duncan 2010), while others have proposed that they serve rather
complementary roles, for example, in detecting interference and
implementing top-down control (Botvinick et al. 2001) or in gen-
erating task control signals at different time scales (Dosenbach
et al. 2008). Our results do not permit to distinguish between
these accounts, but the finding of ACC–LPFC co-activation itself,
along with the functional characterization, underscores the in-
volvement of both regions in overcoming cognitive interference
via adjustments of top-downcontrol. Finally,we identified aclus-
ter that was located on the more rostral sections of the MFG, ros-
tral to Cluster 4 and dorsal to Cluster 5, corresponding to classical
mid-DLPFC locations from theworkingmemory and conflict con-
trol literature (e.g., MacDonald et al. 2000; Bunge et al. 2002; Braver
et al. 2003; Curtis and D’Esposito 2003; Feredoes et al. 2011; Nee
and Brown 2012, 2013). The specific co-activation of this cluster
with the bilateral medial IPL nicely aligns with a number of find-
ings that similarly observed enhanced coupling between DLPFC
and the IPL, as opposed to stronger coupling between the IPS
and more posterior LPFC regions such as the IFJ (e.g., Dosenbach
et al. 2006, 2007; Neubert et al. 2014).

Toward a Taxonomy of Frontal Lobe Functions

Despite the clear anatomical delineation of the IFJ, the functional
differentiation of this area from more rostral regions (i.e., aIFS
and mid-DLPFC) proved challenging. All 3 clusters were shown
to be generally associated with classical cognitive control tasks
(e.g., the Stroop task, the n-back task, or theWisconsin Card Sort-
ing Test) and—to different extents—with linguistic functions (see
the section below for further discussion). On the one hand, this

high degree of similarity could be taken as support for adaptive
coding or global workspace models that assume the entire IFS
to be involved in general purpose problem-solving functions (e.
g., Dehaene et al. 1998; Duncan and Owen 2000; Duncan 2010,
2013). On the other hand, this result may also reflect that the cur-
rently available taxonomic labels lack the specificity that is ne-
cessary to capture subtle differences between the functions of
LPFC subregions. As noted above, it is questionable to what ex-
tent our current terminology maps onto the computations of
the human brain (Poldrack 2006). Finally, it is also conceivable
that the subregions along the IFS make distinct contributions to
common overarching control functions, and are thus commonly
activated by the same experimental paradigms. The text-mining-
based post hoc analyses yielded some explorative evidence in
favor of this interpretation: While the aIFS and the mid-DLPFC
weremost strongly associated with workingmemory and resolv-
ing interference from task-irrelevant information, the IFJ exhibited
a more general association with contextual rules and the selec-
tion of task-relevant information. Interestingly, a similar distinc-
tion has been made in the working memory literature. Feredoes
et al. (2011) recently proposed that the DLPFC “plays a role in tar-
get protection (. . .) whereas the inferior frontal junction plays a
role in distinguishing relevant from irrelevant information for en-
coding” (p. 17513). A somewhat related distinction has beenmade
by Dosenbach et al. (2006, 2007, 2008). Based on patterns of RSFC
andmeta-analyses of different types of control signals (i.e., start-
cue related, sustained throughout the block, and error-related)
across a large set of different tasks, they proposed that the IFJ (la-
beled “dFC” or “frontal cortex”) is involved in processes of cue in-
terpretation and task initiation, whereas the DLPFC contributes

Figure 9. Comparison of Cluster 1 in the present study with existing parcellation schemes. (A) Parcellation of the IFJ (blue) and ventral premotor cortex (green) by Neubert

et al. (2014). (B) Parcellation of the neocortex by Yeo et al. (2011). (C) Parcellation of the neocortex by Gordon et al. (2014). Note: Figures on the left shows the clusters/parcels

from the respective studies alone. Figures in themiddle display Cluster 1 from the present study (red) overlaid on the respective parcellation. Figures on the right display in

high resolution the overlap between the cluster from the present study and the respective external parcellation schemes.
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more specifically to dynamic adjustments in control settings dur-
ing task performance. A final difference between the aIFS/DLPFC
and the IFJ that has been documented in the literature is that only
the latter is subject to severe capacity limitations (Dux et al. 2006,
2009; Tombu et al. 2011; Todd et al. 2011) and contributes to both
exogenous and endogenous control of attention (Asplund et al.
2010). Hence, the most plausible interpretation at the current
stage is that the IFJ serves as a central bottleneck at the interface
of bottom-up and top-down processing, whereas more rostral
DLPFC regions participate more generally in top-down control
to enforce task goals against external interference.

Co-Organization Principles Within Frontal
and Parietal Cortices

From a broader perspective, our findings also contribute to theor-
izing on the organization principles of the frontal lobe. Gradient
theories posit that the frontal cortex is organized into distinct
modules along its rostrocaudal axis, with more rostral regions
serving increasingly abstract or “higher-order” control functions
(e.g., Koechlin and Summerfield 2007; Badre 2008). While the
earliest versions of gradient theories were primarily concerned
with the LPFC, recent work has indicated that a similar gradation
may exist within the medial frontal wall (Kouneiher et al. 2009;
Kim et al. 2011; De Baene et al. 2012), possibly reflecting the inter-
play between motivational and evaluative functions of the MFC
and executive functions of the LPFC [see Kouneiher et al.
(2009)]. Our results concur with these observations in revealing
systematic patterns of mediolateral co-activation along the ros-
trocaudal axis of the frontal lobe. Most caudally, specific co-acti-
vation was found between the SMA and bilateral premotor
cortices. This corresponds nicely with the network of areas that
has typically been implicated in concrete “first-order” control,
that is, action selection in response to the identity of concrete
stimuli. In the intermediate parts of our seed region, specific
co-activation was evident between the pre-SMA and bilaterally
in the IFJ. This is also in accord with a network of areas that
has been linked to contextual “second-order” control, that is,
action control based on contextual rules that specify the behav-
ioral relevance of stimulus features. Finally, in the most rostral
part of the IFS, we observed co-activation of the ACC and the
aIFS. This roughly corresponds to areas implicated in abstract
“third-level” control, that is, the guidance of behavior based on
temporally distal and/or dimensionally complex rules. However,
it must be noted that the frontolateral component of this

network is sometimes located more dorsally and could match
more closely with Cluster 6 from our analysis.

An additional and novel observation in our data is that the dif-
ferent frontal networks exhibited specific patterns of co-activa-
tion with the parietal lobe. The caudal SMA–premotor network
exhibited specific co-activation with the left anterior IPS/SMG,
a region that has been strongly linked with motor attention
(Rushworth, Ellison, et al. 2001; Rushworth, Krams, et al. 2001;
Rushworth et al. 2003). The intermediate pre-SMA/IFJ net-
work exhibited specific co-activation with the left medial IPS.
This part of the IPS has been implicated in visuomotor transfor-
mations (Grefkes et al. 2004), and updating of context-dependent
stimulus–response contingencies (Corbetta and Shulman 2002;
Brass, Ullsperger, et al. 2005; Donsenbach et al. 2007; Muhle-Karbe,
Andres, et al. 2014). No specific parietal co-activation was ob-
served for the rostral ACC/aIFS network. As noted above, this
might be related to the spatial uncertainty of the frontolateral
component and the medial IPL, specifically co-activated with
Cluster 6, could be seen as a parietal candidate region for more
abstract components of control. Thus, in summary, our data
not only confirm recent observations of parallel rostrocaudal gra-
dients in the lateral and medial frontal lobes, but also indicate
that the frontal gradation might correspond to specific subre-
gions in the parietal cortex (see Fig. 10 for an illustration). In par-
ticular, the latter observation should be scrutinizedmore directly
in future studies.

Note, however, that co-activation between specific subregions
in the frontal and the parietal lobes should not be taken to imply
that these regions serve equivalent functions. For example, we
have recently shown, bymeans of transcranialmagnetic stimula-
tion (TMS), that the left IFJ and the left IPS make distinct causal
contributions to task-switching, despite the robust co-activation
of these areas in fMRI studies (Muhle-Karbe, Andres, et al. 2014).
Specifically, while TMS over the IFJ interfered with shifting be-
tween abstract goals for stimulus categorization, TMS over the
IPS perturbed the selection of more concrete stimulus-response
mapping rules. Accordingly, co-activation between frontal and
parietal subregions during complex tasks likely reflect highly re-
lated but nevertheless dissociable functions.

Cognitive Control and Language in the Left LPFC

A final aspect of our data pertains to the co-existence of linguistic
and executive functions in large parts of our seed region. The
strongest link with language was observed in Cluster 3 that

Figure 10. Schematic illustration of functional gradients in frontolateral, frontomedian, and parietal cortices. Circles refer to concrete “first-order” control functions,

triangles refer to intermediate “second-order” control functions, and squares refer to abstract “third-order” control functions (see text for details). Note that the

parietal component of third-order control is based on the specific co-activation of Cluster 6.
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included the dorsal part of Broca’s region. However, associations
with linguistic functionswere also found in themoredorsal areas
along the IFS that are typically implicated in abstract cognitive
control processes. This result is interesting given the ongoing
debate in the literature on the relation between language and
control (e.g., Hagoort 2005; Koechlin and Jubault 2006; Fedorenko
et al. 2012). One possible interpretation of our data would be that
language and control rely on shared mechanisms, at least under
particular conditions. In linewith this view, control-related brain
activity is often left-lateralized when tasks include verbal stimu-
lus material (e.g., Kouneiher et al. 2009; Asplund et al. 2010; De
Baene et al. 2012; Rottschy et al. 2012), linguistic categorizations
(Stephan et al. 2003), or when self-verbalization is an adaptive
strategy for task performance [see Gruber and Goschke (2004)].
Thus, left-lateralized LPFC regions might serve control functions
in the service of linguistic information coding, whereas non-
linguistic attentional capacities might be more right-lateralized
(e.g., Mesulam 1981; Corbetta and Shulman 2002; Cai et al.
2012). Alternatively, however, the neural overlap of language
and control functions in our study could also result from meth-
odological constraints. For instance, low-level baseline contrasts
in language studies might confound linguistic and control de-
mands. Likewise, the averaged group data that were input to
our analyses could mask a more fine-scaled modularization
that is evident only at the level of individual subjects (Fedorenko
et al. 2010). In any event, more research will be necessary to dis-
ambiguate the relation between the neural bases of language and
control in the left frontal lobe.

Limitations and Future Directions

Although our parcellation was consistently supported both by
the employed cluster metrics and the parcellation’s concord-
ance with external data, it should be emphasized that it does
not reflect a conclusive or “correct” parcellation of the L IFS
seed region for several reasons. First and foremost, our study
aimed at delineating the IFJ within its cortical environment
and the seed region was designed for this purpose. This al-
lowed us to characterize the transition from the IFJ to adjacent
areas in different directions, but the outer boundaries of these
areas are unlikely to be conclusively mapped in our study.
Second, the frontal lobe in particular can be subdivided on
the basis of diverse modalities and criteria (e.g., cortico-cortical
connections, cortico-striatal projections, attended sensory mo-
dality, level of abstraction, and cytoarchitecture) and the result-
ing schemes will inevitably depend to some degree on these
choices [see Amunts et al. (2014) and Bertolero and D’Esposito
(2014) for discussion]. Accordingly, our findings only provide
the optimal scheme for the chosen modality and future re-
search must determine its generalizability. Finally, future stud-
ies should also examine to what extent our scheme applies to
the right hemisphere and if a right IFJ can be identified in a
similar manner.

Conclusion
In the present study, we conducted a CBP of the left posterior
LPFC to delineate the IFJ from neighboring brain areas on the
basis of specific whole-brain co-activation patterns. Our results
strengthen the idea that the IFJ constitutes a core functional
unit within the frontal lobe and delineate the transition from
this area to adjacent parts of the LPFC. More generally, our
study underscores the usefulness of meta-analytic techniques
in revealing modularization in the human brain.
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