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Abstract: Activation Likelihood Estimation (ALE) is an objective, quantitative technique for coordinate-
based meta-analysis (CBMA) of neuroimaging results that has been validated for a variety of uses.
Stepwise modifications have improved ALE’s theoretical and statistical rigor since its introduction.
Here, we evaluate two avenues to further optimize ALE. First, we demonstrate that the maximum con-
tribution of an experiment makes to an ALE map is related to the number of foci it reports and their
proximity. We present a modified ALE algorithm that eliminates these within-experiment effects. How-
ever, we show that these effects only account for 2–3% of cumulative ALE values, and removing them
has little impact on thresholded ALE maps. Next, we present an alternate organizational approach to
datasets that prevents subject groups with multiple experiments in a dataset from influencing ALE val-
ues more than others. This modification decreases cumulative ALE values by 7–9%, changes the rela-
tive magnitude of some clusters, and reduces cluster extents. Overall, differences between results of
the standard approach and these new methods were small. This finding validates previous ALE
reports against concerns that they were driven by within-experiment or within-group effects. We sug-
gest that the modified ALE algorithm is theoretically advantageous compared with the current algo-
rithm, and that the alternate organization of datasets is the most conservative approach for typical
ALE analyses and other CBMA methods. Combining the two modifications minimizes both within-
experiment and within-group effects, optimizing the degree to which ALE values represent concord-
ance of findings across independent reports. Hum Brain Mapp 33:1–13, 2012. VC 2011 Wiley Periodicals, Inc.
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INTRODUCTION

Reliable meta-analytic techniques become increasingly
important as the volume of neuroimaging literature rapi-
dly expands. Coordinate-based meta-analysis (CBMA)
approaches use published activation peaks reported in
standardized coordinate spaces, termed activation foci,
rather than raw images as their input [Laird et al., 2009a,b;
Turkeltaub et al., 2002; Wager et al., 2004, 2007]. Activation
Likelihood Estimation (ALE), a commonly used CBMA
method, is typically used to identify concordance across
functional imaging studies of a cognitive process [Binder
et al., 2009; Turkeltaub and Coslett, 2010], or to compare ac-
tivity between processes or populations [Caspers et al., 2010;
Chouinard and Goodale, 2010; Maisog et al., 2008; Minzen-
berg et al., 2009; Spreng et al., 2010; Vytal and Hamann,
2009]. It has also been used to synthesize voxel-based mor-
phometry results [Di et al., 2009; Ferreira et al., 2009; Glahn
et al., 2008], to define regions of interest for new imaging
experiments [Karlsgodt et al., 2010; Laird et al., 2008; Zevin
et al., 2010], or for functional connectivity mapping [Eickhoff
et al., 2010; Laird et al., 2009a,b; Robinson et al., 2010].

ALE models the uncertainty in localization of activation
foci using Gaussian probability density distributions. The
voxelwise union of these distributions yields the ALE value,
an estimate of the likelihood that at least one of the foci in a
dataset was truly located at a given voxel. Stepwise modifi-
cations to the original technique have improved its theoreti-
cal and statistical rigor [Eickhoff et al., 2009; Laird et al.,
2005], but further optimization is possible.

Here, we present two new modifications to ALE that
limit the influence of within-experiment and within-group
effects on ALE maps. The term experiment in this context
refers to a single analysis reported in a neuroimaging pa-
per. Within-experiment effects occur because multiple foci
reported close together in a single experiment may influ-
ence ALE values using the current method. Methodologi-
cal factors such as the smoothing kernel and statistical
threshold largely determine the number and proximity of
activation foci reported. These differences between studies
cannot be modified retrospectively in CBMA, but a small
change to the ALE algorithm presented here addresses
this issue by considering the spatial distribution of foci
reported by an experiment while preventing within-experi-
ment coherence of foci from influencing ALE values.

Within-group effects impact the results of ALE and
other CBMA methods because groups of subjects with
multiple experiments in a dataset may influence results
more than groups with only one experiment. While this
may be appropriate if the cognitive operations recruited
by the various experiments are different (as in meta-ana-
lytic connectivity mapping), most meta-analyses select
experiments based on their common cognitive demands.
Activation patterns produced by the same group of sub-
jects performing multiple similar tasks, usually in the
same scanning session, however, do not represent inde-
pendent observations. To address this issue, some have

stipulated that datasets include only one experiment per
subject group [e.g., Turkeltaub and Coslett, 2010], but this
approach excludes potentially informative results from
analysis. Using the modified ALE algorithm presented
here, this issue can be addressed by organizing datasets
according to subject group rather than by experiment (the
standard organizational approach used by ALE and other
CBMA techniques).

In this article, we first evaluate the impact of limiting
within-experiment effects on ALE results by comparing the
modified algorithm with the standard algorithm. We then
evaluate the impact of limiting within-group effects in ALE
by comparing the results with the modified algorithm when
foci are organized either by subject group or experiment.

MATERIALS AND METHODS

Standard ALE

The standard ALE algorithm is illustrated in Figure 1. In
ALE, users organize the activation foci in their dataset
based on their source in the literature. Typically, foci are
organized by the experiment that reported them. Gaussian
widths are calculated based on empirical quantification of
the uncertainty inherent in spatial normalization, and the
relationship between sample size and inter-subject local-
ization uncertainty [Eickhoff et al., 2009]. An individual
map of activation likelihood, called a Modeled Activation
map (MA map), is then calculated for each experiment by
taking the voxelwise union of the Gaussians for all of the
foci derived from that experiment. The ALE map is then
calculated as the voxelwise union of the MA maps from a
dataset. Null distributions account for the increased likeli-
hood of identifying activation foci in gray matter, and a
random-effects significance test uses the null hypothesis
that neuroimaging experiments produce patterns of activa-
tion that are spatially independent from one another
[Eickhoff et al., 2009]. Analyses were performed using Gin-
gerALE 2.0 (brainmap.org), and also implemented in Cþþ
for further calculations on MA values. Standard ALE and
modified ALE analyses were conducted using two differ-
ent critical thresholds (FDR of 0.05 and 0.01), and a mini-
mum cluster size of 100 mm3.

Modified ALE Algorithm With Foci Organized

By Experiment (Modified ALE-E)

Instead of taking the union of probabilities associated
with all the foci reported by an experiment to determine
the voxelwise MA value, the modified algorithm takes the
maximum probability associated with any one focus
reported by the experiment (see Fig. 1). This always corre-
sponds to the probability of the focus with the shortest Eu-
clidean distance to the voxel in question. In this way, MA
maps reflect the spatial distribution of activation likeli-
hoods associated with reported foci, without allowing
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Figure 1.

Illustration of ALE methods in 1-dimensional space. In Step 1

(top left), foci are collected and converted to the same standar-

dized coordinate space. Foci here were drawn from three

unique subject groups (shown in red, blue, and green), each

with different Ns. Two experiments were included from the red

group (solid and dotted red lines). In Step 2, individual foci are

modeled as Gaussians with an area under the curve of 1, and

widths calculated from the Ns (Eickhoff et al., 2009). In Step 3,

MA maps are calculated. Standard ALE (left) takes the union of

all Gaussians, resulting in high MA values for experiments

reporting foci close together. Using the modified ALE algorithm,

foci are organized either by experiment (modified ALE-E, mid-

dle) or subject group (modified ALE-S, right). Modified ALE-E

determines the voxelwise MA value as the maximum probability

associated with any one Gaussian from an experiment. Modified

ALE-S takes the maximum probability of any one Gaussian from

a subject group. In Step 4, the ALE value is calculated for each

method as the union of MA maps. The critical threshold (dotted

black line) is determined based on random samples of MA val-

ues, and will be lower for the modified ALE methods at a given

FDR because MA values are lower.
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multiple foci from a single experiment to jointly influence
the individual MA value of a single voxel. The ALE value
is then calculated as the voxelwise union of the probabil-
ities in all the MA maps, just as in the standard algorithm.
This modified ALE-E value represents the likelihood that
at least one experiment activated a given voxel. Ginger-
ALE 2.0 Java code and Cþþ code were modified to imple-
ment the new algorithm.

Modified ALE Algorithm With Foci Organized

By Subject Group (Modified ALE-S)

The modified algorithm was also implemented with foci
organized by subject group. By organizing foci in this
way, one MA map is generated for each unique subject
group instead of each experiment (see Fig. 1). Again, the
union of MA maps is taken to calculate the ALE map, just
as in the standard ALE and modified ALE-E analyses.
This approach prevents multiple foci from a single experi-
ment from cumulatively influencing MA values, and pre-
vents multiple experiments performed by one subject
group from cumulatively influencing ALE values. This
modified ALE-S value represents the likelihood that activ-
ity was found for at least one subject group at a given
voxel.

Datasets Used for the Analyses

The algorithms were tested using two previously pub-
lished datasets including both PET and fMRI papers on
normal subjects. The cumulative dataset included 52
papers, 52 subject groups, 65 experiments, and 618 foci.
Each will be discussed briefly below:

Temporal Processing (41 papers, 41 subject groups, 49
experiments, 446 foci): This dataset included fMRI and
PET papers on time perception and production using a va-
riety of tasks on healthy adult subjects. Each paper only
used one subject group, but six papers included two
experiments, and one included three. Details of the dataset
are reported in Table I of Wiener et al. [2010].

Reading (11 papers, 11 subject groups, 16 experiments,
172 foci): This dataset included PET papers on aloud sin-
gle word reading in healthy adult subjects. Each paper
again only used one subject group, but two experiments
were included from one paper, and four from another.
Details of the dataset are reported in Figure 1 of Turkel-
taub et al. [2002].

RESULTS

Comparison of Algorithms: Standard

ALE Versus Modified ALE-E

The comparison between standard ALE and modified
ALE-E analyses was used to evaluate whether within-

experiment coherence of foci impacts standard ALE analy-
ses, and whether the modified algorithm addresses this
issue.

First, we evaluated whether experiments reporting
many foci drive peak MA values higher than other experi-
ments in standard ALE analyses. We analyzed the cumula-
tive dataset using the standard ALE algorithm and
extracted the single maximum value from each MA map.
The maximum voxel in each MA map is most likely to be
influenced by within-experiment effects, and is most likely
to produce erroneously significant results in overall ALE
maps. Peak MA value was directly related to the number
of foci the experiment reported (Fig. 2A; R2 ¼ 0.22, P ¼
0.0001). This relationship was not significant for peak MA
values calculated using the modified ALE-E approach (Fig.
2B, R2 ¼ 0.05, P ¼ 0.09), and the slope of the regression
line decreased fivefold.

The relationship between number of foci and peak MA
value should mainly be related to the proximity of foci,
since foci close together will cumulatively impact MA val-
ues more than foci farther apart. To examine this, we eval-
uated whether experiments reporting foci close together
drive peak MA values higher than other experiments in
standard ALE analyses. Peak MA value for each experi-
ment was inversely related to the minimum distance
between foci reported by the experiment (Fig. 3A; R2 ¼
0.13, P ¼ 0.004). MA values were greatest when minimum
distances were less than 10 mm. This relationship was
negated by the modified algorithm (Fig. 3B, R2 ¼ 0.01, P ¼
0.38).

In standard ALE, maximum MA values are related to
the number of subjects in an experiment because the width
of Gaussian probability models is inversely related to N,
and a narrow Gaussian has a higher peak value (see Fig.
1). However, the relationship between maximum MA
value and N should be weakened in standard ALE if spa-
tial overlap of multiple Gaussians in some experiments
drives the maximum MA value beyond the peak value of
a single Gaussian. Maximal MA values in the cumulative
dataset did relate to N using the standard ALE algorithm
(Fig. 4A; R2 ¼ 0.29, P < 0.0001). In the modified ALE-E
analysis, this relationship was essentially direct (Fig. 4B,
R2 ¼ 0.86, P < 0.0001) because the maximum MA value is
simply the peak value of a single Gaussian probability
distribution.

Next we evaluated ALE maps calculated using the two
algorithms to determine the impact of removing within-
experiment effects on ALE results. First, we evaluated the
overall magnitude of the difference between the two algo-
rithms by calculating cumulative unthresholded ALE val-
ues throughout standardized space using each algorithm.
The difference between these values provides a measure
of the impact that within-experiment effects have on
standard ALE maps before critical thresholding. The cu-
mulative reduction in ALE values by the modified ALE-E
analysis was 3.1% for the timing dataset, and 2.3% for the
reading dataset.
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Next, we evaluated the thresholded ALE maps. Overall,
the two algorithms produced very similar results for both
datasets in terms of patterns of significant findings (Figs. 5
and 6; Tables I and II), extent of overlapping voxels, and
number of common clusters (Table III). For both datasets, the
modified ALE algorithm resulted in a slightly greater number
of significant voxels than standard ALE at both critical
thresholds (Table III). The modified algorithm removed clus-
ters that were driven solely by within-experiment effects. For
example, only one cluster in the timing analysis was signifi-
cant using the standard ALE algorithm but not the modified
algorithm (peak at �22, �56, 22). In this case, a single experi-
ment reported two foci 4.5 mm apart surrounding the ALE
peak. Across both datasets, clusters that were significant
using only one algorithm or the other were small (200 to 456
mm3 in extent; 27 to 57 voxels).

Within common clusters, the locations of local maxima
were similar using the two algorithms. Across the two
datasets, 45 local maxima were identical in the two analy-
ses, 11 were in adjacent voxels, and 8 were only peaks
using the modified algorithm (these voxels were typically
also significant using the standard algorithm, but were not
local maxima).
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Relationship between maximal MA value and number of foci.

The maximum MA value derived from each experiment in the

cumulative dataset is plotted against the number of foci

reported by the experiment. MA values were calculated using

the standard algorithm (A), and modified ALE-E (B).
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The two algorithms also produced similar results in
terms of the magnitude of significant peaks, although
some ALE scores were reduced by the modified algo-
rithm. The largest reduction occurred at the overall peak
in the standard ALE timing analysis (at 46, 8, 16), where
the ALE value was reduced from 0.0463 to 0.0387 using
the modified algorithm. In this case, a duplicate focus in
this previously published dataset accounted for the high
standard ALE value. The modified algorithm reduced
other standard ALE peaks because experiments reported
foci in close proximity. For example, one peak in the
timing analyses (�26, �4, 52) was reduced from an ALE
value of 0.0293 to 0.0259. One experiment reported
two foci 7 mm apart surrounding the location of this
ALE peak.

Comparison of Organizational

Strategies: Modified ALE-E Versus

Modified ALE-S

We compared the results of the modified ALE-E and
modified ALE-S analyses to evaluate the impact of within-

group effects on ALE results. In comparison to modified
ALE-E values, the modified ALE-S analysis reduced cumu-
lative brain-wide ALE values by 7.6% for the timing data-
set, and 8.6% for the reading dataset.

Next we evaluated the thresholded ALE maps. The two
grouping strategies produced similar results in terms of pat-
tern of significant findings (Figs. 5 and 6, Tables I and II),
but the modified ALE-S approach was more conservative in
terms of the total extent of significant ALE values regardless
of the dataset or critical threshold (Table IV). Although the
majority of significant voxels were significant regardless of
grouping strategy, 18 to 34% of modified ALE-E voxels
were not significant using the modified ALE-S approach,
depending on the dataset and critical threshold. In compari-
son, only 2 to 5% of modified ALE-S significant voxels were
not significant using the modified ALE-E approach (due to
a reduced critical threshold with ALE-S at the same FDR, as
illustrated in Fig. 1).

Despite these differences in extent, most clusters were
significant regardless of grouping strategy (Table IV).
Clusters that were removed by the modified ALE-S
approach were influenced by within-group effects. For

Figure 3.

Relationship between maximal MA value and proximity of foci.

The maximum MA value derived from each experiment in the

cumulative dataset is plotted against the smallest distance

between any two foci reported by the experiment. MA values

were calculated using the standard algorithm (A), and modified

ALE-E (B).

Figure 4.

Relationship between maximal MA value and number of subjects.

The maximum MA value derived from each experiment in the

cumulative dataset is plotted against the N of the experiment.

MA values were calculated using the standard algorithm (A),

and modified ALE-E (B).
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example, three small timing clusters were significant using
modified ALE-E, but not ALE-S at an FDR of 0.05 (peaks
at �12, �66, 50; �32, �66, �16; 40, �20, �4). In each case,
two foci were reported near the peak voxel by different
experiments from a single subject group (1 mm and 2 mm;
1 mm and 1 mm; 1 mm and 2.2 mm), and the closest focus
from another subject group was farther from the peak (8.3
mm; 11 mm; 12.9 mm). Only one timing cluster was signif-
icant in the modified ALE-S analysis, but not the modified
ALE-E analysis (peak at 48, 18, �10). Here, two unique
subject groups reported foci immediately near the peak
(1.7 mm and 1.8 mm). Notably, all of these clusters were
small (456, 136, 128, and 128 mm3) and none were signifi-
cant at an FDR of 0.01.

At this stricter threshold, clusters that were significant
using modified ALE-E but not ALE-S derived from mini-
mal between-group agreement with added within-group
effects. For example, a timing cluster removed by modified
ALE-S (peak at �38, �44, 48), derived from two experi-
ments from one subject group that reported foci within

1 mm of the peak, two experiments from another subject
group that reported foci within 3 mm of the peak, and a
third experiment that reported two foci within 10 mm of
the peak. In contrast, for the smallest timing cluster in the
modified ALE-S analysis at an FDR of 0.01 (peak at 44, 42,
10), four independent subject groups reported foci within
10 mm of the peak.

Within clusters identified by both approaches, the loca-
tions of local maxima were similar using the two grouping
strategies. Across the two datasets, 40 local maxima were
identical using either of the two grouping strategies.
Among other maxima, 16 were in adjacent voxels, 3 were
nearby (4.5 mm, 4.9 mm, and 4.9 mm), and 12 were only
peaks using one of the grouping strategies (these voxels
were typically significant using either approach, but were
only local maxima using one).

Organizing foci by subject group reduced the magnitude
of some significant ALE peaks substantially. In one case, a
peak in the modified ALE-E timing analysis (46, 8, 16,
which was the one for which the duplicate focus was

Figure 5.

ALE analyses of the timing dataset. Rendered hemispheres of the standard ALE, modified ALE-E,

and modified ALE-S analyses of the timing dataset with an FDR of 0.05 and a minimum cluster

extent of 100 mm3. Renderings are maximum intensity projections with a search depth of

16 mm rendered on the Colin brain in Talairach space.
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detected) was reduced from 0.0387 to 0.0270. Nine experi-
ments from seven unique subject groups reported foci
within 10 mm of this peak. In contrast, the ALE value of
another local peak in the same cluster (at 32, 18, 4) was
identical in the two analyses (.0290). Nine experiments
reported foci within 10 mm of this peak, each from a
unique subject group.

DISCUSSION

Within-Experiment Effects and

the Modified ALE Algorithm

ALE has proven a valuable meta-analytic tool, but
one theoretical shortcoming has been that the ALE sta-
tistic reflects spatial coherence across activation foci
regardless of their source in the literature [Wager et al.,
2007]. The recent development of a random-effects sig-
nificance test for ALE has alleviated these concerns con-

siderably. Still, we demonstrated here that the number
of foci an experiment reports, and the proximity of
those foci, can potentially impact the maximum contri-
bution a particular experiment makes to an ALE map.
The modified ALE algorithm presented here eliminates
these effects.

When the two algorithms were directly compared, how-
ever, we found only minor difference between the result-
ant ALE maps in terms of the cumulative effect on
unthresholded ALE values, and the significance of major
clusters. There were some differences in significance of
small clusters, but these were minimal using a relatively
strict threshold (FDR of 0.01). In line with our theoretical
considerations, clusters that the modified algorithm elimi-
nated were small and derived mainly from single experi-
ments reporting two foci in close proximity. Reducing
high MA values that derived from within-experiment co-
herence removed a subtle rightward skew in random-
effects null distributions, allowing ALE values reflecting

Figure 6.

ALE analyses of the reading dataset. Rendered hemispheres of the standard ALE, modified ALE-

E, and modified ALE-S analyses of the reading dataset with an FDR of 0.05 and a minimum clus-

ter extent of 100 mm3. Renderings are maximum intensity projections with a search depth of 16

mm rendered on the Colin brain in Talairach space.
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moderate coherence across experiments to reach signifi-
cance using the modified algorithm.

The overall similarity between the results of the two
algorithms indicates that coherence of foci within individ-
ual experiments has contributed relatively little to previ-
ously published ALE results. The modified algorithm is
theoretically advantageous though, given that the number
and proximity of foci reported by experiments did impact
standard MA peak values. Further, the modified algorithm
prevents single experiments from biasing results under
extreme circumstances, like duplication errors in lists of
foci, or meta-analyses in which a single experiment reports
far more foci than all others.

The difference between the modified and standard ALE
algorithms is somewhat analogous to the difference
between two other CBMA techniques, kernel density anal-
ysis (KDA) and multilevel kernel density analysis (MKDA)
[Wager et al., 2004, 2007]. KDA represents each activation
focus as a sphere, and counts the number of overlapping
spheres at each voxel to evaluate for spatial coherence
between foci. In MKDA, overlapping spheres from the
same experiment are not additive, such that the count at
each voxel represents the number of overlapping experi-
ments. In MKDA, the user sets the size of the spheres, and
arbitrary weights can be given based on the N of experi-

ments and whether fixed- or random-effects statistics were
used by the experiment. The main theoretical difference
between ALE and MKDA is that ALE evaluates probabil-
ities of activity localization, where MKDA uses experiment
counts [Wager et al., 2009]. The main practical difference
(especially using the modified ALE algorithm) is that ALE
models foci as 3-D Gaussians, where MKDA uses spheres.
We prefer Gaussians because they are sensible in the con-
text of random field theory [Worsley et al., 1996], can be
used to empirically model the influence of methodological
factors on localization uncertainty, and give continuous
probability estimates that optimize precision. Still, the dif-
ferences between ALE and MKDA are small compared
with the similarities between them, and the choice of tech-
nique matters less than the initial choice to perform a
quantitative CBMA rather than an informal review.

Within-Group Effects and the Modified

Organizational Approach

In ALE and MKDA, one implicit assumption is that
each experiment represents an independent source of acti-
vation foci, regardless of whether the experiments were
reported in different papers or were performed by

TABLE III. Comparison of significant extent using different algorithms

Analysis

Total significant
ALE extent (mm3)

Common
significant

extent (mm3)

Extent significant
only with one

algorithm (mm3)
Clusters
significant
with both
algorithms

Clusters in standard
ALE split by

modified ALE-E

Clusters significant
only with one
algorithm

Standard
Modified
ALE-E Standard

Modified
ALE-E Standard

Modified
ALE-E

Timing
FDR .05 53,600 54,640 51,936 1,664 2,704 20 0 1 2
FDR .01 33,440 34,336 32,360 1,080 1,976 20 1 0 1

Reading
FDR .05 26,728 28,056 25,760 968 2,296 13 0 2 4
FDR .01 14,304 16,136 14,000 304 2,136 7 0 1 2

TABLE IV. Comparison of significant extent using different grouping strategies

Total significant
ALE extent

(mm3)
Common
significant
extent
(mm3)

Extent
significant

only with one
grouping

strategy (mm3)

Clusters
significant
with both
grouping
strategies

Clusters in
modified

ALE-E split
by modified

ALE-S

Clusters
significant

only with one
grouping strategy

Modified
ALE-E

Modified
ALE-S

Modified
ALE-E

Modified
ALE-S

Modified
ALE-E

Modified
ALE-S

Timing
FDR .05 54,640 46,224 44,864 9,776 1,360 19 0 3 1
FDR .01 34,336 26,360 25,720 8,616 640 20 0 2 0

Reading
FDR .05 28,056 22,256 21,200 6,856 1,056 15 1 2 3
FDR .01 16,136 10,928 10,688 5,448 240 8 1 1 0

r 11 r
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different subjects. This assumption is likely valid if multi-
ple experiments reported by a single paper recruit differ-
ent cognitive processes, but may become problematic
when they are similar in terms of the cognitive constructs
they engage. If different subjects performed the experi-
ments, they could be considered independent, but more
often papers use a single group of subjects and either
report multiple task contrasts, or report multiple analyses
of a single task (e.g., subtraction versus correlation with an
external variable). This issue is exemplified by the original
ALE dataset (the reading dataset reanalyzed here) [Turkel-
taub et al., 2002]. One paper reported four similar reading
tasks for the same subjects. Many of the foci were colocal-
ized between tasks, representing redundant activations
due to repeated recruitment of the same cognitive opera-
tions. To include as many tasks as possible in the analysis,
all of the experiments (tasks) were included in the dataset,
allowing this group of subjects to influence ALE values to
a greater degree than others. Using the current ALE algo-
rithm, the only way to address this problem is to stipulate
that only one experiment from a given group of subjects
can be included in a dataset, but this approach excludes
potentially informative results.

The modified ALE algorithm and organizational approach
outlined here address this concern, and allow the entire spa-
tial distribution of activations in a paper to be represented
because individual experiments need not be excluded.
When we evaluated the impact of this alternate grouping
strategy, we found that cumulative ALE values were
reduced by 7–9%. This demonstrates that within-group
effects in ALE analyses may be greater than within-experi-
ment effects, but still account for a relatively small propor-
tion of ALE values. The cumulative impact of both within-
experiment and within-group effects on previously pub-
lished ALE values was approximately 10% by this measure.

Reflecting the small impact of within-group effects on
ALE results, the overall ALE maps were quite similar
between the two grouping strategies, and all of the large
clusters were significant regardless of the approach used.
Organizing by subject group was more conservative in
terms of the extent of clusters, and small clusters that
derived mainly from concordance within subject groups
were eliminated. The relative ALE values of significant
clusters also changed in some cases, such that ALE val-
ues better reflected concordance of foci across independ-
ent reports. Removing within-group effects reduced MA
values in the null distributions, and unmasked small
clusters derived from multiple unique subject groups. On
the basis of these results, we feel that for most standard
meta-analyses, organizing datasets by subject group is
more conservative than organizing by experiment, and
optimizes the degree to which ALE values quantify con-
cordance across the literature. Although we were specifi-
cally interested in ALE here, the same principles apply to
MKDA, and we suggest that organizing foci by subject
group in most MKDA analyses would be optimal as
well.

Grouping foci by subject group may not be appropriate
for all types of meta-analyses however. Above, we consid-
ered ‘‘typical’’ meta-analyses that aim to quantify consis-
tency in localization of cognitive constructs or neural
processing units. In contrast to these analyses, grouping
foci by experiment is appropriate for meta-analytic connec-
tivity mapping (MACM) studies that examine patterns of
coactivation across a variety of tasks [Eickhoff et al., 2010;
Robinson et al., 2010; Smith et al., 2009]. In these cases,
organizing foci by subject group could result in apparent
coactivation of areas that actually occurred during differ-
ent experiments. In a hypothetical example, one paper
may report a finger-tapping task that activated primary
motor cortex only, and a separate visual task that activated
primary visual cortex only. If these foci were grouped to-
gether, both the motor and visual activity would be repre-
sented in the same MA map, resulting in apparent
functional connectivity even though none was present in
the original data. Thus, to preserve the co-occurrence
structure of foci, they must be organized by experiment
rather than subject group.

CONCLUSIONS

We confirmed that within-experiment concordance can
impact MA values using the standard algorithm, but
found that removing these effects using the modified algo-
rithm produced negligible differences in ALE maps.
Within-group effects had a small impact on ALE values;
removing them by organizing foci according to subject
group improved the degree to which ALE values represent
colocalization across the literature, and made ALE maps
more conservative. Overall, differences between ALE
results using these approaches were small relative to the
similarities between them. This finding validates previ-
ously published ALE analyses against concerns that they
were driven largely by within-experiment or within-group
effects. Still, we suggest that the modified ALE algorithm
presented here is theoretically advantageous compared
with the current algorithm, and that organizing foci by
subject group rather than experiment is the more conserv-
ative and appropriate approach for most analyses using
ALE or MKDA.
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