
Why I’m Still Using APL

Jeffrey Shallit
School of Computer Science

University of Waterloo
Waterloo, ON N2L 3G1

Canada
www.cs.uwaterloo.ca/~shallit

shallit@cs.uwaterloo.ca

What is APL?

• a system of mathematical notation invented by
Ken Iverson and popularized in his book A
Programming Language published in 1962

• a functional programming language based on
this notation, using an exotic character set
(including overstruck characters) and right-to-
left evaluation order

• a programming environment with support for
defining, executing, and debugging functions and
procedures

Frequency Distribution

APL and Me

• worked at the IBM Philadelphia Scientific Center in
1973 with Ken Iverson, Adin Falkoff, Don Orth,
Howard Smith, Eugene McDonnell, Richard Lathwell,
George Mezei, Joey Tuttle, Paul Berry, and many others

Communicating

APL and Me
• worked as APL programmer for the Yardley Group under
Alan Snyder from 1976 to 1979, with Scott Bentley, Dave
Jochman, Greg Bentley, and Dave Ehret

APL and Me
• worked from 1974 to 1975 at Uni-Coll in Philadelphia as
APL consultant

• worked from 1975 to 1979 as APL consultant at
Princeton

• worked at I. P. Sharp in Palo Alto in 1979 with
McDonnell, Berry, Tuttle, and others

• published papers at APL 80, APL 81, APL 82, APL 83
and various issues of APL Quote-Quad

• taught APL in short courses at Berkeley from 1979 to
1983 and served as APL Press representative

• taught APL at the University of Chicago from 1983 to
1988

Because

Why I’m Still Using APL

• I don’t need to master arcane “ritual
incantations” to do things that should be easy
• I can get stuff done much faster than in other
programming languages
• it doesn’t waste my time by making me declare
the properties of data that should be obvious to
anyone
• it defines edge cases correctly

Java: Read Integers and Add Them Up

import java.io.BufferedReader;
import java.io.FileReader;
import java.io.IOException;
import java.io.Reader;
import java.io.StreamTokenizer;

public class SumFile {
 public static void main(String[] a) throws IOException {
 sumfile("file.txt");
 }

 static void sumfile(String filename) throws IOException {
 Reader r = new BufferedReader(new FileReader(filename));
 StreamTokenizer stok = new StreamTokenizer(r);
 stok.parseNumbers();
 double sum = 0;
 stok.nextToken();
 while (stok.ttype != StreamTokenizer.TT_EOF) {
 if (stok.ttype == StreamTokenizer.TT_NUMBER)
 sum += stok.nval;
 else
 System.out.println("Nonnumber: " + stok.sval);
 stok.nextToken();
 }
 System.out.println("The file sum is " + sum);
 }

}

APL: Read Integers and Add Them Up

Computing Divisors of an Integer

Distributing Elements along Diagonals

Guess Linear Recurrence

Determining Leap Years

“How would you represent a more complex operation, for
example, the sum of all elements of a matrix M which are
equal to the sum of the corresponding row and column
indices?”

Dijkstra’s Question (1963)

“...design decisions were made by Quaker
consensus; controversial innovations were deferred
until they could be revised or reevaluated so as to
obtain unanimous agreement. Unanimity was not
achieved without cost in time and effort, and many
divergent paths were explored and assessed.”

Design of APL

Getting Definitions Correct

Common Misconceptions

• APL is hard to read
• APL is hard to maintain
• APL is too slow

Dijkstra on APL
“The competent programmer is fully aware of the strictly limited size of
his own skull; therefore he approaches the programming task in full
humility, and among other things he avoids clever tricks like the
plague. In the case of a well-known conversational programming
language I have been told from various sides that as soon as a
programming community is equipped with a terminal for it, a specific
phenomenon occurs that even has a well-established name: it is called
"the one-liners". It takes one of two different forms: one programmer
places a one-line program on the desk of another and either he proudly
tells what it does and adds the question "Can you code this in less
symbols?" —as if this were of any conceptual relevance!— or he just
asks "Guess what it does!". From this observation we must conclude
that this language as a tool is an open invitation for clever tricks; and
while exactly this may be the explanation for some of its appeal, viz. to
those who like to show how clever they are, I am sorry, but I must
regard this as one of the most damning things that can be said about a
programming language.”

One-Liners

”APL is a mistake, carried through to perfection. It
is the language of the future for the programming
techniques of the past: it creates a new generation
of coding bums.”

Dijkstra on APL

“By relieving the brain of all unnecessary work,
a good notation sets it free to concentrate on
more advanced problems and in effect
increases the mental power of the race.”

A. N. Whitehead

Things APL Never Did Perfectly

• input and output from external files
• transfer of workspaces from one
system to another
• control structures (such as “do while”)
• support for novel data representations
and data structures (e.g., rational
numbers; extended precision, etc.)

APL’s Influence

• notation for floor and ceiling are now
mainstream in mathematics
• “Iverson bracket” (e.g., [x = y]) also
used
• shaped modern functional programming

I’m Still Using APL

• APLX on a Macintosh
• Dyalog APL on a Sun workstation
• Experimentation, large-scale computations,
research in automata theory, formal languages,
and number theory, grade summaries for
courses

Happy 50th Birthday to APL!

