
Position Papers from

Software Transformation Systems Workshop 2004

STS’04
Part of Generic Programming and Component Engineering Conference 2004

(GPCE’04)

Vancouver, Canada

October 24, 2004

http://www.program-transformation.org/Sts/STS04

Magne Haveraaen1

Jim Cordy2 Jan Heering3 Ganesh Sittampalam4

Abstract

This is a collection of the position papers presented at the Software Transformation Sys-
tems Workshop 2004 (STS’04).

Generative software techniques typically transform components or codefragments, instan-
tiate patterns etc. in some way or another to generate new code fragments, components or
programs. Often this needs software support beyond that of existing compilers, i.e., some
kind of system which takes software as inputs and produces software as output.

Software transformation systems are tools which are built for such transformations. They
range from specific tools for one purpose, via simple pattern matching systems, to general
transformation systems which are easily programmed to do any reasonable transformation.
Thus the more general tools may be treated as meta-tools for generative programming.

This workshop is designed to investigate the use of software transformation tools as tools
to support generative programming. We want to look at various generative techniques and
suggest how these may be supported by various general purpose transformation tools. This
may lead to a more general understanding of common principles for supporting generative
methods.

1Department of Informatics, University of Bergen, Norway; Department of Computer Science, University of
Wales Swansea, UK; http://www.ii.uib.no/~magne

2School of Computing, Queen’s University, Canada; http://www.cs.queensu.ca/~cordy/
3CWI, Amsterdam, Netherlands; http://www.cwi.nl/~jan
4Oxford University Computing Laboratory, UK

Contents

The overview below lists the participating author, the title of the position paper, and an e-mail
contact address.

Ira D. Baxter: Program Generation and Modification using Multiple Domains

Paulo Henrique Monteiro Borba: General-purpose Transformation System for Java

Marat Boshernitsan: A Case for Interactive Source-to-Source Transformations

Thomas Cleenewerck: Invasive Composition by Transformation Systems

Jim Cordy: Metaprogram Implementation by Second Order Source Transformation

Anthony Cox: Lexical Source-Code Transformation

Magne Haveraaen: Software Transformations supporting Software Engineering

Jan Heering: Generic Software Transformations

Görel Hedin: Towards comparing Transformation Systems and Formalisms

Karl Trygve Kalleberg: Tracing Abstractions throough Generation

Terence Parr: The Role of Template Engines in Source Translation Systems

Marcelo Sant’Anna: Transformation Circuits: Exploring new Paradigms for Software Transfor-
mation Systems

Shane Sendall: Understanding Model Transformation by Classification and Formalization

Ganesh Sittampalam: Extending Languages with Transformation and Generative Technology

Tony Sloane: Cooperating Generators

Douglas R. Smith: Software Transformation Systems

L. Robert Varney: Generative Programming, Interface-Oriented Programming and Source Trans-
formation Systems

J.J. Vinju: Generation by Transformation in ASF+SDF

Eelco Visser: Reusable and Adaptive Strategies for Generative Programming

Hironori Washizaki: A Technique of Transforming parts of Object-Oriented Class Library into
Structurally Reusable Components, and Its Application

David S. Wile: Transformation Systems for DSLs, Architectural Styles, and Graphical Languages

Eric Van Wyk: Semantiv Analysis in Software Transformation

For more details see the individual position papers or http://www.program-transformation.

org/Sts/STS04

Program Generation and Modification
using Multiple Domains

 Ira D. Baxter, Ph.D.
idbaxter@semdesigns.com

Semantic Designs Inc.
12636 Research Blvd. #C214

Austin, Texas, USA 78759-2200
512-250-1018

ABSTRACT

Generative programming is generally discussed with respect to
one target programming language. Little is said about the realistic
possibility that such generation might require multiple languages
in, multiple languages in intermediate stages of generation, or
multiple languages out, or that these might all be different
languages. However, having multiple specification languages
enables one to express each concern in an appropriate notation.
Having multiple intermediate languages can simplify the staging
necessary for code generation. Having multiple result languages
is a necessity for generation of many kinds of complex software.

This paper sketches DMS, a source-to-source program
transformation tool capable of handling multiple languages at all
three levels. This enables DMS to be used for a wide variety of
program generation and change activities.

General Terms
Algorithms, Management, Design, Economics, Languages

Keywords
Software transformation, software analysis, migration, component
architectures, legacy systems, C++, compilers, re-engineering,
abstract syntax trees, patterns, rewrite rules.

1. The DMS1 Software Re-engineering Toolkit
DMS provides infrastructure for software transformation based on
deep semantic understanding of programs. Programs are
internalized via DMS-generated parsers, available for most
mainstream languages, and definable for others. Analyses and
manipulations are performed on abstract syntax tree (AST)
representations of the programs, and transformed programs are
printed with prettyprinters for the appropriate languages.

The Toolkit is capable of defining multiple, arbitrary specification
and implementation languages (domains) and can apply analyses
and transformations to source code written in any combination of
defined domains. Transformations may be either written as
procedural code or expressed as source-to-source rewrite rules in
an enriched syntax for the defined domains. Rewrite rules may be
optionally qualified by arbitrary semantic conditions.

1 DMS is a registered trademark of Semantic Designs Inc.

The DMS Toolkit can be considered as extremely generalized
compiler technology. It presently provides these facilities:

• A hypergraph foundation for capturing program
representations (e.g., ASTs, flow graphs, etc.).

• Complete procedural interfaces for processing ASTs, etc.

• Means for defining language syntax, and deriving full context-
free parsers and prettyprinters to/from DMS internal ASTs.

• Support for defining and updating arbitrary symbol tables
holding name/type/location information.

• An attribute evaluation system for encoding arbitrary analyses
over ASTs. One use is constructing symbol tables.

• An AST-to-AST rewriting engine that understands algebraic
properties (e.g., associativity and commutativity).

• The ability to specify and apply syntax-specific source-to-
source program transformations. Such transforms can operate
within a language or across language boundaries.

• A procedural framework for connecting these pieces and
adding arbitrary code.

• A scalable computational foundation in the parallel language
PARLANSE, DMS’s implementation language.

One of the many domains implemented for DMS is C++, which
has a preprocessor, parser, prettyprinter and full symbol table
construction/access/update for both the ANSI and Visual C++ 6.0
dialects. Unlike a compiler preprocessor, the DMS C++
preprocessor preserves both the original form and expanded
manifestation of the directives within the AST so that programs
can be manipulated, transformed, and printed preserving
preprocessor directives in the presence of preprocessor
conditionals. DMS has similar front ends for Java and COBOL.

DMS has been used for a variety of large scale commercial
activities, including cross-platform migrations, domain-specific
code generation, and construction of a variety of conventional
software engineering tools for dead and clone code elimination,
test code coverage, source browsing, and static metrics analysis.

A more complete discussion of DMS is presented in [1]. DMS-
based tools are described on the Semantic Designs web page [2].

The domain notion stems from the Draco work [4]. Domains are
independent notations that cannot be confused, and are often
manipulated in one tool execution instance. This is accomplished

by simply tagging every node with its domain. One can construct
mixed trees, and can specify such trees in source-patterns using
domain escapes. Draco however offers only source-to-source
program transformations and extremely simple transformation
strategies. DMS follows Draco, but goes considerably further in
offering mode-based lexers and full-context free (GLR) parsers,
making it practical to define arbitrary domains such as C++, and
providing a fusion of source-to-source program transformations
and compiler-like infrastructure such as procedural code and
transformations, and explicit symbol tables as well. We believe
this fusion contributes greatly to the utility of DMS.

TXL [5], ASF-SDF [6] and Stratego [7] also offer source-to-
source transformation capabilities. Our understanding is they do
so by defining one language to be manipulated in a tool execution
instance. Processing multiple languages requires the construction
of a union-grammar containing the set of BNF rules for all. This
appears to make processing such union languages difficult
because of the possibility of confusing a construct in one language
using constructs from another (consider expressions as one
example; consider translating between two dialects whose syntax
is identical but whose semantics differ). This would appear to
confound semantics and therefore correct transformation.
Secondly, these tools all seemingly share a philosophy of avoiding
building full symbol tables for the languages they process, often
by encoding extra syntax (TXL, ASF-SDF) or by generating
scope-specific rules (Stratego). We contend extra syntax just
compounds the first problem; incompleteness makes the domain
less useful. We believe that scope-specific rules confound
definition with purpose; for C++, one must encode transformation
rules that achieve some desired effect in conjunction with
understanding the C++ scope semantics. The complexity of real
languages makes this impractical.

TXL offers rule-based sequencing strategies. ASF-SDF suggests
chaining many, many exhaustive transformation-set applications.
Stratego has a sophisticated language for sequencing
transformations by controlling the AST walk. DMS offers
arbitrary procedural code, which we have found very practical.

2. Multiple domains in Practice
DMS has been used for a number of applications in which
multiple domains were valuable.

The first application is DMS itself. DMS provides a number of
separate domains for many of its facilities. DMS uses a domain to
process its source-to-source transformation rules, concurrently
(both in figurative and actual sense) with processing the other
domains involved in whatever defines the current task. A second
domain allows one to encode possible side effects of rules, to
enable parallel execution safety analysis.

For Rockwell Automation, DMS was used to construct a factory
control code generator, involving 4 domains. The input
specification language was an XML representation of a graphical
formalism specifying controllers of individual devices and their
compound supercontrollers. The generator produced code for two
relatively different dialects, with similar syntax, of Relay Ladder
Logic (RLL), a kind of assembly language involving boolean
arithmetic and side-effecting operations. These RLLs were

semantically ugly because of their ad hoc implementation. The
graphical spec was transformed into an intermediate domain,
Abstract RLL, which looked nothing like either RLL but had
simple, clean semantics; this enabled us to carry out strong
Boolean equational simplification before transforming to the
target RLLs in which this was more difficult. Having separate
domain definitions for all of these meant they evolved separately,
and there was no confusion of the two target RLLs syntaxes.

We are presently working on a DMS-based tool, BMT, for Boeing
[3] to carry out C++ component restructuring, for a component-
based embedded avionics software system having 6000+
components. The task is to convert from a proprietary distributed
component architecture to CORBA/RT. One subtask requires
sorting code chunks, by intended function, into different facets
(interface classes) than exist in the legacy component architecture.
Determining code functionality requires human understanding.
To provide a clean specification facility for the Boeing engineers
using the BMT, we developed a simple facet specification
language. For each component, an engineer simply names the
new facets and uniquely identifies which legacy methods (via
simple name, qualified name, or signature if necessary) comprise
its interface. The facet language itself is defined as a DMS
domain, enabling easy parsing by DMS. A DMS-based attribute
evaluator over the facet domain traverses the facet specifications'
ASTs and assembles a database of facts for use during component
transformation. Finding named code requires a full, correct
C++ symbol table across the 150,000 lines of code that typically
contribute to a component.

Last, carrying out software migrations typically requires multiple
languages, e.g,. COBOL, SQL and JCL all at once. We have no
further room to elaborate on this here.

3. REFERENCES.
[1] Baxter, I. D., Pidgeon, C., Mehlich, M., DMS: Program

Transformations for Practical Scalable Software Evolution.
Proceedings of the 26th International Conference on
Software Engineering, 2004, IEEE.

[2] Semantic Designs, Inc. web site, www.semanticdesigns.com.

[3] Akers, R., Baxter, I. Mehlich, M. Re-Engineering C++
Components Via Automatic Program Transformation,
Proceedings Partial Evaluation and Program Manipulation
2004, IEEE, to appear.

[4] Neighbors, J., Draco: A Method for Engineering Reusable
Software Systems, Software Reusability, 1989, ACM Press.

[5] Cordy, J. TXL – A Language for Programming Language
Tools and Applications, Proc. 4th International Workshop
on Language Descriptions, Tools and Applications. ACM.

[6] Brand, M.G.J. van den, P.E. Moreau, and J.J. Vinju.
Environments for Term Rewriting Engines for Free!.
Proceedings of the 14th International Conference on
Rewriting Techniques and Applications. Springer-Verlag

[7] Visser, E., Program Transformation with Stratego/XT: Rules,
Strategies, Tools, and Systems in StrategoXT-0.9, Domain-
Specific Program Generation, LNCS 2003, Springer-Verlag,
to appear.

A General-purpose Transformation System for Java

Gustavo Santos, Paulo Borba, Adeline Sousa
Informatics Center, Federal University of Pernambuco

{gas,phmb,adss}@cin.ufpe.br

Introduction

Program transformation can be considered as a
unifying concept for code generation and
refactoring. A refactoring comprises several
behavior preserving changes on the program, but
does not add new functionalities [3]. A code
generation tool, on the other hand, introduces new
functionalities. With this unifying view,
transformations create new types and modify old
ones as long as it preserves the semantics of the
original program.
Most code generation and refactoring tools
implement only a fixed set of transformations. This
is quite restrictive because new refactorings and
code patterns are often proposed, and some might
be strongly related to specific design patterns,
frameworks, and middleware.
In order to avoid this limitation, we are developing
JaTS (Java Transformation System) a language and
execution engine for defining and applying
transformations. Using this language, users are
able to define new transformations by not only
composing existing ones but also by declaring
preconditions and source and target templates that
describe the code changes required by a
transformation. This language's syntax is basically
an extension of Java syntax with meta-
programming constructs such as meta-variables,
which are used as placeholders in templates.
Besides meta-variables, the language provides
more powerful meta-programming constructs [1,2]
such as optional, conditional and iterative
constructs. The language also has executable
declarations that can have access to lower level
code structures (syntactic trees elements) when
necessary.

Language-specific versus general
transformation tools

Many program transformation tools are not
language-specific, being able to transform
programs from an arbitrary encoded source
language to an arbitrary destination language.
Although this may be an advantage, it complicates

the use of the tools, since the language in which
the transformations are encoded is substantially
different from the one to which they are applied.
There are also language-specific tools for program
transformation. Most of these have the limitation
of supporting only a fixed set of transformations.
Some tools offer the possibility of extension
through the use of an API, but this demands the
user to access the system source code and actually
implement the transformations using a
programming language.
JaTS avoids the drawbacks of both general purpose
and limited language-specific transformation tools.
As JaTS's syntax is an extension of Java's syntax, it
is easier for Java programmers to specify the
transformations they wish to apply. Also, the
transformation language takes the semantics of
Java into account, for example adopting
associative-commutative matching (for field and
method declarations), which allows concise
implementation of transformations that could be
much more complicated to implement if only the
syntax was taken into account.

Transformations in JaTS

JaTS transformations consist of three parts:
preconditions, source and target templates. The
templates consist of one or more type (class or
interface) declarations. The type declarations in the
source templates are matched with the source Java
type declarations to be transformed; this implies
that both must have similar syntactic structures.
The target templates define the general structure of
the types that will be produced by the
transformation.
The following example shows a simple JaTS
transformation that introduces a new field
declaration in an arbitrary class. The construct
“#Class_name” represents a typical JaTS variable.
It will match with the real class name in matching
process. The delimiters “#[” and “]#” indicate an
optional matching. This means that the template
shown in the example cans match successfully
with a class declaring or not an extends clause. The
variables “#Fds” and “#Mds” express the JaTS

semantic power. They can accomplish all field
declarations and method declarations in the class
respectively.

Source template
public class #Class_name
 #[extends #Super_class]#
{
 FieldDeclarationSet: #Fds;
 MethodDeclarationSet: #Mds;
}

Target template
public class #Class_name
 #[extends #Super_class]#
{
 private int newField;
 FieldDeclarationSet: #Fds;
 MethodDeclarationSet: #Mds;
}

Source class
public class ExampleClass
{
 private String oldField;
 public void method() {
 }
}

Transformed class
public class ExampleClass
{
 private int newField;
 private String oldField;
 public void method() {
 }
}

The application of JaTS transformations is
basically based on matching, replacement and
processing. The matching retrieves the information
from the source Java types. There is also the
possibility of passing parameters to the
transformation when the matching process is not
enough to get all needed information. The
replacement transverses the parse-tree and replaces
occurrences of variables by the values mapped to
them, and the processing is responsible for the
evaluation of executable and iterative meta-
programming declarations.

Applicability

JaTS is being used as the transformation engine
inside Coder [4], a wizard-based tool that can be
used for generation and maintenance of Java
programs. This experience has shown that JaTS
can be used successfully for several pattern
language generations, like a data collection
architectural pattern for EJB, Struts-based
presentation layer and others. The generated code
is fully executable and requires few adjustments to
be completely functional. This reduces
significantly the software development cost for
Coder users.
Our experience developing JaTS has shown that
the system can be used in a bootstrapping way,
such that the tool can support a product-line of
language-specific transformation systems. Thus, it
is possible to derive new transformation systems in
a relative inexpensive way. Such technique is
possible because JaTS transformation system
model can be used for any language due to the
concept of matching, replacement and processing
and the adoption of the visitors design pattern.
Nowadays the JaTS transformation model includes
the advantages of a language-specific
transformation system, because it is easy for a
programmer to learn the transformation language,
and enables the user to obtain the advantages of
general transformation systems, because it is
inexpensive to derive a new transformation system
for another language.

References

[1] Fernando Castor and Paulo Borba. A

language for specifying Java transformations.
5th Brazilian Symposium on Programming
Languages, pages 236-251. May 2001,
Curitiba, Brazil. Also presented at the
Dagsthul Seminar on Program Analysis for
Object-Oriented Evolution. Dagsthul,
February 2003.

[2] Marcelo d'Amorim, Clóvis Nogueira,
Gustavo Santos, Adeline Souza and Paulo
Borba. Integrating Code Generation and
Refactoring. Workshop on Generative
Programming, ECOOP'02. Málaga, June
2002.

[3] Martin Fowler et al. Refactoring: Improving
the Design of Existing Code. Addison
Wesley. November 1999.

[4] Qualiti Coder Tool. http://coder.qualiti.com.

 1

A Case for Interactive Source-to-Source Transformations
Marat Boshernitsan, Susan L. Graham

University of California, Berkeley
Computer Science Division, EECS

Berkeley, CA 94720-1776
+1 510 642 4611

{maratb,graham}@cs.berkeley.edu

ABSTRACT

Many advances have been made in off-line generative and
restructuring tools and in online systems for program
development by refinement. However, manual large-scale
modification or generation of source code continues to be tedious
and error-prone. Integrating scriptable source-to-source program
transformations into development environments will assist
developers with this overwhelming task. We discuss various
usability issues of bringing such ad-hoc transformations to end-
users, and describe a developer-oriented interactive
transformation tool for Java that we are building.

1. INTRODUCTION
Source-to-source transformations have many uses, ranging from
efficiency-improving transformations in optimizing compilers, to
code generation in aspect-oriented systems, to large-scale
restructuring transformations such as Y2K and Euro conversions.
However, one application where source-to-source transformations
have seen limited use is the automation of mundane code editing
tasks faced by software developers in their day-to-day work.

Changing software source code can be tedious and error-prone.
The process is complicated because a conceptually simple change
may entail pervasive large-scale modifications to a large portion
of source code. Examples of such changes abound in the many
maintenance tasks faced by developers. For instance, consider a
simple task of inserting the name of the enclosing function into
the code that prints an execution trace to the console. Unless the
programming language provides access to “current function
name” at every trace site, the implementation of this trivial change
might take hours of the developer’s time.

Various proposals have been made for automating systematic
modification to source code. However, few tools have found their
way to the “programming trenches.” If a modification is a simple
behavior-preserving refactoring transformation that happens to be
implemented in the programmer’s development environment, then
the change process is quick and convenient. However, many
modifications simply cannot be broken down into a sequence of
well-behaved refactorings. Another option is to employ a general
source-to-source transformation engine such as REFINE [1] or
TXL [2]. However, specifying transformations with these tools
requires familiarity with a fairly complex transformation
language, so using such a system for simple changes is overkill.
Alternatively, if the modification is sufficiently simple, developers
may choose to use regular expression-based pattern matching
facilities of Perl, SED, or other text-oriented tool. Needless to
say, using regular expressions for anything but the most trivial of
transformations is usually an exercise in frustration.

In this paper we argue that developers need tools for interactive
ad-hoc transformation of source code during authoring and
editing phases of software development. Transformations can be
construed broadly. In addition to replacing existing code,
transformations can also generate new code fragments based on
linguistic structure or on meta-information embedded in program
source code. In all cases, such tools must meet unique challenges
posed by their interactive mode of use. Not only must interactive
transformations tools be sufficiently powerful to deal with a broad
range of code changing tasks, but also they must address usability
issues that arise when attempting to manipulate a non-textual
linguistic representation of program source code.

When thinking about and discussing software changes, developers
utilize high-level linguistic structure and programming language
semantics. In contrast, the developers are forced to interact with
computing systems to create and modify source code using low-
level text editors and representations designed for compiler input.
We believe that enabling the programmers to express operations
on program source code at a level above text-oriented editing will
improve programmer's efficiency and result in fewer errors.

2. IF WE BUILD IT, WILL THEY COME?
To our knowledge, there are no empirical studies that suggest that
programmers would use scriptable code changing tools for their
everyday editing tasks. However, anecdotal evidence is plentiful.
For instance, CodeGuru.com, a community website for Windows
developers, includes, among other things, a list of member-
contributed macros for the Microsoft Visual Studio development
environment. Among the macros are: ConvertStarComments
(replaces single-line ‘/*’ comments with ‘//’ comments),
InvertAssignment (converts ‘a = b’ to ‘b = a’), DefineMethod
(automatically generates method prototypes), and others.

The willingness of developers to create such macros reflects their
belief that writing a macro is more time-efficient than making the
edit “by-hand,” especially if the use of a macro replaces a
repetitive manual action. Despite the fact that the Visual Studio
macro language offers only limited text-based access source code,
their utility should not be underestimated. In fact, one of the first
comments on the DefineMethod macro in the discussion forum
reads: “Cool, but I would need the reverse.”

3. THE HUMAN FACTOR
Many existing tools support specification and execution of
transformations on program source code. In addition to
aforementioned REFINE and TXL, notable examples include
TAWK [5], Inject/J [4], and the IP environment [7]. However,
these tools are intended for expert use on large and complex tasks.
By contrast, our system is oriented toward end-programmers – the

 2

end-users of traditional development environments. We draw this
distinction to differentiate end-programmers from language tool
experts. Language tool experts are those who understand the
structure of program source code from the perspective of tools,
such as compilers and may be comfortable thinking about source
code in terms of linguistic data structures. We do not expect end-
programmers to possess this knowledge.

Nevertheless, end-programmers’ understanding of program source
is based on its structure. This is supported both by our empirical
observations of developer expression and by the experimental
results in psychology of programming [3]. When describing
source code to one another, programmers say things like:

“Put p:= link(p) into the loop of show_token_list, so that it
doesn't loop forever.” [6]

“Change BI_* macros to BYTE_* for increased clarity.” [8]

Programmers evoke notions such as variables, expressions,
statements, loops, and assignments. They directly refer to names
found in source code. They use patterns to describe large classes
of similar changes. Inspired by these kinds of examples, we can
design a formal language for source code transformations.

4. INTERACTIVE TRANSFORMATIONS
Guided by the above principles, the Harmonia Project at UC
Berkeley is currently building an end-programmer-oriented
interactive tool for source code transformation. In order to enable
developers to describe transformations using familiar concepts,
we targeted our notation toward the Java programming language.
Our transformation language is called iXj, for “Interactive
Transformations for Java.” While iXj is a language tightly
coupled with Java, we expect that our design methodology will be
applicable for other programming languages.

Prior to designing iXj, we conducted an informal user experiment
to understand what programming paradigm is most “natural” for
expressing transformations. In this experiment the participants
were shown “before” and “after” snapshots of a piece of source
code and were asked to write down the transformation that was
used to perform the change. In particular, we were interested how
developers reference code fragments to be transformed, how they
describe the output, and what programming style they use. We
learned that to describe a location in the source code developers
use language concepts (“in class Employee, method getName…”)
interspersed with code fragments in Java (“replace
System.out.println(x) with…”). We also discovered that
imperative programming style (“first do this, then do that”) is
most natural for describing modifications.

Armed with this knowledge, we based the first version of iXj on
the selection/action programming model. A selection is a pattern
that describes a set of Java source code fragments. One or more
actions describe a transforming operation for each selection.

In order to provide scaffolding to help developers learn and use
an unfamiliar notation, the iXj programs are created and executed
in an integrated transformation environment. In addition to
offering context-sensitive assistance during creation of iXj
programs, the transformation environment enables the
programmers to view partial results and to visualize execution of
iXj selections and actions. Additionally, the developer can
examine each transformation site, selectively undo or modify
individual transformations, etc. The transformation environment

can also capture the source code change history in terms of high-
level transforming operations. Such a capability helps to
document important aspects of program evolution, as well as
supports selective rollback of high-level changes days, months,
and even years after they had been performed.

An important advantage of using an integrated environment for
transforming source code is the ability to treat the iXj programs as
abstractions. Not only does this permit naming transformations
and storing them in a library for reuse, but also it allows treating
transformations as update agents. An update agent is a
metaprogram bound to both the source and the target (generated)
program elements. An integrated transformation environment can
track dependencies between the two sections of source code and
act appropriately if the developer makes changes to either.

We believe that iXj will provide the right high-level vernacular
for describing code, and we expect professional developers to
have no trouble specifying the control structure of pattern
matching and transformations in a textual notation. At the same
time, the transformation environment augments iXj with direct
manipulation. Selection patterns can be created “by-example,”
whereby the user selects a source fragment that represented a
single matching instance and then abstracts the generated pattern
to match a larger class of code fragments.

5. CONCLUSION
This position paper argues for bringing interactive scriptable
source-to-source program transformations into the hands of
developers. A flexible end-programmer-friendly transformation
tool can be used for both for systematic modification and for
systematic generation of boilerplate code. As a proof of concept,
we are building a novel environment that lets the programmers
express operations on program source code at a level above text-
oriented editing using source-to-source program transformations.

6. REFERENCES
[1] S. Burson, G. B. Kotik, and L. Z. Markosian. A program

transformation approach to automating software reengineering. In
Proceedings of the 14th Annual International Computer Software
and Applications Conference. IEEE Computer Society Press, 1990.

[2] J. R. Cordy, C. D. Halpern, and E. Promislow. TXL: A rapid
prototyping system for programming language dialects. In
Proceeding of the International Conference of Computer
Languages, pages 280-285, Miami, FL, Oct. 1988.

[3] F. Detienne. Software Design – Cognitive Aspects. Springer-
Verlag, New York, NY, 2001.

[4] T. Genssler and V. Kuttruff. Source-to-source transformations in
the large. In Proceedings of Joint Modular Language Conference
(JMLC) 2003.

[5] W. G. Griswold, D. C. Atkinson, and C. McCurdy. Fast, flexible
syntactic pattern matching and processing. In Proceedings of the 4th
Workshop on Program Comprehension. IEEE Computer Society
Press, 1996.

[6] D. E. Knuth. The errors of TeX. Software – Practice and
Experience, 19(7):607-685. July 1989.

[7] C. Simonyi. The death of computer languages, the birth of
intentional programming. Technical Report MSR-TR-95-52,
Microsoft Research (MSR), Sept. 1995

[8] B. Wing. XEmacs ChangeLog entry for 2002-05-05.
http://cvs.xemacs.org/viewcvs.cgi/XEmacs/xemacs-
20/src/ChangeLog

Invasive Composition By Transformation Systems

Thomas Cleenewerck

June 30, 2004

1 Introduction

The most important strategy to deal with complex systems in computer science
is the divide and conquer design paradigm. It works by recursively breaking
down a problem into sub-problems until they become simple enough to be solved
directly. The solutions to the sub-problems are then composed to give a solution
for the whole problem. There are two kinds of composition: non-invasive and
invasive composition. The non-invasive composition mechanisms are applicable
as long as the kind of components to be composed fit in the dominate decom-
position. However it has become clear that there are multiple equally valid and
useful decompositions of the same software. In order words, there are often
components that do fit and violate the dominate decomposition. There are two
ways of dealing with this problem. One approach is to express a software sys-
tem as a set of multi-dimensional concerns like HyperSpace [OT00]. Another
approach is to keep a single dominate decomposition and express the compo-
nents that violate this decomposition in a crosscutting way like AspectJ. In this
later approach such crosscutting components must be invasively composed with
the other components.

Quite a lot of the generative programming techniques have been build with
the second approach in mind and thus offer various invasive composition mech-
anisms. Let us briefly discuss the most significant ones. The founder of invasive
composition is subject-oriented programming [HO93]. In this model object-
oriented code snippets and fragments are composed with one another using
correspondence and combination rules. Gray box component models integrate
[TG97] through a partial exposure of the internals of the system in terms of an
operational model [BW97]. Glass-box composition models use declarative spec-
ifications to compose and reason about the composition of components [Bat03].
More recently, aspect-oriented programming (HyperJ and AspectJ) broadened
the application of a crosscutting concern to a set of crosscutting points scat-
tered over the entire software system where existing code gets composed with
the crosscutting code. In fact, every concern-specific language ranging from
general purpose languages like the ones discussed above to domain-specific lan-
guages enabling the specification of their problem into a more appropriate con-
cern needs invasive composition mechanisms to compose these concerns. Note
that the invasive composition mechanisms must not always be visible to the

1

developer. In the case of concern-specific languages, the more domain specific
the less visible the invasive composition mechanisms will be. In short, invasive
compositions are frequently needed and encountered.

2 Position

Invasive composition mechanisms are unfortunately enough still implemented
with ad-hoc generators. Hereby losing valuable research results of the three
main-stream general purpose transformation paradigms (GPTP): template or
rule-based transformations and attribute grammars. Our position statement is
that the reason for the use of ad-hoc generators lies in the fundamental under-
lying in-place substitution property of those general purpose transformation.

Template, rule-based transformations and attribute grammars are all based
on an in-place substitution mechanism: Templates are parameterized target
language expressions with escaping variables referring to any kind of domain
information necessary. The templates are composed (usually by concatenation)
with one another to form the whole solution. In rule based systems, the target
language expression produced by rules are substituted with their top-level or
pivot nodes. When no more rules apply the complete target language expres-
sion is reached. In attribute grammars attributes are attached to their produc-
tions and are afterwards also composed into a complete solution. Clearly each
transformation module (template, rule or attribute) produces a target language
expression which is composed with the others to form a complete solution.

Merely using in-place substitutions to implement an invasive composition
mechanism is very cumbersome and troublesome. Invasive composition mecha-
nisms need to exert influence on various parts of other components in the system.
Since only in-place substitutions are supported, developers are often tempted
and forced to come up with creative work arounds for two problems (1) escaping
from their local context to the other parts of the system and (2) implementing
their effect in those parts of the system. When these two problems are dealt
with naively the escaping and the implementation of their effect highly depends
on the implementation details of the rest of the system and its components and
thus on the state of the transformation process. Very soon these dependencies
clutter up the system and result in a spaghetti code implementation. To keep
this more or less manageable a staged transformation process is the most com-
monly used solution where the escaping and the implementation of their effect
is performed in two separate stages. However, this does not reduce the number
of dependencies.

Clearly transformation systems are not very suitable to implement invasive
composition mechanisms. In order to remedy this situation, we believe that it is
necessary to extend current transformation systems with a suite of basic invasive
capabilities. These capabilities should not only facilitate the implementation but
render it also more robust to evolutions of the other components of the software
system.

Currently we are experimenting with a suite of basic invasive capabilities

2

based on the model presented by subject-oriented programming (SOP) [OKK+96,
SCT99]. The extensions for the transformation systems we propose are thus
based on SOP. SOP was formulated and founded in terms of object-oriented
programming and introduced two kinds of rules: correspondence rules and com-
bination rules. The correspondence rules declare which parts of the components
must be combined with one another, the combination is performed by the com-
bination rules. The two rules are externally defined to the components. To
apply the SOP ideas in a general setting in transformation systems, a couple
of modifications had to be made: (1) generalization and integration of those
two rules into the transformation paradigm (2) additional context specifications
expressed in declarative source language constructs using paths, (3) automation
of tedious context specifications, (4) selection of the most specific and applicable
rules and (5) increase of the robustness of the combination rules.

The above extensions are build on top of the Linglet Transformation System
(formerly known as Keyword Based Programming [Cle03]). Since our incentive
for this research lies in the need for more domain-specific concern-specific lan-
guages, the invasive composition mechanisms of current experiments are usually
implicit constructs in those languages. Further experiments with other genera-
tive techniques are necessary to refine and validate our approach.

References

[Bat03] Steve Battle. Boxes: black, white, grey and glass box views of
webservices. Technical Report HPL-2003-30, HP, 2003.

[BW97] M. Buchi and W. Weck. A plea for grey-box components, 1997.

[Cle03] Thomas Cleenewerck. Component-based dsl development. In Pro-
ceedings of GPCE03 Conference, Lecture Notes in Computer Science
2830, pages 245–264. Springer-Verlag, 2003.

[HO93] William Harrison and Harold Ossher. Subject-oriented program-
ming: a critique of pure objects. In Proceedings of the eighth annual
conference on Object-oriented programming systems, languages, and
applications, pages 411–428. ACM Press, 1993.

[OKK+96] Harold Ossher, Matthew Kaplan, Alexander Katz, William Harri-
son, and Vincent Kruskal. Specifying subject-oriented composition.
Theor. Pract. Object Syst., 2(3):179–202, 1996.

[OT00] Harold Ossher and Peri Tarr. Multi-dimensional separation of con-
cerns and the hyperspace approach. In Proceedings of the Symposium
on Software Architectures and Component Technology: The State of
the Art in Software Development. Kluwer, 2000.

[SCT99] Harold Ossher Siobhán Clarke, William Harrison and Peri Tarr.
Subject-oriented design: towards improved alignment of require-

3

ments, design, and code. ACM SIGPLAN Notices, 34(10):325–339,
1999.

[TG97] D. Tombros and A. Geppert. Managing heterogeneity in commer-
cially available workflow management systems: A critical evaluation,
1997.

4

Metaprogramming is the process of specifying generic
software templates from which classes of software components,
or parts thereof, can be automatically instantiated under
direction of a formal design model to produce new software
components. In the µ* system [Cordy92], metaprograms are
specified using an annotated by-example style accessible to
ordinary programmers of the target programming language.
Annotations in the form of Prolog-like predicates specify the
design conditions under which different parts of the source
template are to be instantiated. Instantiation of a source
component is then done by providing a design model as a
database of Prolog facts from which the design conditions can
be evaluated and source component instances automatically
generated using Prolog-style deduction.

The implementation of µ* is interesting in the context of this
workshop because it is entirely done using the source
transformation language TXL [Cordy91,04]. The
implementation is achieved in a two stage process in which
metaprograms are first translated by source transformation into
equivalent TXL programs. These TXL programs are then run
with input from a design database to implement instantiation of
the metaprograms and generate instantiated source code by
source transformation. In essence, this implementation is a
second order source transformation.

1. µ* : A Family of Metalanguages

µ* (pronounced "mew-star") is a family of by-example
metaprogramming languages that share a common metanotation
and implementation. The philosophy of the family is exactly
the ideal: the metaprogramming language for each target
language consists of the target language itself, augmented with
meta-annotations specifying conditions in the design database.
For example, µC, the metalanguage for C, consists of C program
syntax, optionally annotated with meta-annotations. The syntax
of meta-annotations is the same across all target languages. In
each case, the syntax of the basi c metalanguage is the syntax of
the language itself, and the syntax of the meta-annotations is the
syntax of µ*. The target language can be any programming or
specification language with a formal syntax.

2. By-example Metaprogramming

In µ*, every program written in a target language is a
metaprogram unconditionally generating itself. Thus every C
program is automatically a µC program, and every Prolog
program is a µProlog program. Syntactically contained
program fragments (for example, declarations, statements, and
so on) are also in general metaprograms for themselves.

The addition of meta-annotations to a metaprogram attaches
the metaprogram to the design database and makes generation of

the annotated parts conditional on the facts in the database. The
range of affected code dependent on a design condition is
denoted by enclosing it in backslashes, followed by the meta-
annotation and a double backslash to mark its end, as shown in
Figure 1. The backslash is the only symbol reserved by µ* it
can be replaced with any other single symbol.

Because in many cases the intended role of the affected area
in the target source is ambiguous, the role must be given
explicitly following the bracketed area, as shown in Figure 1.
The role is the name of the intended part of speech in the target
language reference syntax (that is, the common name of the
entity in the target language, for example statement or
declaration in C) enclosed in square brackets [].

3. Generative Metaprograms

The µ* annotation language provides two basic operations:
when, which includes a section of target source conditionally on
the provability of a predicate on the database, and each, which
generates one copy of the section of target source for every
solution to a predicate in the design database (Figure 2). These
two operations can be nested to give complex combinations of
conditional generation.

The database is searched for solutions to each annotation
predicate. When a solution is found, the metavariables in the
predicate are bound to the terms found in the solution in the
design database. The metavariables can then be instantiated in
the target source generated for that solution. Repeated instances
of a metavariable in a predicate specify unification in the usual
Prolog way, so the predicate function(F[id]) and returns(F,int)
specifies only those entities that are functions in the design that
return the type int. Figure 2 shows an example specifying a µC
metaprogram to generate external C routine declarations for
every function entity in a design database.

When programmers write code templates, they often use a
pseudo-code style in which descriptive identifiers take the place

Metaprogram Implementation by Second Order Source Transformation
James R. Cordy*

Medha Shukla Sarkar†
School of Computing, Queen’s University

Kingston, Ontario, Canada K7L 3N6
cordy@cs.queensu.ca, msarkar@mtsu.edu

const char *strsignal(int n)
{
 static char
 buf[sizeof("Signal ")+1+INT_DIGITS];
\
 if (n>=0 && n<NSIG && sys_siglist[n]!= 0)
 return sys_siglist[n];
 sprintf(buf,"Signal %d",n);
\ [statement*]
 when listing
\\
 return buf;
}

Figure 1. Trivial Example µC Metaprogram.

The if and sprintf statements enclosed in backslashes are
conditionally included in instances of the metaprogram only if
“listing” is a design fact in the design database.

* Author’s present address: ITC-IRST, Trento, Italy.
† Author’s present address: Middle Tennessee State University, U.S.A.

of sections to be filled in later. µ* provides this same feature by
allowing metavariable identifiers to take the place of any part of
a target source fragment enclosed in backslashes, and by
allowing later refinement of the role and source text of the
metavariable, either as part of the solution to a predicate, or by
using a where clause.

A where clause is a nested metaprogram that generates a
target source fragment and binds it to a metavariable for use in
other parts of the metaprogram, for example, the main source
text. While in this position paper we do not have room for
realistic examples, the nested combination of when, each, and
where with Prolog-style predicate solution and unification on
design databases gives µ* great power and flexibility while
retaining the by-example nature of metaprogram templates. It
has been used to specify and generate complex code artifacts in
C, Prolog and Turing using design databases describing
production software interfaces such as OpenGL.

4. Implementation of µ* Using TXL

µ* is implemented using the TXL source transformation
language [Cordy91,04] by translating each µL metaprogram for
a target language L to a corresponding TXL source
transformation ruleset using TXL source transformation. The

generated TXL ruleset is then combined with reference
grammars for the target language L and Prolog to create a TXL
program that implements the instantiation of the µL
metaprogram from a design database of Prolog facts, as shown
in Figure 3. The translation of µL metaprograms to
corresponding TXL metaprograms is itself achieved using a
source transformation specified and implemented in TXL. In
essence, this implementation is simply a second order source
transformation interpretation of the original µL metaprogram.

The purpose of this position paper is to introduce and
explore the possibility of generalizing this technique to the
wider implementation of metaprogramming systems using
source transformation tools. While in this application the
technique is driven by an entity-relationship design database in
Prolog form, there is no fundamental reason why the design
model could not be represented in any other design notation,
including those based on UML [OMG03]. And while the
particular source transformation system used here is TXL, there
is no reason why the technique would not work with other tools.

References.

[Cordy92] J.R. Cordy and M. Shukla, "Practical
Metaprogramming", Proc. CASCON'92, IBM Centre for
Advanced Studies Conference, Toronto, November 1992, pp.
215-224.

[Cordy91] J.R. Cordy, C.D. Halpern and E. Promislow,
"TXL: A Rapid Prototyping System for Programming Language
Dialects", Computer Lang. 16,1 (January 1991), pp. 97-107.

[Cordy04] .J.R. Cordy, "TXL - A Language for Prog-
ramming Language Tools and Applications", Proc. LDTA 2004,
ACM 4th International Workshop on Language Descriptions,
Tools and Applications, Barcelona, Spain, April 2004, pp. 1-27.

[OMG03] Object Management Group, http:/www.omg.org,
Unified Modeling Language Specification v1.5, March 2003.

\
 extern FType F();
\ [declaration*]
 each function(F[id])
 and returns(F,FType[type])
\\

Figure 2. Trivial Generative µC Metaprogram.

The interpretation is that a sequence of declarations is to be
generated, one for each “function” entity in the design
database. Unification on design facts finds the associated type
automatically from the “returns” design fact.

µ* Grammar µ* → TXL
TXL Rules

TXL Metaprogram
TXL Rules

(1) L Reference
Grammar

 µL
Metaprogram

Prolog
 Grammar

TXL

(2)

Prolog
Database

Instantiated
L Program

(3)

µL Prototype System

Figure 3. Implementation of µ* Using TXL.

A TXL source transformation is used to translate µL metaprograms to TXL transformation rules for a target language L (1). The
result is combined with standard reference grammars for L and Prolog to give a complete TXL program (2), which is then run
with a Prolog form entity-relationship design database as input. The design database is transformed by the TXL program to a
target language L instantiation of the µL metaprogram (3). The entire process is very efficient, running in seconds on practical

Lexical Source-Code Transformation

Anthony Cox, Tony Abou-Assaleh, Wei Ai, and Vlado Keselj
Faculty of Computer Science, Dalhousie University

Halifax, Nova Scotia, Canada�
amcox,taa,weia,vlado � @cs.dal.ca

Abstract

As an alternative to syntactic matching on a program’s
abstract syntax tree, we explore the use of lexical matching
on a program’s source-code. Lexical techniques have been
shown to be effective for the approximation of an abstract
syntax tree, thus permitting tools that use regular expres-
sions to effectively specify rewrite targets. In this paper, the
features needed to support lexical rewriting are examined.
As well, we report on several tools created to explore these
features and suggest directions for future research.

1 Introduction

It is not always possible, or desirable, to parse a source
file during maintenance. Errors, missing header files, or em-
bedded language constructs can prevent parsing. Even if the
file can be parsed, it might not be beneficial to do so, such
as when performing maintenance on the macros in a C file.

Parsing is needed when a maintenance tool manipulates
the source-code’s abstract syntax tree (AST). As shown by
Cordy et al. [5] AST transformation is an effective and
versatile maintenance technique. The creators of the Soft-
ware Refinery Toolkit [2] also support this view. However,
tools such as TAWK [8], TXL [4], A* [10] , and Refine [2]
use syntactic matching and must first parse a file to enable
matching against the code’s AST.

When code can not be parsed, an approximate AST can
be extracted using a lexical technique [11, 6, 7]. This ob-
servation indicates that transformation-based maintenance
is possible using lexical tools. We now examine the fea-
tures that such tools should provide and then present tools
we developed to explore these features.

2 Tool Features

To facilitate adoption, key tool elements should be well-
known and highly accepted by programmers. Patterns and
actions should be expressed using familiar formalisms. As

well, tools should strive for simplicity; for example, by
avoiding complex disambiguating rules. The following fea-
tures adhere to these principles as much as possible.

Regular Expressions: Within the Unix community, pat-
terns are traditionally expressed using regular expressions
(RE). While other, specialized pattern languages exist, none
are as widely used as RE. RE have been well studied and
provide a strong candidate for a pattern language.
Unrestrictive Action Language: Actions should be speci-
fied in a complete programming language to avoid any lim-
itations. Whether the actions are compiled, as in lex, or
interpreted, as in AWK, is dependent upon the desired run-
time efficiency of the tool. We currently advocate the use of
a C-like language for its versatility and popularity.
Stream-Based Match: In source-code, the line structure
(format) and syntactic structure are unrelated. Conse-
quently, tools that use line-based, or record-based, matching
are ineffective for code maintenance. Stream-based match-
ing considers a file as a stream of characters, with newlines
possessing no special properties. Cgrep [3] and grep (when
used with the -z option) perform stream-based matching and
can effectively locate syntactic constructs.
Disjoint Match: It is possible for two matches to overlap.
For example, the expression (ab)|(bc) can be matched
twice against the text abc. Disjoint matching resets the
matcher after each match, thus giving priority to the first
match in the stream. Anecdotal evidence suggests that this
behaviour is what programmers most expect.
Unambiguous Matching: A RE is ambiguous if there ex-
ists a string that it matches in more than one way. For ex-
ample, the expression (abbc)|(ab � c) has two matches
against the string abbc. As it is possible to restructure ev-
ery ambiguous RE into an unambiguous one [1], ambigu-
ity can be removed, avoiding the need for complex disam-
biguating rules. In our experience, unambiguous RE are
easy to write, once one learns where ambiguity occurs.
Shortest Match: Most RE matching tools use a longest-
match algorithm, except for Perl [12], TLex [9], and cgrep
[3], which support shortest-match. While both algorithms
can match the same sets of strings, for extracting nested

dgrep -P -o -z ’ˆ[ˆ\n]*?\n\w*main.*?ˆ{.*?ˆ}’ file.c

Figure 1. Extracting a Function Definition with Dgrep

constructs, shortest-match is simpler (e.g. using shortest-
match {. � } finds blocks in C).

Iterative Operation: When shortest-match is used, match-
ing always finds the innermost of a nested construct. To
locate all instances of the construct, iteration permits match-
ing to occur from innermost to outermost. The iterative ap-
plication of shortest-match simulates a bottom up traversal
of the AST. A similar facility exists in A*, which has nota-
tion to specify multiple passes over an AST.

Sub-String Match: It is often useful to limit matching to
a set of sub-strings identified in the text, such as matching
RE � contained-in RE � , or RE � containing RE � . Cgrep uses
universes to provide partial sub-string matching. Universes
permit RE � (e.g. a variable) to be located in RE � (e.g. a
block), supporting the ‘contained-in’ pattern. Start states in
lex provide a similar functionality. Additional research is
needed to explore the ‘containing’ pattern.

Other Features: Lex has many extensions to improve ex-
pressibility; REJECT permits matches to be rejected and
yyless permits parts of a match to be returned to the
text stream. TAWK, cgrep and lex, all use macros for pat-
tern definition and simplification. LSME [11] permits sub-
strings of a match to be named and accessed in actions.
These features are also of value in a code rewriting tool.

3 Our Tools

Egret is a cross between cgrep and lex. Users create
a lex-like specification that is processed and compiled to
produce a transformation tool. Egret uses an unambiguous
variant of cgrep’s stream-based shortest-match algorithm.
Cgrep’s matching algorithm has been shown to be effective
for the extraction of an approximate AST [6, 7]. Many of
the features we have presented result from our experiences
in implementing and testing Egret.

Dgrep is a modified version of GNU grep where the
restriction preventing the use of the -z option with the -P
option has been removed to demonstrate that stream-based
match can be used with Perl’s ungreedy-match. Perl dif-
fers from cgrep in that the leftmost criteria overrides the
shortest-match criteria. For example, the pattern a � b when
matched against xaaabx, returns the match aaab using
Perl’s ungreedy match and b using cgrep’s shortest-match.
Figure 1 demonstrates the use of dgrep to locate the defi-
nition of the function ‘main’ from code written using GNU
stylistic conventions.

4 Future Work and Conclusion

The design and implementation of Egret identified many
features needed by lexical source-code transformation tools.
Dgrep explored code maintenance using Perl’s RE syntax
combined with stream-based matching. These implementa-
tions suggest that it would be useful to extend Perl to sup-
port unambiguous, stream-based, disjoint matching. Perl
provides a rich set of programming facilities and offers
many of the features needed for code transformation. Con-
sequently, we believe the development of a Perl transforma-
tion module will provide an effective tool for performing
lexical level source-code maintenance.

References

[1] R. Book, S. Even, S. Greibach, and G. Ott. Ambiguity in
graphs and expressions. IEEE Transactions on Computers,
20(2):149–153, 1971.

[2] S. Burson, G. Kotik, and L. Markosian. A program transfor-
mation approach to automating software re-engineering. In
International Computer Software and Applications Confer-
ence, pages 314–322, Chicago, Illinois, October 1990.

[3] C. Clarke and G. Cormack. On the use of regular expressions
for searching text. ACM Transactions on Programming Lan-
guages and Systems, 19(3):413–426, May 1997.

[4] J. Cordy, I. Carmichael, and R. Halliday. The TXL Program-
ming Language – Version 10.2. TXL Software Research Inc,
Kingston, ON, 2002.

[5] J. Cordy, T. Dean, A. Malton, and K. Schneider. Source
transformation in software engineering using the TXL trans-
formation system. Journal of Information and Software
Technology, 44(13):827–837, 2002.

[6] A. Cox and C. Clarke. A comparative evaluation of tech-
niques for syntactic level source code analysis. In Asia-
Pacific Software Engineering Conference, pages 282–289,
December 2000.

[7] A. Cox and C. Clarke. Syntactic approximation using itera-
tive lexical analysis. In International Workshop on Program
Comprehension, pages 282–289, June 2003.

[8] W. Griswold, D. Atkinson, and C. McCurdy. Fast, flexible
syntactic pattern matching and processing. In International
Workshop on Program Comprehension, March 1996.

[9] S. Kearns. TLex. Software Practice and Experience,
21(8):805–821, August 1991.

[10] D. Ladd and J. C. Ramming. A*: A language for implement-
ing language procesors. IEEE Transactions on Software En-
gineering, 21(11):894–901, November 1995.

[11] G. Murphy and D. Notkin. Lightweight lexical source model
extraction. ACM Transactions on Software Engineering and
Methodology, 5(3):262–292, July 1996.

[12] L. Wall, T. Christiansen, and J. Orwant. Programming Perl.
O’Reilly, Sebastopol, CA, 3 ��� edition, 2000.

Software transformations

supporting software engineering

Magne Haveraaen, Universitetet i Bergen (N) / University of Wales Swansea (UK)

Position paper for stsw04 at gpce04, Vancouver, Canada, Oktober 2004

1 Introduction

When writing software we are constantly faced with
design decisions. These range from irrelevant syn-
tactic variations to important choices on software
organisation. Often we see a tension between what
is efficient and what is flexible and reusable. So
we end up phrasing the same information in many
variations, causing a severe maintenance problem:
how to keep all these variants synchronised when
modifying them.

This can be seen as the “curse of syntax’. It is
our belief that software transformation tools could
ease it somewhat, allowing us to effortlessly move
between alternative syntactic formulations, to com-
bine code fragments for maximal reuse, and even to
utilise stated information for a rich variant of pur-
poses.

The rest of this position paper illustrates these
ideas with a running example: sorting methods.

2 Notational variations

One of the fundamental choices we have to make
when writing software is what programming lan-
guage to use. This is strange, since most of what
we will be writing is the same independent of this
choice: in almost any imperative or object-oriented
language, we will declare the same data structures
and write down the same algorithms and method
calls, only with slight variation in notation. Thus
we should readily have tools which translated these
code fragments from one language to another.

Even within a programming language we are
faced with a meaningless set of choice. Assume I
am implementing a method for sorting data in an
object-oriented language such as C++. Then I will
need to decide whether to write the method

• as a function, i.e., taking the unsorted data b

as an argument and returning the sorted data
a (in imperative or object-oriented form):
a := sort(b);

a := b.sort();

• as a procedure with an input parameter b of
unsorted data and an output parameter a of

sorted data (4 variants):
sort(b,a);

sort(a,b);

b.sort(a);

a.sort(b);

• as a procedure with in situ sorting of the data
a (2 variants):
sort(a);

a.sort();

• as a main program which may receive its data
from file parameters (or input and output
stream), by prompting the user, etc.

All of these variants have their merits, depending
on the use we want to make (a sorting function in
an expression, a sorting statement in a loop, sort-
ing as part of a shell, etc.), or based on what kinds
of data we will be manipulating (e.g., arrays for in
situ sorting). Such variants can be generated from
a single source, thus making our implemented algo-
rithms more reusable. Further, we should be able
to transform between expressions using a function
calls and statements using procedure calls, ensur-
ing that the two forms compute the same results,
giving us full freedom to express our code without
regards to what may be more efficient in a given
context.

In the above we have ignored variations of param-
eter passing mechanisms: by value, by reference, by
name, by indirection (pointers), It should be
obvious that such variants can be generated by a
suitable tool, given that our intent with the pa-
rameters are clearly stated (data coming in, data
going out, or data to be updated in situ).

3 Software organisation

The internal organisation of software is important
for maintainability and reusability. Over the last
few decades (since the early 1970s), it has become
clear that using abstract data types (≈ classes –
a data structure declaration together with all the
methods that access its components directly) is
favourable in most situations. So we will provide
classes like

1

template<class T> Array { ...

quicksort(); selectionsort(); ...}
// implementation based on accessing

// elements by computing address

// references

template<class T> List { ... quicksort();

selectionsort(); insertionsort(); ...}
// implementation based on unhooking

// and rehooking list pointers

The intimate relationship between the data struc-
tures and the way we implement the algorithm
makes this natural. But what if we want to change
the pivoting strategy of the quicksort algorithms.
Then we would like to see all the quicksort rou-
tines grouped for editing, which would be easy with
an integrated transformation and editing tool. Or,
more ideally, implement the pivoting strategies as
separate code fragments which are then (invasively)
composed with the quicksort methods.

We would also need projections giving us a view
with all sorting methods, e.g., for adding an extra
parameter indicating whether we want ascending or
descending ordering of the sorted result. As part of
this modification we must also augment all existing
calls to the sorting methods with an extra param-
eter with the ascending value – a typical transfor-
mation job.

4 Optimisation

Many of the issues discussed above are really op-
timisation issue, e.g., in situ modification versus
copying of data, choice of parameter passing mech-
anisms, choice of which pivoting algorithm to use.
From a software engineering viewpoint such choices
should not be forced upon the code developer, but
be handled at a configuration / optimisation stage,
i.e., by a software transformation tool.

Traditionally optimisation has been the realm of
compilers which would have an intimate knowledge
of the target hardware. But often compilers are
put off from doing a good job by trivial obstacles
due to the semantic complexity of the source pro-
gramming language. A transformation tool may be
used to remove these obstacles, taking into account
specific knowledge about programming styles and
software domains in a project. Thus the tool may,
e.g., unfold method calls inside loops, rewrite ex-
pressions on large data structures with equivalent
imperative code, replace a sequence of method calls
by a more efficient sequence, even taking into ac-
count properties of specific data sets.

Such transformation rules will in part be generic,
but many of them will be very domain specific. The
latter requires easy extension of the transformation
tool, e.g., by making it sensitive to formal specifica-
tions (user defined rules) given with the code. Then
strategies may be provided which take into account
characteristics of the target computer/compiler, al-
lowing the transformation tool to choose the more
optimal code to feed the compiler.

5 Conclusion

We have sketched several areas where software
transformation systems may aid the software engi-
neering aspect of software development and main-
tenance. Many of them relate to the semantic in-
formation expressible in formal specifications.

Some of these ideas have been pursued in the soft-
ware transformation system CodeBoost (see http:

//www.codeboost.org), others will be investigated
in the future.

2

Generic Software Transformations

Jan Heering1 and Ralf Lämmel2
1 CWI, Amsterdam, Jan.Heering@cwi.nl

2 CWI and Vrije Universiteit, Amsterdam, ralf@cwi.nl

A generic software transformation is a transformation scheme that can be instantiated
to an actual transformation by supplying a language and a language concept as argu-
ments. For instance, a generic extract might be instantiated to

• extract[C, variable] (common subexpression elimination in C);

• extract[EBNF, non-terminal] (elimination of common parts of right-hand sides
of EBNF syntax rules);

• extract[C, function] (function folding in C);

• extract[Java, method] (method folding in Java);

• extract[C++, template] (folding class definitions into template instances in C++).

Generic transformations capture the common principles underlying transformations
across different languages as well as different constructs for the same language. The
languages involved are not limited to general purpose programming languages, but also
include domain-specific languages (like EBNF) and modeling languages (like UML).

Generic transformation primitives Some categories of language constructs, such
as abstractions and applications, immediately suggest primitives for building generic
transformations. In fact, the extraction illustrated above can be broken down in a
sequence of primitive transformations for introduction and folding [2]. Introduction
amounts to insertion of a new abstraction (for instance, a method) whose body is equiv-
alent to the fragment of interest without creating any conflicts. Folding replaces the
fragment of interest by the application of the abstraction (for instance, a method call).
Their inverses, elimination and unfolding, are themselves again primitives.

Crosscutting language concepts like scope and typing suggest further primitives. A
simple one for typing is adding a type annotation for languages with type inference.
That is, an inferred type is made explicit in the source code. Scoping primitives affect
the scope of bindings or the way entities are brought into a scope. A simple example is
moving a local declaration to the top level so that it becomes global. Another example
is replacement of a hard-wired reference to a declaration by a reference to a newly
introduced parameter.

Other primitives concern more specific constructs or concepts that are nevertheless
part of many languages. These capture conditional algebraic laws for the introduction
and elimination of the constructs in question. For instance, subtype polymorphism
is found in many object-oriented languages. There is a correspondence between cas-
caded conditionals and polymorphic dispatch, which leads to transformations for their

1

elimination and introduction. Another example concerns regular expression operators,
which are found in many languages. Again, the elimination and introduction of regular
operators can be described in a generic way, while EBNF to BNF and BNF to EBNF
conversions are specific instantiations of this idea.

Generic code smells The notion of code smell was introduced in the context of
object-oriented software refactoring, but a generic notion that is parameterized with
a language and a criterion or metric is applicable to the much wider class of languages
outlined above as well as to other types of transformations. For object-oriented lan-
guages and static or structural criteria, (a special case of) the original notion is obtained.
Other criteria may be related to security or performance. Such smells indicate parts of
the code that may benefit from security enhancing or optimizing transformations. Some
possible criteria and corresponding smells are:

• distance, e.g., too many levels of blocks between declaration and use,

• coupling (in the sense of object-oriented programming),

• size, e.g., methods that are too long (in terms of lines of code),

• style, e.g., missed opportunities for using higher-level idioms,

• extensibility, e.g., fragile use of hardwired conditionals,

• generality, e.g., fixed variation points including overly specific types,

• readability, e.g., too concise use of higher-order functions.

Generic transformation frameworks Current work on semantics is yielding tech-
niques for the modular definition of language concepts. A generic transformation
framework is supposed to support a similar degree of modularity. In fact, the under-
lying ontology of such a transformation framework has to be aligned to the ontology
of language concepts. More than this, we seek strictly aligned definitions of semantics
and transformations. That is, a complete framework for language concepts must pro-
vide all of the following: syntax, static analysis, execution semantics (if any), primitive
transformations, and possibly other ingredients related to the use of transformations in
actual scenarios. In [1] it is argued that equational logic can serve to unify the defi-
nition of static analysis (as abstract interpretation), execution semantics, and program
transformation. The benefits of such a unified view are considerable. In particular,
equational specifications of interpreters, transformation systems, or analyzers can of-
ten be done in a modular fashion by adding or removing sets of equations.

References
[1] J. Field, J. Heering, and T. B. Dinesh. Equations as a uniform framework for

partial evaluation and abstract interpretation. ACM Computing Surveys, 30(3es),
September 1998. Electronic supplement: 1998 Symposium on Partial Evaluation.

[2] R. Lämmel. Towards generic refactoring. In Proc. 2002 ACM SIGPLAN Workshop
on Rule-Based Programming (RULE ’02), pages 15–28. ACM Press, 2002.

2

Towards comparing transformation systems and formalisms

Torbjörn Ekman Görel Hedin

18th June 2004

1 Introduction

There is a need for comparing and evaluating software
transformation systems. Potential users would like to
compare different systems in order to select a particular
one for a particular use. Tool builders would like to easily
learn about other systems and to compare with their own
in order to exchange knowledge and ideas and to improve
their tools.

We propose that there should be a collective effort
among tool builders in trying to formulate and implement
a number of software transformation benchmark exam-
ples. Each benchmark could be specified as a set of tex-
tual input-output test cases, together with some informal
explanation of the language and transformation. To al-
low the easiest comparison, a solution for a particular tool
could be given as a set of text files that specify the trans-
formation, together with a short pdf description giving an
overview of the modules and tools involved in the solu-
tion. The text-based input-output will allow many differ-
ent kinds of tools to be compared, including hand-written
solutions.

Questions that pop up in this context are: what bench-
marks should be chosen? What properties are interesting
to compare? Can we find some useful categorisation of
the examples? What should be the work process of this
collective effort? In this position paper we present our
own background and give some input to the discussion of
these questions.

2 Our background

We have a background in compiler construction based
on attribute grammars. We have developed ReRAGs, a
declarative conditional rewrite formalism that is based

on object-oriented programming, static aspect-oriented
programming, reference attributed grammars, and condi-
tional in-place rewriting. The technique has been imple-
mented and tried out on substantial applications, includ-
ing the development of a Java 1.4 compiler. The main
advantages of our approach are the following

• The possibility to use context-sensitive conditions
for transformations. The context-sensitive condi-
tions are computed by reference attributed gram-
mars, and thus have access to the complete AST.

• Declarative rewrites that are not explicitly scheduled,
but are run automatically as needed.

• An evaluation method that can handle interleaved
rewrites and context-sensitive computations

• Reasonable performance. Our generated Java com-
piler is around 4 times slower than javac.

• The specification language is a DSL on top of Java.

• High support for modularity and extensibility.

3 What benchmarks should be cho-
sen?

It is important that the benchmarks are formulated in such
a way that they are easy to understand by potential users,
and that they are fairly tool neutral and sufficiently small
so that several tool builders will take on the extra work of
implementing them.

An example benchmark could be a small rename refac-
toring. The input could be a specification of what decla-
ration to rename, followed by the original program. The

1

output could be the refactored program or a message "pre-
condition violated" if there is already a declaration of that
name.

Testcase 1
Input:
rename (a to c) in
program

void a() { int b=0 }
void b() { int a=a() }

end
Output:
refactored program

void c() { int b=0 }
void b() { int a=c() }

end

Testcase 2
Input:
rename (a.b to c) in
program

void a() { int b; b=0 }
void b() { int a }

end
Output:
refactored program

void a() { int c; c=0 }
void b() { int a }

end

Testcase 3
Input:
rename (a to b) in
program

void a() { int b }
void b() { int a }

end
Output:
precondition violated

The benchmark above may be easy to implement in some
tools and very difficult in others. Some tool builders might
like to change the input/output specification for some
reason. Some other benchmarks could be a tiny aspect
weaver, template instantiation, a simple DSL. One might

also consider more traditional compiler-oriented tasks like
name analysis, type checking, code generation.

4 What properties are interesting to
compare?

There are many properties that can be interesting to com-
pare between the different solutions to a given benchmark.
For example,

• Specification size

• Transformation performance

• Modularity and extensibility of the specification.
Are the modules composable?

• What characterizes the specification? (pass-oriented,
imperative, declarative, etc)

5 Benchmark categorization

It might be useful to categorize the benchmarks in or-
der to more easily understand the space of problems that
they span. What dimensions of categorizations could be
useful? One possibility could be the cardinality of the
transformations, e.g., are single fragments transformed
to new single fragments (one-to-one), single fragment to
several new fragments (one-to-many), and so on. Can
the benchmarks be characterized as context-dependent
vs. context-free? For example, the renaming bench-
mark might be categorized as one-to-one and context-
dependent. What other dimensions might be used for cat-
egorizing the benchmarks?

6 Collective work process

We do not expect the answers to our questions to be found
in a single workshop session. A continuous discussion
over a series of workshops at various conferences will be
needed. Between meetings, there can be individual activ-
ities coordinated via some web forum such as a wiki. It
is important that the process is open and new benchmarks
and ideas can be added and evolved over time.

2

���������
	��
�������������������	���������������� �!"	�!"���#������	

$�%'&
(*)"&�+-,/.102$�%'(3(4065�07&8,
9:07;<%/&�=?>@07A1=�B'CEDFA�CGBH&
>I%J=?K3LNM

O�A�KP.H06&8MQK4=R+SB'CUT�07&8,'07A
V %/&
(P= VXW K3KFY[Z�K35\Y[AXB
]/^'^J_/`R^Hab`8]Jc

d egfih<j�kUlXmin�oqp

rtsvu�wyx8z|{�}v~�wv~�wv����}v��������x���~�z|w�{�u�x�sJ��wv~��F{��
wJ���F~���u��Fz����v��z|�|�F��{�{�~�wb�#����wv���J���|u��7z�wvu"x8��w
�v���J����������u8����z|w�x�z|{��v��u���u���wb���Fu8wb�F~�}b��u��vuR�
}v�v���|~�wv���F�v�v�'z|���
�¡ ¢��u8�|�b�������vu8}v�b�|�|u8�¤£4z��
��w2~�{��'u8���¥��~���u�����wv�|�J���|u�¦NwvzQ§��U��}Hz��b�#£4�vwvxR�
��~�z|wv������u8x8z��F�v���:�vwv~�z|wv���:��wb�¡�Fz¨z|w©� ª«��~��
u���u8w¬��sbu\x
����u���sv���<x�z|{�{�z|wi{�~�������¦�u8�<���Fu­u�®N�
�v����~�wvu��E���-x8z�{��v~���uR�«��~�{�u���¯�®b��{��b��u8��z�£6�Fsv~���~��
��sbu±°�~�¦�u8�­x8z|{��v~���u8�8²�³R´/£4z|�­°|�
���i��wv����svu¶µ�ªG·��
¸ ·��Fz¹x8z|{��v~���u8��£4z��:º*»E»��­§�sb~�x�s¼}'z���sIu8{�~��
�vu�����~���u8�½��u8{���w¾��~�x
���©u��F��z|�F����wv�q§����Fwv~�wv�|���
 "���|u8wvu������F~���u#�v�Fz|������{�{�~�wv��~��\£4�Fu8¿N�vu�w¾�����

�v��u8�¤��z����v�¤wbu�§���}v��������x���~�z|w�£4u8�����b�Fu8�À��ziu�®N�
~�����~�wv�Á����wv�|�J���|u8�iz|���|u�wvu8�F����u:�������|u��v�����F��z�£
��sbu�x8z7�vuÀ£4�Fz|{Â£4z|��{:���¾�F�'u8x8~�ÃJx
�¥��~�z�wv�8�¥��svu­����w6�
�|�J���|u±x8z�{��v~���u��8ÄÅ�\z|�b�F�v�b��z�£P�Fu8w½}'u8x8z�{�u��*��u8���
�Fu���u�����wN�8Æ@ª«£i�Fsvu�§\���Fwv~�wv�Ç�Hu�������~�wv�¤�Fz@x8z7�vu
~�wb�F~��bu"�U�v�Fz��|����{�{�u8���«u8�v~�����}b��u��Fu8{��v�����Fu��|�Fsvu
�v��z|�|����{�{�u8�X{:�
�UÃb®��Fsvu*�v�Fz�}v��u�{��|}b�b��z�£P��u�w
��sbu�x�z|{��v~���u8�"§�����wv�U��}Hz��b�E~����F�vu��U~�wv�F~��vu¬���7�
��z�{:���F~�x8�������Á�|u�wvu8�F����u��Èx8z7�vuÉ§�sv~�x�s¹��svu��v�Fz¥�
�|�F��{�{�u8��sJ���\wvz�§��
�:z�£©x�sJ��wv�|~�wv�v�6�vwv��u��F�­svu
~��q�����FzI�@�vu��|u8��z|�'u8�qz�£U��svu2�|u�wvu8�F����~��|u2�v�Fz¥�
�|�F��{�{�~�wb�����7���Fu8{Ê~����Fu���£G�

Ë Ì�m�Í Î h�m�Í Í mio Ï½lXmiÐ¤Ñ
Ò Î�Í Ó

Ô*sbu��b�Fz|}v��u8{Õ~��±£4��u8¿N�vu8w¾�F����x�z|{��'z|�vwb�vu8�2}¾�
�Fsvu#£4z|����zQ§�~�wv��£3��x���z��F�8Æ
• Ö­×8Ø7ÙÛÚ¥Ü�ÝÞÙ�ß|Ý ÆSÔ*svu2�|u�wvu8�F����~��|uÛ���7���Fu8{�F�Fu8�����¤x�z6�bu����:�Fu�®7�
����wb��z|�Hu������Fu8�¤u�w6�
�F~���u8����z|w����F�F~�wb�|�8�
Ô*sbu¬���v�'u
���Xz�£���sb~��±���v�v�Fz|��x�s���~�u8��~�w�~����
�
����~���~�}b~���~��Þ�ià4�Fsvu8��u�����u­��~��Fu8���������"sN�vwv�v��u8�v�
z�£­�Fu�®7���b�Fu8�b�Fz7x8u8���Fz|����áE��wv�Û�|u8wbu8������wJ�¥�
�F�v�Fu�à3wvz��Á��~�u��Â��zt��w¾�¨�J�����F~�x��v����������w6�
���J���|u
á��
Ô*sbui�����F~�wv��z|�Hu������F~�z|wb�*�vz:wvz����F�Fu8������svu
�Fu�®7�����X���F�F�vx����v��u8�©�|§�sv~�x�s�£4�Fu�¿7�bu8w¾��������u��
���v���F��~�wâ���7wN����x��F~�x8����u��F�Fz��F�8���F�vx�s����2�
{�~����F~�wv�½Ä�ã|Äb��zÉx8��z|�FuU�¬x8z7�vuE}v��z6x�¦/�
µ�z|���S�v�FuR�Þ�v��z6x�u8���Fz|�S���7���Fu8{���£3�����:~�w¾��z
�Fsv~��Çx��������8�q§�~���sä°|�
��� ¸ u�����u8��·X���|u��
²æå|´ç�
·�è"·�²Åé�´���wb�Ç�Fsvu�º*ê|º*»E»Õ�b�Fu8�b�Fz7x8u8���Fz|�
}'u8~�wv�¬§�u����[�Þ¦NwvzQ§�wqu�®b��{��v��u��8�

• ë�Ú�ÝÞÙ�ÜQÙ�ì�Ú�íJÝ3îðïFÚ�ñ#Ú�í'Ú�ñóòQÜ�î�Ü Æ@Ô*svuÛ�|u8wvu�����¥��~���uÈ���7����u8{���{��Q�t�F�Fu
�¥����svu�x8z7�vu@���
���7wJ��x��F~�x¤�F�Fu8u��8�À�v�F�v��������z|�'u8�F����~�wv��z|wI�
º ¸ Ô�z�����w� ¸ Ôg��u8�v��u8�Fu�w¾�����F~�z|w@z�£���svu

�vwv�bu8�F���7~�wv�Ç����wv�|�J����u��¡ª«��~��¤������u2svzQ§\�
u���u8���b��sJ�¥�­�Fsvu¶��u�§��F~���u"�F�v��u8�ÀsJ�
�|u#��x�x8u��F�
��z¬£4�v���1��u8{���w¾��~�x#~�wb£4z|��{:���F~�z|w�£4z|���FsvuEu8���
u8{�u8w¾�F�\~����Fu�§���~��Fu8�8�b��wv�½�������F~�x¶��u8{���w¾��~�x
��wJ�����7�F~��"~���z�£P��u8w���u�£P�±���"��w�u�®6x8u��Fx8~��Fu��Fz
��sbu�x�z|{��b~���u��8���"z�����}v��uquR®bx�u8�b�F~�z|wb�¤����u
��sbuS¯�x���~��b�FuS°��¶Ô éb����£4z|�Û°|�
���b²���´���wv�
º�z7�vu	��z7z|����£4z��:º*»E» ²�
¥´ç��²���´ç�­§�sv~�x�s�z�£��
£4u8�:à3x���z|��u��FzNá±£4�v������u8{���w¾��~�x���wJ�����7�F~��E�Fz
��sbuU��u�§���~���uE���v��u��8�

• �/ÝÞÙ�
�����î�ÜQÙ���Ù����RîPÝ3îPí�� Æ��Eu�wvu8�F����~��|u���u�x�s6�
wv~�¿7�bu8�:{��
�Iz�£P��u�w��|u�wvu8�F����u�x8z7�vu��FsJ���
�
§�svu�w��Fu8w¾�±�Fz��Fsvu�x�z|{��b~���u��8�/~����|u������v~�£��
£4u8��u8w¾��£4�Fz|{ä�FsvuU~�wv�v~��7~��v�J���1x8z�{��'z|wvu�wN�F�
~���§\���½�|u8wvu������Fu8��£4�Fz�{��*{���¦N~�wv�Û���F���v~��
��~�z|wJ���H�vu8}b�v�|�|~�wv�É�v~���x8�b���
�

• �Eò¥í'Ú�ì¬îðï��7Ù�í1Ù���Ú�Ý3îð×¥ígÚ�í'Ø�ñ�×8Ú¾Ø�îPí�� Æ ªÞw
�Fz�{�u £4z|��{��gz�£¨�|u�wvu8�F����~��|u �v��z|�|����{É�
{�~�wv�v����svu¨���F��u8{�}b��u8�Ê}b~�wJ������x8z7�vu¨~��
�v��z6�v�bx8u8� z|w7�Þ�vu�{:��wb� ~�wv��~��vu � �F�vw7�
wv~�wv�¹���7����u�{��*�b�Fu8��u8w¾��~�wv��z��v�Hz������bwv~��F~�u8�
£4z|���vwv�v~��Fx8zQ��u8�Fu���}b�v�|�8��u���u8wt���7w¾����x���~�x
z|wvu��8�1��£P��u��"x��v���Fz|{�u��"�bu8�v��z?�7{�u8w¾�¶�F~�{�u��
Ô*svu��Fu��/�
§��"���Fu±���v�v�'z|�Fu�����z¬}'u#x
���v�|s¾�
}¾�Ç�����F~�z��v��x�zQ�|u8�F���|uÁ��wJ�����6��u8���*}v�b��u�®N�
�'u8�F~�u8wvx�u:��svzQ§��i��sv���i�Fsv~��U~��E�v~ ��x8�v����~�w
�v�F��x��F~�x8u��

Ô*sbu��v�Fz|}b��u8{ z�£i��}b�����F��x��F~�z|w¼�F����x�u
��}b~���~��Þ�
sJ���À}'u8u8w:¦7wbz?§�w:�F~�wbx8u"�Fsvu�~�wvx�u8�b�F~�z|w�z�£�x�z|{É�
�v~���u8���8����wv��~��¤�����FzÇ��}b~��@~����F�vuÁ~�w�§­z|�F����z�£
{�z6�vu�����~�wv�¬��sbu8�Fu��J�
�6���"!/z��"}'z���sÁ~�{��Hu������F~��|u
��wv��z|}�#�u8x����«z|�F~�u8w¾��u�������wv���J���|u��8�*��wbwvz����¥��~�wb�
��sbu"�v��z6�b�vx8u��½���F��u8{�}b���Éx8z7�vu�§�~��Fs:��~�wvu*wN�v{¬�
}'u8�Áàç��wv���Fz|�v��x8u�x8z7�vu�uR®6x8u8���b����á��v��z?��u8��u�£��
£4u8x���~��|u��X��wv�ÛsJ���U}'u8x8z�{�u��q�vu�£3��x���zq�J�����Uz�£
{�z|����x�z|{��b~���u��F���
Ô*sbu ��wvwvz�������~�z|w �Fz����b�F~�z|wÊx8��wvwvz���u8���F~����

}'u@���v�v��~�u��¨��z��|u�wvu8�F����~��|u@�v��z|�|�F��{�{�~�wb�S~�w
��sbu¤�|u8wbu8������x
���Fu���sbz?§­u���u8�������U��svu:x8z|�v�b��~�wb�

}'u��Þ§­u8u�w x8z|{��Hz�wvu8w¾��à4z|�¹�Fu8{��v�����FuQá2�Fz|�v��x8u
x�z6�bu¶��wb���Fsvu�ÃvwJ���ð�N�|u�wvu8�F����u��:�v��z6�b�vx��­~���u�®N�
�F�Fu�{�u����¤��z6z��Fu��<rtsv���"���v�'u
�����"����z�wvuE��~�wbu±~�w
z�wvuEx8z|{��Hz�wvu8w¾��{:�
�½u�wv���v������sN�vwb�v�Fu��v�¶z�£
�b����x�u8����£P��u��*�|u8wbu8���¥��~�z�w©�
Ô*sv~����b�Fz|}v��u8{ }b~���u��½{�z����½£4z|��{��½z�£ix8z7�vu

��u8wvu������F~�z|w¹��wv�¹x8z|{��Hz��F~��F~�z|wb�8��~�wÛ�J������~�x8�v�����
~�{��b��u8{�u8w¾�Fz|�F�#z�£\�vz|{���~�w6�«�F�'u8x�~�ÃJxÉ����wv�|�J����u8�
à$� ¸&% ��á\����§�u��������*���F�'u8x����«z|�F~�u8w¾��u��½�v�Fz|������{¬�
{�~�wb�v�

' Ì�m�Í Î Ó-n½kUkiÎ�Ó)(-Î�p Ó�m Ò n:Ñ
(+*�m�oqÓ

ªÞw����b�v~��F~�z|w¼�FzIuR®6�Hu��F~�u�wvx8u2£4�Fz�{ u8{�}Hu��v�vu8�
� ¸&% �\~�w�����wv���J���|u��­§�~��Fs¤u�®7�Fu8wv��~��|u#{�u������v��z��
������{�{�~�wv�âx
���J��}v~���~��F~�u��8�½�F�bx�s ��� % ~��F�©��§�u
sv�Q��u�Æ
• ,¶íJí1×¥Ý«Ú�Ý3îð×¥íbÜÁï�×.-/
'ñ�ÙFØ0��îPÝ21ÇÝG×Q×¥ñÀÜ�-3
4
J×.�RÝª«£<��wvwvz������F~�z|wv�����FuU�
����~�����}v��u�£4z|��~�wv���Hu�x��
�F~�z|w¹}¾�¹�Fz6z|���i~�wv�F~��vuÉ��svu:ÃvwJ���À�v�Fz7�v�vx��
�
~�wv�F�'u8x���z|���qx
��w�}Hu�§��F~��F�Fu8wt��sJ������u8���¥��u
��u8wvu������Fu8�¨x�z6�bu¹��zI~�wb~���~����¶x�z|{��Hz|wbu8w¾���
��wv�Ç�F�'u8x8~�ÃJx
�¥��~�z�wv�8�ÛÔ*sv~��¬sv�����Fz�{�u½��u��
������~�z|w:�Fz��bu8}v�v���F��~�x8~�wv�½²�5¥´ç�

• 6�î �7×.��×.-NÜ Ü�ò¥í'Ú7ï�Ý3îðïFÚ�ñ Ú�í'Ø ÜQÙ�ì�Ú�íJÝçîðïFÚ�ñ
Ú�í'Ú�ñóòQÜ�î�Ü�Ú�Ý7��Ù����RîPÝçîPí�� ÝçîPì:Ù ·���zQ�6~��vu8�
§�~���s#£4�v�����8�vu8�v�|u��#�Fu�{:��w¾�F~�x���wJ�����7�F~��8�?��wv�
�'z|���F~�}b���¼�bz|{:��~�w6�«�F�'u8x8~�ÃJx����v��u��q£4z��¤��svu
�v�����F~�x8�b�����Ix8z|{��'z|wvu8w¾�F��§�sv~�x�sÊu�wvx8z7�vu
�Fsvu8~��-�Fu8{���w¾��~�x8����u8���Fz|����§­z|�v����}'u­x8���v�|s¾�
�¥�Xu8���F��~�u��©�������|u8����§�svu��Fu���svuÀ�v~�������wvx8u�}'u��
�Þ§­u8u�w���sbu�~�wv~��F~����Àx8z�{��'z|wvu�wN�F����wv�Ç��svu
ÃvwJ�����Fz��v�Fx�uUx�z6�buU~��*�F{�������u8���

• �/ÝGÙ�
�����î�ÜQÙ9��Ù����RîPÝçîPí��:��îPÝ21�îPíbÜ�
JÙ�ï�Ý3îð×¥í ªÞw6��Fu8�F��x��F~��|uU�v���Q�7}J��x�¦½z�£<��sbui��u�§��F~���u��"{��
�
�����FzÁ}Hu¤sbu8���6£4�v�­�Fz�������x�¦Û�Fsvu½z|�F~��|~�wb�iz�£
�v�����F~�x8�b�����\�b�Fz|}v��u8{ä���Fu8���8�

� Î��¥Î\l�Î�oqh�Î�Ó
²[³8´�°�~�¦�u�� °|�
��� º�z|{��v~���u8� �

sN�����©Æ ê|ê¥§*§*§E�Å�Fu��Fu8���Fx�s©�Å~�}b{��Åx8z|{:ê #�~�¦�u8��ê6�
å ��� �v�

²æå¥´�°|�Q��� ¸ u�����u8��·X���|u��8�
sN�����©Æ ê|ê #F�
���b�Å�F�vw1�æx�z|{¤ê¥�v�Fz7�v�vx�����ê #��F�/ê6�
å ��� �v�

²Åé�´i·Àè"·*�Às¾�����©Æ ê|ê¥§*§*§E�Å�vsv�©�Åwvu��Rê6�1å ��� �b�
² ��´i¯�x���~��v�Fu#Ô�u
��{���u8x���~��v�Fu��æz|���v�/å � � �v�
²�
¥´��±����z ¸ ¦7��zQ�|u �\���|��u�� º�z7�vu	�­z6z|���
Æ

!/�F��{�u�§­z|�F¦�£4z|��Ô�����wb��£4z|��{�~�wv��º*»E»Â·��Fz¥�
�|����{��8� µ������Fu8�8ÄÅ����svu��F~��8����wv~���u8���F~��Þ�¨z�£
��u8���|u8w©� ��z|��§��
�|�'å � �|éb�

²���´��U���F� Ô����7���|u �U������u�}Hu��F�v� ���Fu8�G�
x8z|wbÃv�|�v����}v��u��vsv~���s6�Þ��u��|u��1���F��wv��£4z|�F{�����~�z|wv�
§�~���s º�z6�vu ��z7z|���8� µÁ������u8��Äæ� �Fsvu8��~����
�"wv~��|u8���F~��Þ�½z�£ ��u8���|u8w©� ��z|��§��
�|�Hå ����éb�

²�5¥´UªÞ���F�
	�w !Jz|����	�x��¨Ô*~�}'z|� �#�7~�{
���FsN�����¶�G�
���*� ��u8�����8�bu8�8� ¶w u ��x8~�u8w¾� �Fu���u��
����wN� ����~�x�~�wv� {�u��Fsvz6� £4z|���vu�}v�v�|��~�wv�v�
ªÞw�µ¹� % u8{�z|~�wvu���� ��~�u��F���F���������¤u��v~��Fz|�8�
6�Ù����RîPÝ3îPí����HÙ�ï 17íJî�� -JÙ�Ü�Ú�í'Ø ,
4
'ñóîðïFÚ�Ý3îð×¥íbÜ�
6�� ,����! �" � % u�x��F�v�Fu �"z��Fu8��~�w�º�z|{��b�b��u��
¸ x8~�u8wvx�u��¤Ô�z|�v��z|�v�Fu��:!J����wvx8u�� ¸ u��b��u�{�}Hu��
³$#%#%#b� ¸ �v��~�wv�|u����'&�u8�F�����v�

The Role Of Template Engines in Source Translation Systems

Terence Parr
University of San Francisco
parrt@cs.usfca.edu

The documentation for systems that generate or translate programs
often use exemplars to describe their output format. These exemplars
should become part of the translator itself as formal "templates" to
describe the set of system output sentences. Just as we use grammars
to describe input languages, templates should be used to describe
output languages.

Many commercial translation systems use ad hoc output generators that
amount to large pieces of code interwined with print statements.
Retargeting and maintaining these beasts is truly a nightmare. In
contrast, there are many fine translation engines that structure
output generation as a series of formal rewrite rules. Many
programmers, however, find these systems unpalatable precisely because
of the sophisticated rules--the average programmer is uncomfortable
with tools that have "black box" inference engines or similar powerful
mechanisms.

The goal of my research is provide language translation tools that
balance sophistication with a simplicity amenable to the needs of the
average programmer. This short paper briefly describes a tool called
StringTemplate (http://www.stringtemplate.org) and its accompanying
philosophy of strict separation between output sentence specification
and translation logic (in object-oriented terms, one would say "strict
model-view separation").

BENEFITS OF STRICT SEPARATION

Compilers neatly separate optimization and analysis from instruction
selection usually via a bottom-up instruction tree rewriting system
such as TWIG or BURG that accept tree grammars. Retargeting the
compiler is a matter of providing another tree grammar. Analogously,
programs that generate text-based high-level code should isolate the
translation logic from the mechanism for generating output sentences.

While there are numerous template engines for every popular language,
almost none enforce this model-view separation. Strict separation
guarantees that the output format is completely encapsulated in the
template files and, equally importantly, that the translation logic is
completely encapsulated in the code generator. The benefits:

o easy to understand, build, modify; you do not have to imagine the
 emergent behavior--you have an exemplar.

o easy to retarget; just swap in new template file as templates do
 not contain any logic.

o single point of change for optimizations and other logic.

o easy to maintain; changing templates is safer than changing code.

o better division of labor; e.g., I am building ANTLR 3.0
 CodeGenerator.java and collaborators are building the various target
 language template files. Further, individual users can tweak the
 output to optimize ANTLR output for their situation.

o template reuse; templates without logic are merely presentations and
 can easily be reused by programs with similar logic.

I have shown elsewhere that such a ruthless restriction (no logic in

the template) does not emasculate the power of a template engine; a
system such as StringTemplate comfortably generates languages beyond
the context-free class into the context-sensitive.

In my experience using template-based code generators (for both large
web servers and programming language generators), the strict
separation of model and view is essential for the scalability and
maintainability of the application.

Beyond this philosophical or strategic characteristic, there are
numerous tactical advantages. For example, separating order of
presentation from order of computation is a huge advantage. Templates
let the logic code (controller) compute things when it is convenient
or efficient rather than in the order imposed by the output phrase
structure. The controller walks the structures in the model,
computing the raw attributes in the most convenient manner. For
example, when generating a C program, all functions must be declared
before they are used. It is often the case, however, that you do not
know the complete set of functions before you begin generating them.
With a template you can set the attributes in any order; that is, you
can add to the declarations list as you generate functions. The
actual output is not generated until you ask the template to render to
string.

StringTemplate

A StringTemplate is a "document" with holes in it where you can stick
values. StringTemplate breaks up your template into chunks of text and
attribute expressions enclosed in angle-brackets: <attribute-expr>.
Expressions may reference attributes, may conditionally include
subtemplates, may invoke other templates recursively, and may apply
templates to lists of attributes. The language is distinctly
functional in nature. StringTemplate.toString() evaluates all
expressions, recursively walking nested templates to render to string.
Here is a simple example using StringTemplate directly in code:

StringTemplate query =
 new StringTemplate("SELECT <column> FROM <table>;");
query.setAttribute("column", "name");
query.setAttribute("table", "User");
String output = query.toString();

More commonly for source translators, you will use a
StringTemplateGroup which is just a list of templates defined in a
group file. The ANTLR 3.0 prototype generator has a single
CodeGenerator engine and multiple template group files, one for each
target language. For example, here is the overall structure of a
parser as implemented in Java:

parser(name, tokens, rules, DFAs) ::= <<
class <name> extends Parser {
 <tokens:{public static final int <attr.name>=<attr.type>;}>
 public <name>(TokenStream input) {
 super(input);
 }
 <rules; separator="\n">
 <DFAs>
}
>>

where

<tokens:{public static final int <attr.name>=<attr.type>;}>

is applying an anonymous template "{public static ...}" to each value

in a potentially multi-valued attribute called tokens, which was
computed and sent in by the CodeGenerator. There is not a single
string literal in the CodeGenerator that gets emitted to the generated
file; output phrases are completely contained within the template
group file.

SUMMARY

I have found StringTemplate to be an effective code generation aid for
both large web sites and source translators such as the new ANTLR 3.0
prototype. The principle of strict model-view separation,
StringTemplate's distinguishing characteristic, provides numerous
advantages (in areas such as clarity, retargeting, and maintenance),
all without crippling the power of the engine.

Transformation Circuits:
Exploring new paradigms for

Software Transformation Systems

 Marcelo Sant’Anna
 Advus Corporation
 santanna@advus.com

1 AUTHOR’S BACKGROUND
The author has been working and developing software
transformation systems during the last 15 years. He has
been the main architect of some systems like Lavoisier,
Draco-PUC and SpinOff. These systems had been used for
building different kinds of software transformers, ranging
from little language compilers to multi-language reverse
engineering tools. He also worked with transformation
systems from other authors like Draco-UCI, DMS, TXL,
Refine and Popart.

2 POSITION
Developing himself a large set of transformers and
providing support to developers that use the tools he built,
the author got a special interest on how to tame complexity
for designing and maintaining software transformers.
Although regular Software Transformation Systems
provide flexibility and functionality that ease the tasks of
building transformers, the author thinks that the field is still
on its infancy in terms of productivity, standards and
common shared knowledge among researchers and
practitioners.

During the workshop the author would like to discuss why
the field still did not give a more expressive contribution to
software engineering. Understanding that automation is
essential for software engineering to mature, it is really
intriguing that transformation systems did not make an
impact.

Generally speaking, software generators and automation
tools are in common use these days, but they are mainly
handcrafted using standard programming languages.
Sometimes the efforts to build such tools are so daunting
that projects are dropped altogether. Software
transformation systems could come to rescue, mainly on
industrial projects where a strong time-to-market pressure
is present and where companies need support to their
product lines.

If we take into account the efforts revolving around Model-
Driven Architectures (MDA), it is quite clear that most
automation efforts are still very restrict. From a
transformation systems standpoint, it is as if these industry
efforts were completely missing what has been done in the
field of transformation systems for the last 20 years.

3 WHAT ARE WE MISSING?
Given the social aspects, it seems we lack a good sense of
community. Share of knowledge in the field had been quite
pale. The topic is almost not explicitly discussed on major
conferences and the good results on the field are definitely
not well promoted.

Given the technical aspects, we all should ask ourselves if
we are really delivering the promise of software
automation. If we are not, what could be done? Why is still
so difficult to educate a software engineer on the
techniques we use. Why is the learning curve still so steep?

The author also understands that although we have a lot of
great tools, we still lack good abstraction mechanisms to
tame the intrinsic complexity of transformers. A more
frequently exchange of experiences as well as discussion
forums would help ideas to converge.

No matter how good parser generators, efficient tern
rewriting engines and box-formatting pretty-printers we
have, we should go beyond the common architectures and
approaches and explore new options.

The author in particular is exploring the notion of
Transformation Circuits. The idea is to inject ideas from the
Signal Processing community into transformation systems.
Taking a look at VLSI advancements it is quite clear that
electronic engineers have been developing good models to
tame the complexity of circuit integration. Given the fact
that large part of IC engineering involves some sort of
software programming, the author is interested on studying
how electronic engineering techniques could help our field.
A prototype called SpinOff had been developed and it has
been used as a workbench for new ideas. The TC approach
looks at transformers as if they were filters on a stream of
data. The streams of data, representing programs to be
transformed, flow on a set of circuits that operate on top of
a shared bus. Functionality can be extended by plugging
new filters into the bus and wiring them together.

At the workshop the author would like to discuss the
approach, share his knowledge, and provide a demo on the
concepts that he is exploring with his prototype
transformation system.

For a reference on the author’s view of the field shared
with other professionals, please, take a look at
http://www.dur.ac.uk/CSM/STS/

Understanding Model Transformation by Classification
and Formalization

Shane Sendall, Rainer Hauser, Jana Koehler, Jochen Küster, Michael Wahler

IBM Zurich Research Laboratory
CH-8803 Rüschlikon, Switzerland

{sse, rfh, koe, jku, wah}@zurich.ibm.com

Software modeling techniques offer a means to address the size and complexity of
modern day software problems through the use of abstraction, projection, and
decomposition. Typically, multiple models are used to describe non-trivial software
systems. However, if such models must be related and kept consistent by hand, then
the viability of modeling as a means to reduce risks, minimize costs, improve time-to-
market, and enhance product quality is nullified (most probably made even worse).
As such, model-driven development approaches, in the direction of OMG’s Model
Driven Architecture initiative [OMG03], must be supported by tools that are at least
able to automate the various tasks of keeping models consistent. Furthermore, the
more that the various activities of model elaboration, synthesis, and evolution can be
automated the more the above stated factors will be better addressed.

Our team at IBM ZRL [BPIA], entitled Business Process Integration and
Automation (BPIA), is involved in research and development of model transformation
techniques for model-driven development approaches in the domain of ebusiness
solutions [GGK+03, HK04, KHK+03]. We are performing work on transforming
business-level models to IT-level models and we are involved in the QVT-Merge
submission for OMG’s Meta Object Facility (MOF) 2.0 Query/View/Transformation
Request for Proposal [OMG02]. Our effort in the latter area consists of work on a
standard model transformation language for transforming MOF models, where MOF
is an OMG standard for defining meta-models, i.e., the abstract syntax of a modeling
language.

The problem of model transformation is similar to the one of program
transformation and it also makes use of metaprogramming techniques [CH03, SK03].
However, it takes a slightly different direction by working with object-oriented
metamodels, which define object graphs rather than syntax trees. We define the term
model transformation in the following way: A model transformation is a mapping of a
set of models onto another set of models or onto themselves, where a mapping defines
correspondences between elements in the source and target models.

There are a number of different contexts of use that are applicable to QVT model
transformations [Omg02]; these can be broken into two broad categories, inspired by
Visser’s classification for program transformation [Vis01]: language translation, and
language rephrasing. In the former, a model is transformed into a model of a different
language, i.e., a different model, and in the latter, a model is changed in some way,
which may involve producing a new target model with the changes (distinct models)
or changing the existing source model (single working model).

Like in [Vis01], language translation can be further sub-divided into migration: a
model is transformed to another one at the same level of abstraction; synthesis: a
model is transformed to another one at a lower level of abstraction; and reverse
engineering: a model is transformed to another language at a higher level of
abstraction.

Language rephrasing can be sub-divided into normalization: a model is
transformed by reducing it to a sublanguage; refactoring: a model is restructured,
improving the design, so that it becomes easier to understand and maintain while still
preserving its externally observable behavior; correction: a model is changed in order
to fix an error; and adaptation: a model is changed in order to bring it up to date with
new or modified requirements.

The mapping between models established by the transformation may be required to
be preserved over time. We call this characteristic of transformation synchronization

2 Shane Sendall, Rainer Hauser, Jana Koehler, Jochen Küster, Michael Wahler

[GGK+03]. Examples of synchronization include: round-trip engineering and views.
As part of synchronization, propagation of changes to a model may be made in one or
more directions. Synchronization may be activated in a strict or loose fashion. Strict
synchronization requires all changes to models to be taken into account immediately
or in the next consistent state, e.g., views. Loose synchronization makes no statement
on when synchronization should occur.

There are many different approaches available for model transformation; some of
these include: relational/logic, functional, graph rewriting, generator/template-based,
and imperative [CH03].

Our premise is that the different categories of model transformation in the QVT
space are suited to different languages and approaches. As such, we believe that we
should move towards understanding the requirements of each category and look at
which kind of language is suited to which subset of problems. In doing so, we would
like to understand the common requirements and also those that differ, and eventually
build languages that are specifically address those specific problems.

Some questions that we are interested in addressing/discussing include:
• The field of compilation has a well understood categorization of languages.

Building upon this work, how can one effectively formalize the different usage
categories in the QVT space and the different model transformation languages so
that we can more rigorously understand which ones match which domain? How
“declarative” can we make a language targeted for such domains? What further
categorization could we do with such formalizations?

• Bi-directional synchronization is a difficult problem in general. What existing
approaches offer solutions? Is bi-directional transformation equivalent to uni-
directional transformations in either direction? How do you avoid clobbering
existing information on the return trip? How can trace information help in the
return trip?

References

[BPIA] Business Process Integration and Automation, IBM Zurich Research Labs,
Switzerland, 2004. http://www.zurich.ibm.com/csc/ebizz/bpia.html

[CH03] K. Czarnecki, S. Helsen; “Classification of Model Transformation Approaches”.
Proceedings of the 2nd OOPSLA Workshop on Generative Techniques in the
Context of the Model Driven Architecture, USA, 2003.

[GGK+03] T. Gardner, C. Griffin, J. Koehler, R. Hauser; “A review of OMG MOF 2.0 Query
/ Views / Transformations Submissions and Recommendations towards the final
Standard”. MetaModelling for MDA Workshop, England, 2003.

[HK04] R. Hauser, J. Koehler; “Compiling Process Graphs into Executable Code”. GPCE-
04, 2004.

[KHK+03] J. Koehler, R. Hauser, S. Kapoor, F. Wu, S. Kumaran; “A Model-Driven
Transformation Method”. EDOC 2003, pages 186-197.

[OMG02] Object Management Group; “Request for Proposal: MOF 2.0 Query / Views /
Transformations”, 2002. http://www.omg.org/docs/ad/02-04-10.pdf

[OMG03] Object Management Group; “MDA Guide Version 1.0.1”. 2003.
[SK03] S. Sendall and W. Kozaczynski; “Model Transformation - the Heart and Soul of

Model-Driven Software Development”. IEEE Software, vol. 20, no. 5,
September/October 2003, pp. 42-45,

[Vis01] E. Visser; “A Survey of Strategies in Program Transformation Systems”.
Electronic Notes in Theoretical Computer Science, eds. Gramlich and Lucas, vol.
57, Elsevier, 2001.

Extending languages with transformation and

generative technology

Ganesh Sittampalam

Oxford University Computing Laboratory

ganesh@comlab.ox.ac.uk

November 7, 2004

1 Introduction

There are great potential benefits for software engineering if we can make it
easy to extend existing programming languages with new features, and provide
efficient implementations of those features. The compiler optimisations required
for this are best expressed at a variety of different levels; for example, some
may be best viewed as transformations of the source code, others on some
intermediate representation such as SSA, and others as peephole optimisations
of the object code. This suggests that we should view the compilation process as
a series of generative steps, in which one level of representation is compiled to a
slightly lower level, interleaved with optimisation steps which transform code in
a particular representation to an improved version in the same representation.

2 The AspectBench Compiler

Recently, I have been involved with the development of the AspectBench Com-
piler (”Abc”) [1], an extensible compiler for the AspectJ [3] language, building
on two existing frameworks, Polyglot [4] and Soot [5].

AspectJ is an extension for Java for introducing ”cross-cutting” concerns.
From the perspective of a language implementor, its important features are that
it allows the programmer to write ”aspects” which contain code which is added
into existing Java source or bytecode, both in the form of completely new class
members and of code added to existing methods. Conceptually, this happens
at runtime, but in practice an efficient implementation requires compile-time
”weaving” (or perhaps a modified JVM, but this route has not been explored
much so far).

Polyglot is used for building frontends for extensions of the Java language,
which are semantically checked and translated into Java before being handed
to a standard Java compiler. Implementation of language extensions by trans-
lation to the host language is sometimes inadequate, and this is one such case;

1

the AspectJ language requires support for modifying existing programs only
available as Java bytecode.

Soot is an analysis toolkit for Java which can read and write Java bytecode
and convert it to and from a number of (Soot-specific) intermediate representa-
tions. One of these representations is Jimple, a simple three-address code with
a close connection to Java bytecode (but none of the complexity inherent in
having an implicit stack). Soot has recently been extended to provide a back-
end named Java2Jimple for Polyglot that, naturally, transforms the Java output
into Jimple, thus allowing Polyglot to be used as an end-to-end Java compiler.

The benefit of this for our implementation of AspectJ is that we can do much
of the ”weaving” at the Jimple level; the Jimple can be generated either from
Java source or from bytecode, but the same weaver can be used on either. Of
course we could also choose to weave directly into bytecode, but this is much
more complicated and error-prone. Crucially, Jimple is also a language that is
well suited to optimisation, and indeed a number of standard Java optimisations
(both intraprocedural and interprocedural) have already been implemented in
Soot; we have also implemented a variety of optimisations that take advantage
of specific properties of AspectJ-produced Jimple.

Thus, the architecture of Abc is as follows. AspectJ code is read in from
source and is transformed into Java, as well as some extra ”aspect informa-
tion”, using a Polyglot extension. This Java is the converted into Jimple using
Java2Jimple. Java code is read in either as source or as bytecode and trans-
formed to Jimple, either via Polyglot and Java2Jimple or via the Soot class
file reader. Next, the ”aspect information” is used to weave the extra aspect-
introduced code into the relevant Jimple, and a number of optimisations are
run. Finally the Jimple is converted to bytecode and output as class files.

3 Evaluation

This overall approach has been very effective, in my opinion; it has led our team
to the point of releasing a full AspectJ compiler within just eight months of start-
ing work on it. Moreover, our compiler leverages the existing features of both
Polyglot and Soot, making it relatively easy to implement both new language
extensions on top of AspectJ, and to develop more sophisticated optimisations
for the AspectJ language (there are various features of AspectJ that impose
quite a significant runtime overhead [2], so such optimisations are worthwhile).

Some limitations have also become apparent, and I believe that addressing
these would make it even easier to undertake a similar project in future.

• Polyglot is based on multiple tree rewriting passes, with extensible vis-
itors and nodes to allow language extensions to be supported and new
transformation passes to be added. This approach fits relatively well with
Java, but is somewhat inefficient and leads to unnecessary work on the
part of the language implementer in scheduling the passes. I believe an
attribute-grammar based system would be much more effective.

2

• As many before us have realised, generating fragments of intermediate
code (in our case Jimple) by manually building up the abstract syntax
tree is verbose and rather error prone. Better quoting and static typing
support for the generative code would be of enormous benefit.

• In addition, we have often found that we accidentally produce invalid
Jimple code which then leads to invalid class files, and the error is only
detected when we try to run the generated programs. More aggressive
validation of intermediate results is very important for debugging, and
whilst we did belatedly develop a validator for Jimple, much time could
have been saved by doing so earlier. It is interesting to note that the need
for this only become apparent when Jimple started to be used generatively;
it has been used in Soot for analysis and transformation for many years
without this becoming an imperative.

References

[1] The AspectBench Compiler, 2004. Will be availble from URL: http://abc.
comlab.ox.ac.uk.

[2] Bruno Dufour, Christopher Goard, Laurie Hendren, Oege de Moor, Ganesh
Sittampalam, and Clark Verbrugge. Measuring the dynamic behaviour of
AspectJ programs. In Object-Oriented Programming, Systems, Languages

and Architecture, 2004. To appear.

[3] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm,
and William G. Griswold. An overview of AspectJ. In European Conference

on Object-Oriented Programming, volume 2072, pages 327–355, 2001.

[4] N. Nystrom, M. Clarkson, and A. Myers. Polyglot: An extensible compiler
framework for Java. In International Conference on Compiler Construction,
volume 2622, pages 138–152, 2003.

[5] Raja Vallée-Rai. Soot: A Java bytecode optimization framework. Master’s
thesis, McGill University, Canada, 2000.

3

Position paper for GPCE 2004 Software Transformation Systems Workshop

Anthony Sloane
Department of Computing, Macquarie University
asloane@ics.mq.edu.au
June 2004

An important class of generative programming systems contains those
that employ cooperating generators to automatically build complex
software from specifications.

For example, the Eli system, with which I have worked for more than 15
years, generates language processors from a variety of specification
languages. Notations used include: regular expressions, context-free
grammars, attribute grammars, symbol table descriptions, unparsing
details, and structured output specifications. Eli-generated
processors might be traditional compilers but, increasingly, Eli is
being applied to related problems including domain-specific language
implementation, construction of software analysis tools, and rapid
application generation.

The main contribution of systems like Eli is to provide a "black box"
experience so that the integration details of tools from different
sources are hidden from the programmer who only needs to supply
high-level specifications.

A major problem encountered when building a system like Eli that
integrates many generators is how to describe the generation process
by which:

1. Specifications are processed to obtain generator inputs.
2. Generators are invoked.
3. Outputs of generators are combined to form a processor.

As a simple example, Eli allows programmers to supply grammar
specifications in EBNF notation. To avoid requiring the programmer to
specify information twice, the grammar specification provides input to
two generators: the grammar as a whole goes to a parser generator, and
the literal terminal symbols are part of the input to a scanner
generator. The scanner generator also receives a separate
programmer-supplied specification of non-literal terminal symbols
(such as integers or identifiers).

Thus, there is not necessarily a 1:1 correspondence between supplied
specifications and generator inputs. A similar mismatch occurs at the
output end. A particular generator may produce outputs that
contribute to different components of the processor.

At present, Eli and other similar systems typically solve this
integration process by using a build system such as Make to control
the generation process. Eli uses Odin, an expert system for the
automatic derivation of software artifacts. Odin is guided by a
graph-based description of which artifacts can be constructed from
which other artifacts. To actually carry out derivation steps, Odin
invokes shell scripts that process specifications or run generators as
required. Many shell scripts use standard Unix tools such as awk and
sed to implement simple transformations; others use custom tools for
more complex processing.

This approach works, but is somewhat unsatisfactory because it buries
design decisions about how specifications are processed and how
outputs are integrated in a variety of different places. These
decisions may be distributed throughout the Odin derivation graph,
shell scripts, awk or sed commands, or the code of custom tools.
Comprehension for debugging and maintenance is hampered because the

input to a generator may come from a lengthy series of script or tool
invocations. There is very little chance of analysing the formal
properties of a generation process implemented in this way. Similar
arguments apply to Make-based systems.

It seems that there is scope for software transformation to make a
contribution to improving this situation. The integration problems at
the input and output ends can be viewed as transformations from
specifications to generator inputs, or from generator outputs to
processor components. Having a holistic formal basis for these
transformations that includes generator invocation would greatly
assist debugging and maintenance of systems like Eli. Also, it would
raise the generation process from one embodied by an ad-hoc
implementation to a precise description that may be amenable to formal
analysis and optimisation.

Software Transformation Systems

Douglas R. Smith
Kestrel Institute
Palo Alto, California

I have led projects that built a series of Software Transformation
systems, including KIDS, Specware, Planware, Designware, and Epoxi.

KIDS (Kestrel Interactive Development System (1984-2000)) used a
combination of constructive first-order inference, algorithm
theories/tactics, and a variety of classic program transformations
such as context-dependent simplification, finite differencing, and
partial evaluation. Algorithm theories combine an algorithm template
with axioms that are sufficient to guarantee the correctness of any
instantiation. KIDS was used to synthesize many functional programs
from input-output specifications, including a variety of complex
high-performance scheduling applications.

The theory and practice of KIDS led to the development of a
category-theoretic foundation in Specware (1994-present).
Specifications higher-order logic are used to capture software
requirements. Specification morphisms (and interpretations between
theories) are used to represent specification refinement and
speification structuring. Colimits exist in this category and are
used to compose specifications. Similarly, library representations of
design knowledge (e.g. algorithm theories, datatype refinements) are
applied by means of colimits. Recently we have extended the
specification language to express behavioral specifications in such as
way that, again, morphisms serve for refinement and colimits compute
compositions.

Several domain-specific extensions of Specware have been built so that
users can automatically generate code without needing to know the
theoretical underpinings of the system. Planware specializes in the
synthesis of high-performance resource management systems. It uses
state machines with constraints and service links to abstractly model
both tasks and resources. In a typical application, a specification
of 7 classes of resources is built up via both graphical and textual
notations, roughly 1000 lines of specification text. From this input
Planware automatically generates over 100,000 lines of CommonLisp code
in a few minutes.

References

Smith, D.R., KIDS: A Semi-Automated Program Development System, IEEE
Transactions on Software Engineering 16(9), Special Issue on Formal
Methods, September 1990, 1024-1043.

Smith, D.R. and Lowry, M.R., Algorithm Theories and Design Tactics,
Science of Computer Programming 14(2-3), Special Issue on the
Mathematics of Program Construction, October 1990, 305-321.

Smith, D.R., Constructing Specification Morphisms, Journal of Symbolic
Computation, Special Issue on Automatic Programming, Vol 16, No 5-6,
1993, 571-606.

Smith, D.R., Toward a Classification Approach to Design, invited paper
in {\em Proceedings of the Fifth International Conference on Algebraic
Methodology and Software Technology, AMAST'96}, LNCS 1101, Springer
Verlag, 1996, 62--84.

Lee Blaine, Limei Gilham, Junbo Liu, Douglas R. Smith, and Stephen
Westfold, Planware -- Domain-Specific Synthesis of High-performance

Schedulers, Proceedings of the Thirteenth Automated Software
Engineering Conference, IEEE Computer Society Press, Los Alamitos,
California, October, 1998, 270--280.

Smith, D.R., Designware: Software Development by Refinement, invited
paper in Proceedings of the Eighth International Conference on
Category Theory and Computer Science, Edinburgh, September, 1999.

Marcel Becker, Limei Gilham, Douglas R. Smith, Planware II: Synthesis
of Schedulers for Complex Resource Systems, submitted for publication,
2004.

Douglas R. Smith, A Generative Approach to Aspect-Oriented
Programming, to appear in Proceedings of the Third International
Conference on Generative Programming and Component Engineering (GPCE
04), Vancouver, October, 2004.

Specware, http://www.specware.org/

Generative Programming, Interface-Oriented Programming,
and Source Transformation Systems

L. Robert Varney and D. Stott Parker
{varney,stott}@cs.ucla.edu

Abstract

We propose a new interface-oriented approach to genera-
tive programming and suggest that source-to-source trans-
formations could play a complementary role in an interface-
oriented programming system.

1 Introduction

Despite advances in programming language technology,
large-scale software evolution and reuse remain challenging.
One basic challenge is developing software libraries that en-
compass the right set of abstractions and associated imple-
mentation choices, providing interfaces that are both easy to
use and efficiently implemented. This task is complicated by
what Batory [BSST93] calls the feature combinatorics prob-
lem and Biggerstaff [Big94] calls the library scaling problem.
These problems originate in programming languages that
require implementations to be named where more abstract
interfaces would suffice, creating implementation bias.

Biggerstaff, Batory, and others have suggested that the
solution is not to stock libraries with prefabricated compo-
nents covering all anticipated feature combinations, the solu-
tion is to factor abstractions and features into recomposable
precursor components, and generate components with spe-
cific feature combinations as needed. Generative systems,
described in section 2, do just that. However, there are
important implications of splitting components and imple-
menting them in abstract terms. One is that separation of
concerns eventually requires some means for recomposition,
and the other is that abstract implementations are difficult
to implement efficiently out of context.

Generative systems require users to explicitly name
the implementation fragments to be recomposed, transfer-
ring the implementation bias problem to users. Interface-
oriented programming (IOP) [Var04], described in section 3,
is an alternative programming language technology for sep-
aration of concerns that avoids implementation bias by re-
lying on a generative mechanism called representation infer-
ence to automatically generate compositions of partial com-
ponents. Although generative systems and IOP approach
the integration of concerns differently, each encourages com-
ponents to be implemented in abstract terms and is therefore
susceptible to performance problems.

Efficient implementation of abstract programs without
compromising abstractness has been the goal of source trans-
formation systems. In source transformation systems, code
is annotated with semantic information and separately de-

fined transformations are applied to create a specialized,
more efficient version of this abstract code. Although anno-
tation and transformation can address the efficiency prob-
lem, they can also introduce yet another form of implemen-
tation bias, a form that manifests itself in the choice and
ordering of particular transformations.

We believe that the strengths and weaknesses of IOP and
source transformations may be complementary. IOP can be
inefficient due to the use of high-level abstractions and needs
a source of implementation variants, and source transforma-
tion systems suffer from implementation bias due to manual
composition of specific transformations. In this paper we
suggest that IOP and source transformation systems could
be synergistically combined to solve both problems concur-
rently.

The paper is organized as follows. Section 2 reviews gen-
erative systems, section 3 discusses IOP, and the two are
compared in section 4. We discuss software transformation
systems in section 5, we suggest how IOP and source trans-
formation systems might be combined in section 6, and we
conclude the paper in section 7.

2 Generative Systems

We now discuss two generative systems, Batory’s Gen-
Voca model (and its successor, called AHEAD), and Czar-
necki and Eisenecker’s template metaprogramming ap-
proach called Generative Programming.

Batory and O’Malley [BO92] present the GenVoca model
of software system design based on reuse of interchangeable
components. In GenVoca, a component is a closely knit
cluster of classes, and every component has both an abstract
interface and a concrete implementation. Components im-
plement abstract to concrete mappings by translating op-
erations in the abstract interface to operations on lower-
level objects in terms of their abstract interfaces. These
lower level objects are provided to the component at instan-
tiation time via parameters, and their implementations are
unknown to the component.

These concepts can be modeled as a grammar or a
set of equations, with abstract interfaces representing non-
terminals and parameterized components representing the
right-hand sides of productions. A special software tool
called a layout editor is required to assist the user in com-
posing valid compositions of components.

In later work, Batory and Geraci [BG97] describe in more
detail how the GenVoca system validates compositions of pa-
rameterized components with associated design rules. More

recently the GenVoca model has been applied to the gen-
eration of development tool suites and has been reformu-
lated as a new component model called AHEAD (Algebraic
Hierarchical Equations for Application Design) [BSR03].
AHEAD extends the components-as-equations technique to
other software artifacts, not just code.

Czarnecki and Eisenecker [CE99][CE00] present a com-
ponent generation technique in which highly parameter-
ized components are assembled into concrete configurations
by a configuration generator, and configuration knowledge
is stored apart from the components themselves. In this
technique, called Generative Programming, implementation
fragments are associated with abstract features, and the al-
gorithms for combining features are expressed as template
metaprograms that accept feature identifiers as arguments
and compose the corresponding implementation fragments.
The implementation of a particular feature combination can
then be instantiated by invoking the template metaprogram
with the corresponding feature identifiers, causing the tem-
plate metaprogram to be specialized at compile-time to pro-
duce the desired code.

3 Interface-Oriented Programming

Interface-oriented programming [Var04] is an extension of
object-oriented programming in which all program interde-
pendencies are expressed via abstract interfaces. Current
programming languages force specific implementations to
be identified by name at points of instantiation dependency
(dynamic object creation and inheritance), causing imple-
mentation bias. In IOP, instantiation dependencies can be
expressed using abstract interfaces, and interfaces and im-
plementations are strictly separated. As a result, inheri-
tance in IOP is interface-oriented, supports both specializa-
tion and adaptation inheritance, and is decoupled from the
implementation binding mechanism [VP04].

We are developing a programming language called ARC
that implements these ideas. In ARC, a program is defined
in terms of abstractions (interfaces) and partial representa-
tions. A partial representation implements a subset of one
or more interfaces, and assumes the presence of implemen-
tations of one or more other interfaces. The assumed inter-
faces of a partial representation are not visible to clients of
its interface - indeed, clients of an interface are never aware
of the implementations they are using, and partial repre-
sentations are never aware of the siblings they may coexist
with in a complete representation. Partial representations
are like mixins, but are never composed explicitly with other
partial representations. Implementing IOP requires a new
form of program generation we refer to as representation in-
ference, in which partial representations are automatically
assembled to construct complete representations that satisfy
each partial representation’s local constraints.

IOP allows an interface to be implemented many differ-
ent ways. The primary source of variation comes from differ-
ent implementation strategies that are explicitly captured in
partial representations, and from the different ways in which
partial representations may be combined to form alterna-
tive complete implementations. When using an interface,
the user must assume that one of these complete implemen-
tations is chosen automatically and non-deterministically,
although an extra-linguistic facility is provided to control
the representation selection mechanism. We envision that
this mechanism can be extended to allow dynamic evolu-

tion, but ultimately the representation choices are limited by
the available handwritten partial representations and their
automatically generated combinations.

4 Comparing IOP with Generative Systems

The main difference between IOP and the generative sys-
tems we have discussed is that IOP generates valid compo-
nent compositions for a requested abstract interface auto-
matically, whereas generative systems require partial imple-
mentation choices to be explicitly named at the site of an
interface instantiation request.

GenVoca and AHEAD essentially provide high-level
equations that drive code generators for parameterized com-
ponents without support for inheritance. These code gener-
ators operate at the level of syntactic implementation frag-
ments, fragments that do not distinguish between client-
relevant details and internal implementation choices.

Czarnecki and Eisenecker’s Generative Programming re-
duces the tedium associated with manual composition, but
it is still necessary to manually compose specific combina-
tions of implementation-oriented features. Also, each space
of possible combinations requires its own template meta-
function that must anticipate all of the different features
that will be usable as arguments. Template metafunctions
also do not distinguish between features that clients need
to understand and features that are implementation details
they should ignore. A feature is modeled as an implemen-
tation with some interface, but multiple implementations of
the same interface are not considered.

In IOP each feature (partial representation) is defined
locally and incrementally - everything we can say about how
a feature may be combined with others is specified locally,
the size of the specification depends only on what the feature
depends on and not on the size of the total feature space,
and the specification is monotonic with the addition of new
features to the feature space (we do not have to revise our
constraints with the addition of new features). In IOP the
space of possible feature combinations is implicit in these
constraints, whereas in GenVoca, AHEAD, and generative
programming it must be explicitly managed as a whole.

5 Source Transformation Systems

Increasing the level of abstraction can improve development
productivity and maintainability but can also cause run-
time efficiency to deteriorate (Baage et al. [BKHV03]). Per-
formance can be improved by specialized implementations,
but specialized versions are more difficult to use correctly,
and they tend to expose implementation details through in-
terfaces, violating interface abstractions and entangling in-
terfaces with implementations ([GL99]). Source transforma-
tion systems attempt to preserve the benefits of abstract
program development with the need for efficiency by al-
lowing source programs to be maintained manually in ab-
stract form, and using automatic transformations to spe-
cialize them into more efficient forms.

Source to source transformations can improve perfor-
mance but generally require manual insertion of semantic
annotations and the selection and ordering of particular pro-
gram transformations. Certain domain-specific optimiza-
tions are applicable only in certain contexts, and context
is affected by the transformations themselves, thus trans-
formation ordering is significant and opportunities for opti-

2

mization will depend on ordering ([BH03]). The challenge
of composing the right transformations in the right order
appears to be yet another instance of the tradeoff between
abstraction and performance that the source transformation
approach is designed to address – generic transformations
are broadly applicable but slow, and specialized transfor-
mations are less reusable but fast – there is no free lunch.
The problem is not source transformation per se, it may
have more to do with how the transformations are chosen,
and when.

Manual application of transformations not only fixes a
choice of transforms (limiting its applicability), but is also
error prone and may miss opportunities for optimization
([GL99]). Automation is needed not only to detect all opti-
mization opportunities, it is also needed because the choice
is not unique, and the set of applicable transformations may
change as the nature of an application’s workload changes.

6 Integrating IOP and STS

Although explicitly programmed variations of partial com-
ponents are currently the primary source of raw material
for IOP’s representation inference mechanism, another pos-
sible source of variation could be source-to-source program
transformations. Source transformation might transform
partial components into new partial components, or could
even transform complete representations. The result in each
case is a larger population of candidate representations that
the representation inference and selection mechanisms can
choose from.

Conversely, the choice of what transformations to apply
could be handled in a manner similar to how representations
are inferred, yielding a transformation inference mechanism.
Transformations should have known incremental effects on
partial representations, and would have to be specified in
terms of that abstract effect.

However, current source-transformation systems rely on
program annotations that are not integrated with the type
system, and require users to commit to a particular choice
and ordering of transformations. For our suggestion to work,
the semantic information needed by the source transforma-
tions should be integrated with the interface-oriented pro-
gramming language, and the source transformations them-
selves must somehow be integrated with language’s mech-
anism for implementation variation, essentially extending
the representation inference mechanism to search not just
for implementations that can be assembled from the avail-
able parts, but for implementations that can be generated
by transforming the available parts.

7 Conclusion

In this paper we have suggested that the strengths and weak-
nesses of IOP and source transformations may be comple-
mentary, each solving a problem left open by the other. On
the one hand, IOP solves the implementation bias problem
but can suffer from the inefficiency of interface abstraction,
and IOP also needs a fertile source of implementation vari-
ants. On the other hand, source transformation systems can
automatically generate efficient new implementation vari-
ants but suffer from the implementation bias problem due to
the need to manually commit to specific transformations. By
combining the two mechanisms, IOP could use source trans-
formations as a way to generate additional implementation

variants, and particular combinations of interface-oriented
partial transformations could be generated automatically by
extending IOP’s representation inference mechanism to per-
form transformation inference.

References

[BG97] D. Batory and B. J. Geraci. Component vali-
dation and subjectivity in genvoca generators.
IEEE Transactions on Software Engineering,
pages 67–82, 1997.

[BH03] O. S. Baage and M. Haveraaen. Domain-specific
optimisation with user-defined rules in code-
boost. In Proceedings of the 4th International
Workshop on Rule-Based Programming (RULE
’03), volume 86 of Electronic Notes in Theoreti-
cal Computer Science. Elsevier, June 2003.

[Big94] T. J. Biggerstaff. The library scaling problem
and the limits of concrete component reuse. In
Proceedings of the International Conference on
Software Reuse, pages 102–109, 1994.

[BKHV03] O. S. Baage, K. T. Kalleberg, M. Haveraaen,
and E. Visser. Design of the codeboost transfor-
mation system for domain-specific optimisation
of c++ programs. In Third International Work-
shop on Source Code Analysis and Manipulation
(SCAM 2003), pages 65–75. IEEE Computer So-
ciety Press, 2003.

[BO92] D. Batory and S. O’Malley. The design and
implementation of hierarchical software systems
with reusable components. ACM TOSEM,
1(4):355–398, 1992.

[BSR03] D. Batory, J. Sarvela, and A. Rauschmayer.
Scaling stepwise refinement. In Proceedings of
International Conference on Software Engineer-
ing, pages 187–197, 2003.

[BSST93] D. Batory, V. Singhal, M. Sirkin, and
J. Thomas. Scalable software libraries. In
Proceedings of ACM SIGSOFT, pages 191–199,
1993.

[CE99] K. Czarnecki and U. W. Eisenecker. Synthesiz-
ing objects. In Proceedings of ECOOP, 1999.

[CE00] K. Czarnecki and U. W. Eisenecker. Genera-
tive Programming: Methods, Tools, and Appli-
cations. Addison Wesley, 2000.

[GL99] S. Z. Guyer and C. Lin. An annotation language
for optimizing software libraries. In Proceedings
of DSL’99: The Second Conference on Domain
Specific Languages, Austin, Texas, 1999. The
USENIX Association.

[Var04] L. Robert Varney. Interface-oriented program-
ming. Technical Report TR-040016, UCLA De-
partment of Computer Science, 2004.

[VP04] L. Robert Varney and D. Stott Parker. Inher-
itance decoupled: It’s more than just special-
ization. In Proceedings of ECOOP/MASPEGHI
Workshop, 2004.

3

Generation by Transformation in ASF+SDF

M.G.J. van den Brand and J.J. Vinju

Mark.van.den.Brand@cwi.nl, Jurgen.Vinju@cwi.nl

In this short paper we sketch two particular application areas of the ASF+SDF
Meta-Environment: source-to-source transformations and code generation. Not
surprisingly these two applications have much in common. ASF+SDF is com-
posed of generic language technology. It offers the expressive power to cover
these applications at a convenient level of abstraction.

Figure 1 summarizes an extreme viewpoint: source code related engineer-
ing activities can all be seen as language manipulations. Code generation and
software transformation are represented by edges in this figure. Languages and
tools that offer specific functionality for the easy definition of language transla-
tions are expected to perform well in both generative programming and software
transformation. Several modern systems consciously implement this viewpoint,
e.g. ASF+SDF, StrategoXT, and TXL.

Scannerless Generalized Parsing The syntax of both input and output
formats are rigorously defined using the SDF formalism. We can describe the
syntax of all formats that have a context-free grammar. From these descriptions
parsers are generated that translate data from string format to tree format. The
fact that we apply generalized parsing allows us to write the syntax definitions
in a declarative way without worrying how to transform the grammar in a
specific class, e.g. LL(k) or LR(k). Scannerless parsing loosens the restrictions
that scanners usually impose on the input formats, which increases the number
of programming languages that can be described using SDF. The generated
parsers automatically construct maximally shared parse trees which contain all
relevant grammatical information. Thus the resulting parse tree is fully typed
with respect to the grammar.

Conditional Term Rewriting is an apt paradigm for tree deconstruction
and construction. ASF is a term rewriting language with features such as match-
ing and list matching, conditional rewrite rules, and traversal functions.

We use it to concisely describe transformations on parse trees. The parse
trees produced by the parser are immediately processed by the rewrite engines,
and the output of rewriting are fully typed parse trees again.There is no loss of
information due to translation to some abstract term format. The type-safety
of ASF specifications guarantees that the output parse trees correspond exactly
to a syntax definition.

1

Source Code
Run

Rephrasing

AbstractionsAbstraction

Java
COBOL

Bytecode

Documentation

Conversion

Formalization Render

HTML
UML
PDF

Generation
Presentation

Analysis

CFGs
Fact databases

DSLs

Figure 1: Three source-code representation tiers and their transitions.

The rewrite rules are written in the concrete syntax of the manipulated lan-
guages. Our formalism ASF is based completely on concrete syntax in contrast
to other programming languages where this is an add-on. The fact that we per-
form rewriting on parse trees enables us to be “grammar-safe”, and have access
to a wealth of syntactical information such as layout, ambiguities, and position
information.

Relation Calculus complements term rewriting by offering a programming
interface on the level of fact analysis and manipulation. Logical operations and
transitive closures can be expressed using term rewriting too, but on a less
practical level of abstraction. In software transformation sometimes complex
software analyses precede the actual transformation, and also in generative pro-
gramming extensive analyses of the input data can improve the behaviour of
the generator and the generated code.

Generic Pretty Printing is the final step for any transformation or gener-
ation process. The BOX language offers declarative primitives to render parse
trees back to strings in a logical two-dimensional manner. Its implementations
supports back-ends such as ASCII, HTML or LATEX.

Several academical and industrial projects in software transformation and
code generation have confirmed the aptitude of ASF+SDF Meta-Environment
in these areas. ASF+SDF is used by an industrial partner (First Result B.V.)
to translate information system specifications in a UML-like formalism into
executable 3-tier architectures. In cooperation with the Vrije Universiteit Am-
sterdam advanced COBOL restructuring transformations are developed using
ASF+SDF. The ASFC compiler, which translates ASF+SDF specifications into
C code, is specified in ASF+SDF itself and bootstrapped. The first and the
latter application are nice examples of powerful code generators. Two interest-
ing question remain: is more specialized expressive power towards generative
programming warranted? Does this specialization warrant research on other
domain specific declarative languages?

At least the general, syntax oriented, type-safe and declarative features of
the ASF+SDF Meta-Environment are a strong foundation for any source trans-
formation or code generation project.

2

Reusable and Adaptable Strategies

for Generative Programming

Position paper for the GPCE’04 Software Transformation Systems Workshop

Martin Bravenboer and Eelco Visser

Institute of Information and Computing Sciences, Universiteit Utrecht, P.O. Box 80089 3508 TB
Utrecht, The Netherlands {martin,visser}@cs.uu.nl

July 2004

Generative programming aims at increasing programmer productivity by automating pro-
gramming tasks using some form of automatic program generation or transformation, such as
code generation from a domain-specific language, aspect weaving, optimization, or specialization
of a generic program to a particular context. Key for achieving this aim is the construction of
tools that implement the automating transformations. If generative programming is to become
a staple ingredient of the software engineering process, the construction of generative tools itself
should be automated as much as possible. This requires an infrastructure with support for the
common tasks in the construction of transformation systems. In the Stratego/XT project we
have built a generic infrastructure for program transformation [2, 1]. In this position paper
we give an outline of this infrastructure and indicate where we think the challenges for research
and development of program transformations systems lie in the coming years.

Stratego/XTand its applications are organized in five layers (see diagram). (1) At the bottom
layer is the substrate for a transformation system, that is the data representation and exchange
format, for which we use the Annotated Term Format (ATerm) as basis, and XML where nec-
essary to communicate with external tools. This substrate allows transformation systems to be
rigorously componentized. (2) The foundation of any transformation system are syntax defi-
nition and parsing, pretty-printing, program transformation, and tool composition. The syntax
definition formalism SDF provides modular syntax definition and parsing, supporting easy com-
bination of languages. The pretty-printing package GPP supports rendering structured program

1

representations as program text. The program transformation language Stratego supports concise
implementation of program transformations by means of rewrite rules and programmable strate-
gies for control of their application. Finally, the XTC library supports composition of simple
transformation tools into complex ones. These are all generic facilities that are needed in any
transformation for any language. (3) In the middle is a library of transformations and transfor-
mation utilities that are not specific for a language, but not usable in all transformations either.
The Stratego Standard Library (SSL) provides a host of generic rewriting strategies, and the XT
toolset provides utilities for generating parts of a transformation system. (4) Near the top are spe-
cializations of the generic infrastructure to specific object languages. Such a language specific
environment consists of a syntax definition for a language along with utilities such as semantic
analysis, variable renaming, and module flattening. (5) Finally, at the top are the actual gen-
erative tools such as compilers, language extensions, static analysis tools, and aspect weavers.
These tools are implemented as compositions of tools from the lower layers extended with one or
more components implementing the specific transformation under consideration.

Where are we now in this development? The basic infrastructure (bottom two/three) layers is
well established, readily available, and deployed in several projects. Although these components
are gradually improved and extended, they form a reasonably stable development platform. The
next frontier is the expansion of the infrastructure to generative applications. The tools in the
top-level layer are the ones that matter since they are to be used by application programmers.
Although we have also built a range of prototype language specific environments and generators
to experiment with and validate our infrastructure, these do not yet form a product line by
themselves. The main challenges to larger scale deployment are availability of standard language
specific components, lack of documented reusable strategies at all levels of granularity, and an
approach to make transformation strategies adaptable.

Although the languages and tools provided by Stratego/XT make the construction of trans-
formation systems a lot easier than doing it from scratch using a general purpose programming
language, it can still be a lot of work. Before a particular generative tool can be created, the
hurdle of creating a language-specific environment must be taken. Therefore, the routine produc-
tion of generative tools requires a library of standard language specific components, that is,
front-ends for many standard and non-standard languages. The expectation that such front-ends
will appear as spin-offs from production of specific generative tools is unjustified. The hardness
and tediousness of this problem seems to be caused by the sheer complexity and irregularity of
programming languages. Nonetheless, investigation of a higher-level and more declarative solution
to the implementation of front-ends for real programming languages would we worthwhile.

Another challenge for transformation systems is to raise the level of reuse by providing reusable
strategies at all levels of granularity, from micro-level transformations to macro-level tool com-
positions upto process strategies. As with all reuse, a sensible documentation and indexing of
available solutions is key to benefitting from the available components. This is clearly a problem
for new and even for more experienced users of Stratego/XT. With some 170 executable compo-
nents and over 1200 strategy definitions in the library, it can be hard to locate the right ones for
a specific transformation. While the available components form a very expressive programming
environment, supporting the easy composition of all kinds of transformation systems, it requires
knowledge of the available components and the ways to compose them. The cause of this problem
is that the available components live at a lower level of abstraction than the problem being solved.
To improve the productivity of meta-programmers we need higher-level semantic strategies that
capture all aspects of some type of transformation, from the composition of tools to the traversals
used in the actual transformation. Thus, one would expect reusable strategies for compilation,
code generation, and aspect weaving, for example. For example, currently, the production of a
code generator involves finding components for parsing, pre-processing, and pretty-printing and
writing the actual generation strategy and rules. Often the code for such a generator will look
very much like other generators, i.e. follow the same design pattern. A reusable code genera-
tion strategy should provide a standard composition and a pluggable traversal strategy that only
needs to be instantiated with the name of the input and output languages and the generation
rules. An ontology for such semantic strategies can then provide access to the components of the

2

infrastructure starting at the right level of abstraction.
It is not to be expected that such reusable strategies will be right for every possible situation.

Therefore, these strategies should be open and adaptable. In the first place the strategies
should be adaptable to the specific languages being transformed. In the second place strategies
should be adaptable to the specific program that is being transformed or generated. Regarding
the first point, languages differ in large and small ways from the standard model. A reusable
strategy based on some general model of data-flow, say, needs to be adapted to the specific data-
flow rules of the language under consideration. Regarding the second point: It is not uncommon
that the programs produced by generators, especially those that generate high-level programs, are
further edited by application programmers in order to fit the generated code in their application.
Generators that produce code templates even assume this mode of work. Of course, this produces
a maintenance nightmare; when the source of generation changes, all modified files need to be
merged with the newly generated ones, undoing all benefits of generation. Thus, it should be
possible to adapt the product of generation without physically modifying it, either by means of
input to the generator, by generating code that can be adapted (e.g. through subclassing), or by
applying further transformations to the generated code (e.g. using aspects).

References

[1] http://www.stratego-language.org.

[2] E. Visser. Program transformation with Stratego/XT: Rules, strategies, tools, and systems in
StrategoXT-0.9. In C. Lengauer et al., editors, Domain-Specific Program Generation, volume
3016 of Lecture Notes in Computer Science, pages 216–238. Spinger-Verlag, June 2004.

3

http://www.stratego-language.org

Transforming Object-Oriented Programs into Structurally Reusable
Components for Generative Reuse

Hironori Washizaki1 and Yoshiaki Fukazawa2

1National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo, Japan, washizaki@acm.org
2Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo, Japan, fukazawa@waseda.jp

Abstract

We propose a technique for transforming part of
the object-oriented programs into structurally reusable
components by our new refactoring “Extract Compo-
nent” to realize the generative reuse of the existing pro-
grams. Our refactoring can identify and extract compo-
nents composed of classes from existing OO programs,
and modify the surrounding parts of extracted compo-
nents in original programs. We have developed a tool
that performs our technique automatically and extracts
JavaBeans components from Java programs.

1. Introduction

Since object-oriented (OO) classes usually have
complex mutual dependencies, it is difficult to reuse
parts of existing OO programs composed of classes
rapidly and effectively. If a significant function is real-
ized by a set of classes, programmers who want to reuse
the function must examine the dependencies among re-
lated classes and acquire all depending classes. Since
such manual examination activities entail a high cost
for programmers, the merits of reuse might be reduced
or lost.

In this paper, we propose a technique for identifying
structurally reusable candidate parts of OO programs
and transforming these parts into JavaBeans[1] compo-
nents automatically by our new refactoring, “Extract
Component[2].” Our technique targets Java language
as the OO programming language and JavaBeans as
the fundamental component architecture.

2. Component Extraction

To extract reusable components from Java pro-
grams, we first define a class relation graph (CRG) that
represents the relations among classes/interfaces in the

target Java program. In CRG, each node denotes a
programmer-made Java class or interface. Each edge
denotes a relation (inheritance, instantiation, and ref-
erence) between two classes/interfaces. The CRG is
obtained by a static analysis for the target program.
Figure 1 shows an example Java code and its CRG.
Details of the CRG’s definition are shown in [2].

public abstract class A{ }

public class B extends A{

public B(){ C c; } }

public class C {

private C(){ } }

public class D {

public D() {

A a = new B();

E e = new E(); } }

public class E { }

A

B

C

D E

X Y X refers to Y.
X Y X instantiates an object of Y.
X Y X inherits Y.

Java code CRG

cs1 cs2

cs3

Figure 1. Program code and its CRG

Next, we can automatically detect all possible clus-
ters on the CRG by analyzing reachabilities regard-
ing relations among nodes. The cluster is a set of
classes/interfaces that satisfies the following two re-
quirements, and is denoted as cs = (cf , Vc), where cf is
the Facade class and Vc is a set of all classes/interfaces
in the cluster. Each cluster becomes a candidate of a
structural reusable component

• The set includes one Facade class, which plays
the role of the facade for the outside of the
classes/interfaces based on the Facade pattern[3].
The Facade class must have one public default con-
structor (a constructor without any arguments).

• All classes/interfaces necessary for instantiating
an object of the Facade class are packaged into
the same set.

For example, we obtained the following three clus-
ters on the CRG in Figure 1: cs1 = (B, {A, B, C}),
cs2 = (E, {E}), and cs3 = (D, {A, B, C, D, E}).

1

After detection, we can produce a new Facade inter-
face to enable the use of a cluster from the outside, and
compile all related source codes of the cluster into the
form of a Java archive (JAR) file including one Jav-
aBeans component. The acquired component does not
always represent a semantically reusable component in
possible contexts. However, the acquired component
is the structurally reusable component, because the in-
ternal structure is hidden from outside, and the com-
ponent has no dependency on elements outside.

When extracting components corresponding to spec-
ified clusters, the surrounding parts of clusters should
use newly extracted components in order to avoid the
situation where two sets of classes that provide the
same function exist in the same library. This modi-
fication is a kind of refactoring[4] because this modifi-
cation does not change the observable behavior of the
original program. We call this refactoring, “Extract
Component,” and the key steps of this refactoring are
shown below.
(1) Obtain all clusters and select one cluster cs =
(cf , Vc).
(2) Create a new Facade interface if .
(3) Add the declarations of all public methods imple-
mented within cf into if .
(4) Add the declarations of the setter methods and
getter methods corresponding to all public fields of Vc

into if . Add the implementations of the setter methods
and getter methods into cf . This step is a kind of
Encapsulate Field refactoring[4].
(5) Compile and package all classes/interfaces in Vc and
if into one JAR file.
(6) Change the program codes, which assign new values
to fields of Vc (or refer the values of fields of Vc) in
outside of the cluster, to the program codes that invoke
the setter methods (or getter methods) of if .
(7) If the implicit widening reference conversion from
cf to another class/interface ce in Vc exists in outside
of the cluster, insert the explicit reference conversion
program code, which converts the reference types from
cf to ce, into all parts where the implicit conversion
exists.
(8) Change the reference types, which refer to cf in
outside of the cluster, to those that refer to if .

3. Automated Tool

We have developed a tool that analyzes Java pro-
gram source code, displays CRG, and performs auto-
matically all necessary steps of the Extract Component
refactoring. Since our tool can be treated as a genera-
tor of reusable components, it is thought that our tool

realizes the generative reuse[5] of the existing Java pro-
grams.

Using our tool, we have attempted to extract
all components from a Java class library KFC [6]
(number of all classes/interfaces: 224). 13 compo-
nents have been automatically extracted from the
library. Names of the extracted components’ Facade
class are BasicPSModifier, BasicTSModifier,
DefaultHTMLReaderTarget, VDashedBorder,
DTD, DefaultCompareAdapter, ColorButton,
BorderedPane, Panel, CompositeKeyAction, Keymap,
TextCaret, and ConcreteTextConstraint. Many of
them are components with high generality, such as
Button and Panel. These components can be reused
independently in other programs. It is found that the
Extract Component refactoring is useful for extracting
components from a class library.

4. Application and Discussion

Using the Extract Component Refactoring tool, we
are currently developing a component-extraction-based
program search system[2]. Our system extracts struc-
tually reusable components from a collection of Java
programs, and generates indexes for newly extracted
components. In our system, the extracted components
can be searched by keywords via a web browser.

One of important issues for realizing the generative
reuse for the existing programs is how to customize
the extracted components to match the new applica-
tion contexts. We believe that combining traditional
generative techniques (such as the template program-
ming) with our technique will be helpful to overcome
this issue.

References

[1] Hamilton, G. JavaBeans 1.01 Specification (1997).

[2] Washizaki, H. and Fukazawa, Y. Component-
Extraction-based Search System for Object-
Oriented Programs, 8th International Conference
on Software Reuse, LNCS Vol.3107 (2004).

[3] Gamma, E. et al. Design Patterns: Elements
of Reusable Object-Oriented Software, Addison-
Wesley (1994).

[4] Fowler, M. Refactoring: Improving the Design of
Existing Code, Addison-Wesley (1999).

[5] Biggerstaff, T.J. A Perspetive of Generative
Reuse, Annals of Software Engineering, Vol.5,
No.1 (1998).

[6] Yasumatsu, K. KFC, http://openlab.jp/kyasu/

2

Position Paper for the Software Transformation Systems Workshop (STSW04) Vancouver, 10/25/04

Transformation Systems for DSLs, Architectural Styles, and Graphical
Languages

David S. Wile

Teknowledge Corp.
dwile@teknowledge.com

My position is simply the observation that all of the transformation-based tools built for
general-purpose languages in the last 25 years have analogous counterparts for
manipulating Domain Specific Languages, Architectural Styles, and Graphical Idioms.
In particular, each of the following is germane:

• Language Specification – a set of constraints or templates to restrict designs
• Parsing – adherence of a design to the language specification
• Syntax-Direction – automated aid to constructing specifications that adhere
• Type Checking – imposing uniformly a set of more global constraints beyond the

(generally local) syntactic constraints
• Abstract Syntax – an intermediate representation capturing the essential concepts

of the domain
• Semantics Specification Mechanisms and Issues

o Attribute Grammars
o Transformations – within a language
o Translations – between languages
o (Other) Homomorphisms – into algebraically similar structures
o Establishing transformation validity

• Traversal Mechanisms
o Metaprogramming Calculi – programs as data
o Strategies – heuristics for transformation
o Visitor patterns – a calculus for OO representations of AST

transformations
• Debugging Aids – errors related to source specifications and data structures
• Re-engineering aids (inverses for each semantics specification mechanism)
• Design recording aids

o Historical Development – keeping track of a design history
o Pedagogical Development – when can a design history be replayed?
o Requirements-based Development – why are things as they are?

It is not the case that the analogies are always straightforward. For example, the visitor
pattern does not carry over directly into the domain of graphical idioms, where the
existence of potential cycles requires one to consider what happens when a node is
“revisited.” Nonetheless, researchers are certain to reinvent each of these concepts for
the current terms without being aware of what has gone before, unless these similarities
are raised explicitly to the relevant research communities.
I think a valuable contribution of this workshop would be a compilation of important
articles on these topics, circulated via a web site or a mailing list to the attendees. To
illustrate the depth of the heritage of papers on these topics I include the following fairly
random smattering of my own and my close colleagues’ early papers:

mailto:dwile@teknowledge.com

Position Paper for the Software Transformation Systems Workshop (STSW04) Vancouver, 10/25/04

1. Balzer, R. M., Goldman, N. M. and Wile, D. S. On the transformational implementation approach to
programming. In Proceedings of the Second International Conference on Software Engineering, October, 1976.
Pp. 337-344.

2. Balzer, R, Goldman, N. Principles of good software specification and their implications for specification
languages. Specification of Reliable Software: IEEE Computer Society. 1979. Pp. 58-67.

3. Balzer, R.M., Cheatham, T.E., and Green, C. Software Technology in the 1990's: Using a New Paradigm.
Computer Magazine, 1983.

4. Bauer, F. L. Programming as an evolutionary process. Proceedings of the Second International Conference on
Software Engineering, San Francisco, California: IEEE. October, 1976. Pp.223-234.

5. Bauer, F.L., Broy, M., Partsch, H., Pepper, P. and Wirsing, M. The Munich Project CIP. Vol. I: The Wide
Spectrum Language CIP-L. Lecture Notes in Computer Science 183, Springer Verlag, Berlin. 1985.

6. Boyle, James M. Program adaption and transformation. In Practice in Software Adaption and Maintenance:
Proceedings, Workshop on Software Adaption and Maintenance, Berlin, North-Holland, 1979. Pp. 3-20.

7. Burstall, R.M. and Darlington, J. A transformation system for developing recursive programs. JACM 24:1, 1977,
pp. 44-67.

8. Cheatham, T.E. Jr., Holloway, G.H., and Townley, J.A., Program refinement by transformation. In Proceedings of
the Fifth International Conference on Software Engineering, San Diego, CA March, 1981, pp. 430-437.

9. Donzeau-Gouge, V., Kahn, G., Lang, B., and Mélèse, B. “Document Structure and Modularity in Mentor,”
Proceedings of the ACM SIGSOFT/SIGPLAN Software Symposium on Practical Software Development
Environments (1984), pp. 141-148.

10. Feather, M.S. A system for assisting program transformation. ACM Transactions on Programming Languages and
Systems 4(1), 1982 pp. 1-20.

11. Feather, M.S. A survey and classification of some program transformation approaches and techniques. Meertens,
L.G.L.T. ed. Proceedings of the IFIP TC2/WG 2.1 Working Conference on Program Specification and
Transformation, Bad Toelz, North-Holland. 1986. 165-195.

12. Gerhart, S. L. Correctness preserving program transformations. In Proceeedings, 2nd ACM POPL Symposium,
Palo Alto, CA. 1975. Pp. 54-66.

13. Green, C.C. and Barstow, D. On program synthesis knowledge. Artificial Intelligence 10, 1978, pp. 241-279.

14. Kant, E. On the efficient synthesis of efficient programs. Artificial Intelligence 20, 1983, pp. 253-305.

15. Kibler, D.F. Power, Efficiency, and Correctness of Transformation Systems, PhD thesis, University of California
at Irvine, 1978.

16. Neighbors, J. Software Construction Using Components. Ph.D. Thesis. Computer Science Department. University
Of California, Irvine, 1981.

17. Paige, R., Transformational programming – applications to algorithms and systems. In Proceedings of the 10th
ACM POPL Symposium, Austin, TX. 1983, pp. 73-87.

18. Pepper, P., ed. Program Transformation and Programming Environments NATO ASI Series F: Computer and
Systems Sciences. 8. Springer Verlag, 1983.

19. Reps, T. W. and Teitelbaum, T. The Synthesizer Generator. Springer-Verlag, New York (1988).

20. Rich, G. A formal representation for plans in the Programmer’s Apprentice. In Proceedings, 7th Interntaional Joint
Conference on Artificial Intelligence. 1981.

21. Scherlis, W.L. Program improvement by internal specialization. In Proceedings, 8th ACM Symposium on the
Principles of Programming Languages, Williamsburg, VA. January, 1981. Pp. 41-49.

22. Wile, D. S. Type transformations. IEEE Transactions on Software Engineering. 1(SE-7):1981. Pp. 32-39

23. Wile, David S. Program Developments: Formal Explanations of Implementations. Communications of the ACM,
26:11 (1983).

24. Wile, D.S. Local Formalisms: Widening the Spectrum of Wide-Spectrum Languages. Meertens, L.G.L.T. ed.
Proceedings of the IFIP TC2/WG 2.1 Working Conference on Program Specification and Transformation, Bad
Toelz, North-Holland. 1986. 459-481.

Semantic Analysis in Software Transformation

Eric Van Wyk and Eric Johnson

University of Minnesota

October 24, 2004

When transforming a source program or specification there are two important questions that must be
answered:

1. What constructs in the source need to be transformed? and

2. What should the selected constructs be transformed into?

It is our position that using semantic analysis of the source program in answering these two questions leads
to powerful transformational systems. Our main interest is in designing extensible compiler frameworks that
allow programmers to easily import into their ”host language” compiler, a unique set of domain-specific
language extensions suitable for their task at hand. (They must be able to do this with no implementation-
level knowledge of the extensions.) These constructs need to be as well-developed as the host language’s
native constructs. Thus, language feature designers should be able to specify new language constructs
together with both their semantic analyses and their optimizing transformations.

In term rewriting systems, only the syntactic structure of the source is examined to determine the
constructs to transform. While this is all that is needed in many domains, it does limit the transformation
system. For example, transformations based on an expression’s type are often useful. Semantic analysis
is also helpful in determining what a construct is translated into. Below, we describe an example from
computational geometry (CG) in which exact precision numeric types are transformed into arrays of fixed
precision types. Since exact precision values are used in a rather limited way in CG programs, semantic
analyses are used in generating highly efficient implementations of their arithmetic operations.

There are many well-understood techniques for transformation via rewriting (Baader and Nipkow, 1998;
Visser, 2001) based on declarative specifications of rewrite rules. These generally do not take into account
semantic information of the source; (Lacey and de Moor, 2001) is one exception. Attribute grammars are
a well-understood mechanism for specify semantic analyses of context free languages (Knuth, 1968). With
the addition of higher-order attributes, new attributed trees can be constructed and thus transformational
systems can be built that make use of semantic analyses. However, higher order attribute grammar systems
do not support the modularity that we seek (Van Wyk et al., 2002). If the host language and the language
extensions are specified as higher order attribute grammars, the programmer must understand their imple-
mentation and write attribute definitions in order ”glue” the extensions into the host language attribute
grammar.

An extension to attribute grammars, called ”forwarding” (Van Wyk et al., 2002), solves this problem as
it allows us to mimic simple rewriting inside an attribute grammar framework. We have built a prototype
extensible language framework based on forwarding attribute grammars in which the host language and
the language extensions are specified as attribute grammar fragments. To use forwarding, the production
defining a new language construct in a language extension will generate a semantically equivalent construct in
the host language. This semantically equivalent construct represents its implementation in the host language
and provides definitions to attributes that are not explicitly specified (by attribute definition rules) on the
production for new language construct. If a node in the attributed syntax tree is queried for an attribute

1

for which its does not have an explicit attribute definition, it “forwards” that query to the semantically
equivalent construct which provides the answer (either directly or by forwarding again).

In the domain of computational geometry, we have implemented a number of extensions that help geome-
ters write robust CG programs. It is common practice in this domain to base algorithms on a ”geometric
primitives”. These are expressions that that return a qualitative, not quantitative, result about a relation-
ship between geometric objects - e.g. is a given point inside a given circle. It is only in these primitive where
geometric entities are compared or examined. One extension we have implemented provides an implementa-
tion of exact-precision integers (Fortune and van Wyk, 1996) that are used in the geometric primitives where
the number of bits needed to store intermediate results may exceed that supported by the hardware. We use
static analysis of the exact expressions so that the arithmetic operations on exact types can generate a highly
optimized semantically equivalent host language construct to forward to. Because exact-precision types are
used only in geometric primitive expressions and not in variables whose value may be assigned inside of
branch or loop statements, a number of static analyses are possible. For example, the number of bits that
will be required to store the intermediate exact-precision value can be statically determined. Thus the loops
that run over arrays of fixed-precision numbers (representing exact-precision values) have statically known
bounds and can be unrolled thus removing the looping overhead. Since computational geometry programs
spend a considerable amount of time executing these primitives, this provides for a significant speed up.

In our experience, code transformation assisted by semantic analysis is especially expressive. It is the
combination of semantic analysis of attribute grammars and the transformation mechanism implemented by
forwarding the allows us to design highly modular language specifications and thus highly modular extensible
compiler frameworks that allow programmers to easily import expressive and efficient new language features.

References

Baader, F. and Nipkow, T. (1998). Term Rewriting and All That. Cambridge University Press, Cambridge,
U.K.

Fortune, S. and van Wyk, C. J. (1996). Static analysis yields efficient exact integer arithmetic for computa-
tional geometry. ACM Transactions on Graphics, 15(3):223–248.

Knuth, D. E. (1968). Semantics of context-free languages. Mathematical Systems Theory, 2(2):127–145.
Corrections in 5(2):95–96, 1971.

Lacey, D. and de Moor, O. (2001). Imperative program transformation by rewriting. In Proc. 10th Inter-
national Conf. on Compiler Construction, volume 2027 of Lecture Notes in Computer Science, pages
52–68. Springer-Verlag.

Van Wyk, E., de Moor, O., Backhouse, K., and Kwiatkowski, P. (2002). Forwarding in attribute grammars
for modular language design. In Proc. 11th International Conf. on Compiler Construction, volume 2304
of Lecture Notes in Computer Science, pages 128–142. Springer-Verlag.

Visser, E. (2001). Stratego: A language for program transformation based on rewriting strategies. System
description of Stratego 0.5. In Middeldorp, A., editor, Rewriting Techniques and Applications (RTA’01),
volume 2051 of Lecture Notes in Computer Science, pages 357–361. Springer-Verlag.

2

