Chinese Text Project Data wiki |
熒惑[View] [Edit] [History]ctext:895327
Relation | Target | Textual basis |
---|---|---|
type | celestial | |
name | 熒惑 | |
authority-wikidata | Q426315 | |
authority-wikidata | Q111 | |
link-wikipedia_zh | 火星 | |
link-wikipedia_en | Mars |

Fine dust is prevalent across the surface and the atmosphere, being picked up and spread at the low Martian gravity even by the weak wind of the tenuous atmosphere.
The terrain of Mars roughly follows a north-south divide, the Martian dichotomy, with the northern hemisphere mainly consisting of relatively flat, low lying plains, and the southern hemisphere of cratered highlands. Geologically, the planet is fairly active with marsquakes trembling underneath the ground, but also hosts many enormous extinct volcanoes (the tallest is Olympus Mons, tall) and one of the largest canyons in the Solar System (Valles Marineris, long).
Mars has two natural satellites that are small and irregular in shape: Phobos and Deimos.
With a significant axial tilt of 25 degrees Mars experiences seasons, like Earth (which has an axial tilt of 23.5 degrees). A Martian solar year is equal to 1.88 Earth years (687 Earth days), a Martian solar day (sol) is equal to 24.6 hours.
Mars was formed approximately 4.5 billion years ago. During the Noachian period (4.5 to 3.5 billion years ago), it's surface was marked by meteor impacts, valley formation, erosion, the possible presence of water oceans and the loss of its magnetosphere. The Hesperian period (3.5 to 3.3–2.9 billion years ago) was dominated by widespread volcanic activity and flooding that carved immense outflow channels. The Amazonian period, which continues to the present is the currently dominating and remaining influence on geological processes. Due to Mars's geological history, the possibility of past or present life on Mars remains an area of active scientific investigation.
Mars has been observed throughout history and has been an element in many cultures with different associations.
In 1963 the first flight to Mars took place with the en-route lost Mars 1. The first successful exploration of Mars came about in 1965 with Mariner 4. 1971 saw the very first orbit around Mars and anywhere beyond the Moon (Mariner 9), as well as the first (uncontrolled) impact (Mars 2) and landing (Mars 3) on Mars. As of 2023, there are at least 11 active probes orbiting Mars or on the Martian surface. Mars is an often proposed target for future human exploration missions, though no such mission is planned yet.
Read more...: Natural history Physical characteristics Internal structure Surface geology Magnetic characteristics Geography and features Volcanoes Impact topography Tectonic sites Holes and caves Atmosphere Climate Hydrology Past hydrosphere History of observations and findings of water evidence Orbital motion Moons Human observations and exploration Ancient observations Early modern observations Martian "canals" Robotic exploration Habitability and the search for life Human mission proposals In culture
Natural history
Scientists have theorized that during the Solar System's formation, Mars was created as the result of a random process of run-away accretion of material from the protoplanetary disk that orbited the Sun. Mars has many distinctive chemical features caused by its position in the Solar System. Elements with comparatively low boiling points, such as chlorine, phosphorus, and sulfur, are much more common on Mars than on Earth; these elements were probably pushed outward by the young Sun's energetic solar wind.
After the formation of the planets, the inner Solar System may have been subjected to the so-called Late Heavy Bombardment. About 60% of the surface of Mars shows a record of impacts from that era, whereas much of the remaining surface is probably underlain by immense impact basins caused by those events. However, more recent modeling has disputed the existence of the Late Heavy Bombardment. There is evidence of an enormous impact basin in the Northern Hemisphere of Mars, spanning , or roughly four times the size of the Moon's South Pole–Aitken basin, which would be the largest impact basin yet discovered if confirmed. It has been hypothesized that the basin was formed when Mars was struck by a Pluto-sized body about four billion years ago. The event, thought to be the cause of the Martian hemispheric dichotomy, created the smooth Borealis basin that covers 40% of the planet.
A 2023 study shows evidence, based on the orbital inclination of Deimos (a small moon of Mars), that Mars may once have had a ring system 3.5 billion years to 4 billion years ago. This ring system may have been formed from a moon, 20 times more massive than Phobos, orbiting Mars billions of years ago; and Phobos would be a remnant of that ring.
The geological history of Mars can be split into many periods, but the following are the three primary periods:
• Noachian period: Formation of the oldest extant surfaces of Mars, 4.5 to 3.5 billion years ago. Noachian age surfaces are scarred by many large impact craters. The Tharsis bulge, a volcanic upland, is thought to have formed during this period, with extensive flooding by liquid water late in the period. Named after Noachis Terra.
• Hesperian period: 3.5 to between 3.3 and 2.9 billion years ago. The Hesperian period is marked by the formation of extensive lava plains. Named after Hesperia Planum.
• Amazonian period: between 3.3 and 2.9 billion years ago to the present. Amazonian regions have few meteorite impact craters but are otherwise quite varied. Olympus Mons formed during this period, with lava flows elsewhere on Mars. Named after Amazonis Planitia.
Geological activity is still taking place on Mars. The Athabasca Valles is home to sheet-like lava flows created about 200 million years ago. Water flows in the grabens called the Cerberus Fossae occurred less than 20 million years ago, indicating equally recent volcanic intrusions. The Mars Reconnaissance Orbiter has captured images of avalanches.
Physical characteristics
Mars is approximately half the diameter of Earth, with a surface area only slightly less than the total area of Earth's dry land. Mars is less dense than Earth, having about 15% of Earth's volume and 11% of Earth's mass, resulting in about 38% of Earth's surface gravity. Mars is the only presently known example of a desert planet, a rocky planet with a surface akin to that of Earth's deserts. The red-orange appearance of the Martian surface is caused by rust. It can look like butterscotch; other common surface colors include golden, brown, tan, and greenish, depending on the minerals present.
Internal structure
Like Earth, Mars is differentiated into a dense metallic core overlaid by less dense rocky layers. The outermost layer is the crust, which is on average about thick, with a minimum thickness of in Isidis Planitia, and a maximum thickness of in the southern Tharsis plateau. For comparison, Earth's crust averages 27.3 ± 4.8 km in thickness. The most abundant elements in the Martian crust are silicon, oxygen, iron, magnesium, aluminium, calcium, and potassium. Mars is confirmed to be seismically active; in 2019 it was reported that InSight had detected and recorded over 450 marsquakes and related events.
Beneath the crust is a silicate mantle responsible for many of the tectonic and volcanic features on the planet's surface. The upper Martian mantle is a low-velocity zone, where the velocity of seismic waves is lower than surrounding depth intervals. The mantle appears to be rigid down to the depth of about 250 km, giving Mars a very thick lithosphere compared to Earth. Below this the mantle gradually becomes more ductile, and the seismic wave velocity starts to grow again. The Martian mantle does not appear to have a thermally insulating layer analogous to Earth's lower mantle; instead, below 1050 km in depth, it becomes mineralogically similar to Earth's transition zone. At the bottom of the mantle lies a basal liquid silicate layer approximately 150–180 km thick.
Mars's iron and nickel core is completely molten, with no solid inner core. It is around half of Mars's radius, approximately 1650–1675 km, and is enriched in light elements such as sulfur, oxygen, carbon, and hydrogen. The temperature of the core is estimated to be 2000-2400 K, compared to 5400-6230 K for Earth's solid inner core.
Surface geology
Mars is a terrestrial planet with a surface that consists of minerals containing silicon and oxygen, metals, and other elements that typically make up rock. The Martian surface is primarily composed of tholeiitic basalt, although parts are more silica-rich than typical basalt and may be similar to andesitic rocks on Earth, or silica glass. Regions of low albedo suggest concentrations of plagioclase feldspar, with northern low albedo regions displaying higher than normal concentrations of sheet silicates and high-silicon glass. Parts of the southern highlands include detectable amounts of high-calcium pyroxenes. Localized concentrations of hematite and olivine have been found. Much of the surface is deeply covered by finely grained iron(III) oxide dust.
The Phoenix lander returned data showing Martian soil to be slightly alkaline and containing elements such as magnesium, sodium, potassium and chlorine. These nutrients are found in soils on Earth. They are necessary for growth of plants. Experiments performed by the lander showed that the Martian soil has a basic pH of 7.7, and contains 0.6% perchlorate by weight, concentrations that are toxic to humans.
Streaks are common across Mars and new ones appear frequently on steep slopes of craters, troughs, and valleys. The streaks are dark at first and get lighter with age. The streaks can start in a tiny area, then spread out for hundreds of metres. They have been seen to follow the edges of boulders and other obstacles in their path. The commonly accepted hypotheses include that they are dark underlying layers of soil revealed after avalanches of bright dust or dust devils. Several other explanations have been put forward, including those that involve water or even the growth of organisms.
Environmental radiation levels on the surface are on average 0.64 millisieverts of radiation per day, and significantly less than the radiation of 1.84 millisieverts per day or 22 millirads per day during the flight to and from Mars. For comparison the radiation levels in low Earth orbit, where Earth's space stations orbit, are around 0.5 millisieverts of radiation per day. Hellas Planitia has the lowest surface radiation at about 0.342 millisieverts per day, featuring lava tubes southwest of Hadriacus Mons with potentially levels as low as 0.064 millisieverts per day, comparable to radiation levels during flights on Earth.
Magnetic characteristics
Although Mars has no evidence of a structured global magnetic field, observations show that parts of the planet's crust have been magnetized, suggesting that alternating polarity reversals of its dipole field have occurred in the past. This paleomagnetism of magnetically susceptible minerals is similar to the alternating bands found on Earth's ocean floors. One hypothesis, published in 1999 and re-examined in October 2005 (with the help of the Mars Global Surveyor), is that these bands suggest plate tectonic activity on Mars four billion years ago, before the planetary dynamo ceased to function and the planet's magnetic field faded.
Geography and features
Although better remembered for mapping the Moon, Johann Heinrich von Mädler and Wilhelm Beer were the first areographers. They began by establishing that most of Mars's surface features were permanent and by more precisely determining the planet's rotation period. In 1840, Mädler combined ten years of observations and drew the first map of Mars.
Features on Mars are named from a variety of sources. Albedo features are named for classical mythology. Craters larger than roughly 50 km are named for deceased scientists and writers and others who have contributed to the study of Mars. Smaller craters are named for towns and villages of the world with populations of less than 100,000. Large valleys are named for the word "Mars" or "star" in various languages; smaller valleys are named for rivers.
Large albedo features retain many of the older names but are often updated to reflect new knowledge of the nature of the features. For example, Nix Olympica (the snows of Olympus) has become Olympus Mons (Mount Olympus). The surface of Mars as seen from Earth is divided into two kinds of areas, with differing albedo. The paler plains covered with dust and sand rich in reddish iron oxides were once thought of as Martian "continents" and given names like Arabia Terra (land of Arabia) or Amazonis Planitia (Amazonian plain). The dark features were thought to be seas, hence their names Mare Erythraeum, Mare Sirenum and Aurorae Sinus. The largest dark feature seen from Earth is Syrtis Major Planum. The permanent northern polar ice cap is named Planum Boreum. The southern cap is called Planum Australe.
Mars's equator is defined by its rotation, but the ___location of its Prime Meridian was specified, as was Earth's (at Greenwich), by choice of an arbitrary point; Mädler and Beer selected a line for their first maps of Mars in 1830. After the spacecraft Mariner 9 provided extensive imagery of Mars in 1972, a small crater (later called Airy-0), located in the Sinus Meridiani ("Middle Bay" or "Meridian Bay"), was chosen by Merton E. Davies, Harold Masursky, and Gérard de Vaucouleurs for the definition of 0.0° longitude to coincide with the original selection.
Because Mars has no oceans, and hence no "sea level", a zero-elevation surface had to be selected as a reference level; this is called the areoid of Mars, analogous to the terrestrial geoid. Zero altitude was defined by the height at which there is of atmospheric pressure. This pressure corresponds to the triple point of water, and it is about 0.6% of the sea level surface pressure on Earth (0.006 atm).
For mapping purposes, the United States Geological Survey divides the surface of Mars into thirty cartographic quadrangles, each named for a classical albedo feature it contains. In April 2023, The New York Times reported an updated global map of Mars based on images from the Hope spacecraft. A related, but much more detailed, global Mars map was released by NASA on 16 April 2023.
Volcanoes
The vast upland region Tharsis contains several massive volcanoes, which include the shield volcano Olympus Mons. The edifice is over wide. Because the mountain is so large, with complex structure at its edges, giving a definite height to it is difficult. Its local relief, from the foot of the cliffs which form its northwest margin to its peak, is over , a little over twice the height of Mauna Kea as measured from its base on the ocean floor. The total elevation change from the plains of Amazonis Planitia, over to the northwest, to the summit approaches , roughly three times the height of Mount Everest, which in comparison stands at just over . Consequently, Olympus Mons is either the tallest or second-tallest mountain in the Solar System; the only known mountain which might be taller is the Rheasilvia peak on the asteroid Vesta, at .
Impact topography
The dichotomy of Martian topography is striking: northern plains flattened by lava flows contrast with the southern highlands, pitted and cratered by ancient impacts. It is possible that, four billion years ago, the Northern Hemisphere of Mars was struck by an object one-tenth to two-thirds the size of Earth's Moon. If this is the case, the Northern Hemisphere of Mars would be the site of an impact crater in size, or roughly the area of Europe, Asia, and Australia combined, surpassing Utopia Planitia and the Moon's South Pole–Aitken basin as the largest impact crater in the Solar System.
Mars is scarred by 43,000 impact craters with a diameter of or greater. The largest exposed crater is Hellas, which is wide and deep, and is a light albedo feature clearly visible from Earth. There are other notable impact features, such as Argyre, which is around in diameter, and Isidis, which is around in diameter. Due to the smaller mass and size of Mars, the probability of an object colliding with the planet is about half that of Earth. Mars is located closer to the asteroid belt, so it has an increased chance of being struck by materials from that source. Mars is more likely to be struck by short-period comets, i.e., those that lie within the orbit of Jupiter.
Martian craters can have a morphology that suggests the ground became wet after the meteor impact.
Tectonic sites
The large canyon, Valles Marineris (Latin for 'Mariner Valleys, also known as Agathodaemon in the old canal maps), has a length of and a depth of up to . The length of Valles Marineris is equivalent to the length of Europe and extends across one-fifth the circumference of Mars. By comparison, the Grand Canyon on Earth is only long and nearly deep. Valles Marineris was formed due to the swelling of the Tharsis area, which caused the crust in the area of Valles Marineris to collapse. In 2012, it was proposed that Valles Marineris is not just a graben, but a plate boundary where of transverse motion has occurred, making Mars a planet with possibly a two-tectonic plate arrangement.
Holes and caves
Images from the Thermal Emission Imaging System (THEMIS) aboard NASA's Mars Odyssey orbiter have revealed seven possible cave entrances on the flanks of the volcano Arsia Mons. The caves, named after loved ones of their discoverers, are collectively known as the "seven sisters". Cave entrances measure from wide and they are estimated to be at least deep. Because light does not reach the floor of most of the caves, they may extend much deeper than these lower estimates and widen below the surface. "Dena" is the only exception; its floor is visible and was measured to be deep. The interiors of these caverns may be protected from micrometeoroids, UV radiation, solar flares and high energy particles that bombard the planet's surface.
Atmosphere
Mars lost its magnetosphere 4 billion years ago, possibly because of numerous asteroid strikes, so the solar wind interacts directly with the Martian ionosphere, lowering the atmospheric density by stripping away atoms from the outer layer. Both Mars Global Surveyor and Mars Express have detected ionized atmospheric particles trailing off into space behind Mars, and this atmospheric loss is being studied by the MAVEN orbiter. Compared to Earth, the atmosphere of Mars is quite rarefied. Atmospheric pressure on the surface today ranges from a low of on Olympus Mons to over in Hellas Planitia, with a mean pressure at the surface level of . The highest atmospheric density on Mars is equal to that found above Earth's surface. The resulting mean surface pressure is only 0.6% of Earth's . The scale height of the atmosphere is about , which is higher than Earth's , because the surface gravity of Mars is only about 38% of Earth's.
The atmosphere of Mars consists of about 96% carbon dioxide, 1.93% argon and 1.89% nitrogen along with traces of oxygen and water. The atmosphere is quite dusty, containing particulates about 1.5 μm in diameter which give the Martian sky a tawny color when seen from the surface. It may take on a pink hue due to iron oxide particles suspended in it. The concentration of methane in the Martian atmosphere fluctuates from about 0.24 ppb during the northern winter to about 0.65 ppb during the summer. Estimates of its lifetime range from 0.6 to 4 years, so its presence indicates that an active source of the gas must be present. Methane is most likely produced by non-biological process such as serpentinization involving water, carbon dioxide, and the mineral olivine, which is known to be common on Mars, although it could also be produced by Martian life.
Compared to Earth, its higher concentration of atmospheric CO2 and lower surface pressure may be why sound is attenuated more on Mars, where natural sources are rare apart from the wind. Using acoustic recordings collected by the Perseverance rover, researchers concluded that the speed of sound there is approximately 240 m/s for frequencies below 240 Hz, and 250 m/s for those above.
Auroras have been detected on Mars. Because Mars lacks a global magnetic field, the types and distribution of auroras there differ from those on Earth; rather than being mostly restricted to polar regions as is the case on Earth, a Martian aurora can encompass the planet. In September 2017, NASA reported radiation levels on the surface of the planet Mars were temporarily doubled, and were associated with an aurora 25 times brighter than any observed earlier, due to a massive, and unexpected, solar storm in the middle of the month.
Climate
Mars has seasons, alternating between its northern and southern hemispheres, similar to on Earth. Additionally the orbit of Mars has, compared to Earth's, a large eccentricity and approaches perihelion when it is summer in its southern hemisphere and winter in its northern, and aphelion when it is winter in its southern hemisphere and summer in its northern. As a result, the seasons in its southern hemisphere are more extreme and the seasons in its northern are milder than would otherwise be the case. The summer temperatures in the south can be warmer than the equivalent summer temperatures in the north by up to .
Martian surface temperatures vary from lows of about to highs of up to in equatorial summer. The wide range in temperatures is due to the thin atmosphere which cannot store much solar heat, the low atmospheric pressure (about 1% that of the atmosphere of Earth), and the low thermal inertia of Martian soil. The planet is 1.52 times as far from the Sun as Earth, resulting in just 43% of the amount of sunlight.
Mars has the largest dust storms in the Solar System, reaching speeds of over . These can vary from a storm over a small area, to gigantic storms that cover the entire planet. They tend to occur when Mars is closest to the Sun, and have been shown to increase global temperature.
Seasons also produce dry ice covering polar ice caps.
Hydrology
While Mars contains water in larger amounts, most of it is dust covered water ice at the Martian polar ice caps.
The volume of water ice in the south polar ice cap, if melted, would be enough to cover most of the surface of the planet with a depth of .
Water in its liquid form cannot prevail on the surface of Mars due to the low atmospheric pressure on Mars, which is less than 1% that of Earth, only at the lowest of elevations pressure and temperature is high enough for water being able to be liquid for short periods.
Water in the atmosphere is small, but enough to produce larger clouds of water ice and different cases of snow and frost, often mixed with snow of carbon dioxide dry ice.
Past hydrosphere
Landforms visible on Mars strongly suggest that liquid water has existed on the planet's surface. Huge linear swathes of scoured ground, known as outflow channels, cut across the surface in about 25 places. These are thought to be a record of erosion caused by the catastrophic release of water from subsurface aquifers, though some of these structures have been hypothesized to result from the action of glaciers or lava. One of the larger examples, Ma'adim Vallis, is long, much greater than the Grand Canyon, with a width of and a depth of in places. It is thought to have been carved by flowing water early in Mars's history. The youngest of these channels is thought to have formed only a few million years ago.
Elsewhere, particularly on the oldest areas of the Martian surface, finer-scale, dendritic networks of valleys are spread across significant proportions of the landscape. Features of these valleys and their distribution strongly imply that they were carved by runoff resulting from precipitation in early Mars history. Subsurface water flow and groundwater sapping may play important subsidiary roles in some networks, but precipitation was probably the root cause of the incision in almost all cases.
Along craters and canyon walls, there are thousands of features that appear similar to terrestrial gullies. The gullies tend to be in the highlands of the Southern Hemisphere and face the Equator; all are poleward of 30° latitude. A number of authors have suggested that their formation process involves liquid water, probably from melting ice, although others have argued for formation mechanisms involving carbon dioxide frost or the movement of dry dust. No partially degraded gullies have formed by weathering and no superimposed impact craters have been observed, indicating that these are young features, possibly still active. Other geological features, such as deltas and alluvial fans preserved in craters, are further evidence for warmer, wetter conditions at an interval or intervals in earlier Mars history. Such conditions necessarily require the widespread presence of crater lakes across a large proportion of the surface, for which there is independent mineralogical, sedimentological and geomorphological evidence. Further evidence that liquid water once existed on the surface of Mars comes from the detection of specific minerals such as hematite and goethite, both of which sometimes form in the presence of water.
History of observations and findings of water evidence
In 2004, Opportunity detected the mineral jarosite. This forms only in the presence of acidic water, showing that water once existed on Mars. The Spirit rover found concentrated deposits of silica in 2007 that indicated wet conditions in the past, and in December 2011, the mineral gypsum, which also forms in the presence of water, was found on the surface by NASA's Mars rover Opportunity. It is estimated that the amount of water in the upper mantle of Mars, represented by hydroxyl ions contained within Martian minerals, is equal to or greater than that of Earth at 50–300 parts per million of water, which is enough to cover the entire planet to a depth of .
On 18 March 2013, NASA reported evidence from instruments on the Curiosity rover of mineral hydration, likely hydrated calcium sulfate, in several rock samples including the broken fragments of "Tintina" rock and "Sutton Inlier" rock as well as in veins and nodules in other rocks like "Knorr" rock and "Wernicke" rock. Analysis using the rover's DAN instrument provided evidence of subsurface water, amounting to as much as 4% water content, down to a depth of , during the rover's traverse from the Bradbury Landing site to the Yellowknife Bay area in the Glenelg terrain. In September 2015, NASA announced that they had found strong evidence of hydrated brine flows in recurring slope lineae, based on spectrometer readings of the darkened areas of slopes. These streaks flow downhill in Martian summer, when the temperature is above −23 °C, and freeze at lower temperatures. These observations supported earlier hypotheses, based on timing of formation and their rate of growth, that these dark streaks resulted from water flowing just below the surface. However, later work suggested that the lineae may be dry, granular flows instead, with at most a limited role for water in initiating the process. A definitive conclusion about the presence, extent, and role of liquid water on the Martian surface remains elusive.
Researchers suspect much of the low northern plains of the planet were covered with an ocean hundreds of meters deep, though this theory remains controversial. In March 2015, scientists stated that such an ocean might have been the size of Earth's Arctic Ocean. This finding was derived from the ratio of protium to deuterium in the modern Martian atmosphere compared to that ratio on Earth. The amount of Martian deuterium (D/H = 9.3 ± 1.7 10−4) is five to seven times the amount on Earth (D/H = 1.56 10−4), suggesting that ancient Mars had significantly higher levels of water. Results from the Curiosity rover had previously found a high ratio of deuterium in Gale Crater, though not significantly high enough to suggest the former presence of an ocean. Other scientists caution that these results have not been confirmed, and point out that Martian climate models have not yet shown that the planet was warm enough in the past to support bodies of liquid water. Near the northern polar cap is the wide Korolev Crater, which the Mars Express orbiter found to be filled with approximately of water ice.
In November 2016, NASA reported finding a large amount of underground ice in the Utopia Planitia region. The volume of water detected has been estimated to be equivalent to the volume of water in Lake Superior (which is 12,100 cubic kilometers). During observations from 2018 through 2021, the ExoMars Trace Gas Orbiter spotted indications of water, probably subsurface ice, in the Valles Marineris canyon system.
Orbital motion
Mars's average distance from the Sun is roughly , and its orbital period is 687 (Earth) days. The solar day (or sol) on Mars is only slightly longer than an Earth day: 24 hours, 39 minutes, and 35.244 seconds. A Martian year is equal to 1.8809 Earth years, or 1 year, 320 days, and 18.2 hours. The gravitational potential difference and thus the delta-v needed to transfer between Mars and Earth is the second lowest for Earth.
The axial tilt of Mars is 25.19° relative to its orbital plane, which is similar to the axial tilt of Earth. As a result, Mars has seasons like Earth, though on Mars they are nearly twice as long because its orbital period is that much longer. In the present day, the orientation of the north pole of Mars is close to the star Deneb.
Mars has a relatively pronounced orbital eccentricity of about 0.09; of the seven other planets in the Solar System, only Mercury has a larger orbital eccentricity. It is known that in the past, Mars has had a much more circular orbit. At one point, 1.35 million Earth years ago, Mars had an eccentricity of roughly 0.002, much less than that of Earth today. Mars's cycle of eccentricity is 96,000 Earth years compared to Earth's cycle of 100,000 years.
Mars has its closest approach to Earth (opposition) in a synodic period of 779.94 days. It should not be confused with Mars conjunction, where the Earth and Mars are at opposite sides of the Solar System and form a straight line crossing the Sun. The average time between the successive oppositions of Mars, its synodic period, is 780 days; but the number of days between successive oppositions can range from 764 to 812. The distance at close approach varies between about due to the planets' elliptical orbits, which causes comparable variation in angular size. At their furthest Mars and Earth can be as far as apart. Mars comes into opposition from Earth every 2.1 years. The planets come into opposition near Mars's perihelion in 2003, 2018 and 2035, with the 2020 and 2033 events being particularly close to perihelic opposition.
The mean apparent magnitude of Mars is +0.71 with a standard deviation of 1.05. Because the orbit of Mars is eccentric, the magnitude at opposition from the Sun can range from about −3.0 to −1.4. The minimum brightness is magnitude +1.86 when the planet is near aphelion and in conjunction with the Sun. At its brightest, Mars (along with Jupiter) is second only to Venus in apparent brightness. Mars usually appears distinctly yellow, orange, or red. When farthest away from Earth, it is more than seven times farther away than when it is closest. Mars is usually close enough for particularly good viewing once or twice at 15-year or 17-year intervals. Optical ground-based telescopes are typically limited to resolving features about across when Earth and Mars are closest because of Earth's atmosphere.
As Mars approaches opposition, it begins a period of retrograde motion, which means it will appear to move backwards in a looping curve with respect to the background stars. This retrograde motion lasts for about 72 days, and Mars reaches its peak apparent brightness in the middle of this interval.
Moons
Mars has two relatively small (compared to Earth's) natural moons, Phobos (about in diameter) and Deimos (about in diameter), which orbit close to the planet. The origin of both moons is unclear, although a popular theory states that they were asteroids captured into Martian orbit.
Both satellites were discovered in 1877 by Asaph Hall and were named after the characters Phobos (the deity of panic and fear) and Deimos (the deity of terror and dread), twins from Greek mythology who accompanied their father Ares, god of war, into battle. Mars was the Roman equivalent to Ares. In modern Greek, the planet retains its ancient name Ares (Aris: Άρης).
From the surface of Mars, the motions of Phobos and Deimos appear different from that of the Earth's satellite, the Moon. Phobos rises in the west, sets in the east, and rises again in just 11 hours. Deimos, being only just outside synchronous orbit – where the orbital period would match the planet's period of rotation – rises as expected in the east, but slowly. Because the orbit of Phobos is below a synchronous altitude, tidal forces from Mars are gradually lowering its orbit. In about 50 million years, it could either crash into Mars's surface or break up into a ring structure around the planet.
The origin of the two satellites is not well understood. Their low albedo and carbonaceous chondrite composition have been regarded as similar to asteroids, supporting a capture theory. The unstable orbit of Phobos would seem to point toward a relatively recent capture. But both have circular orbits near the equator, which is unusual for captured objects, and the required capture dynamics are complex. Accretion early in the history of Mars is plausible, but would not account for a composition resembling asteroids rather than Mars itself, if that is confirmed. Mars may have yet-undiscovered moons, smaller than in diameter, and a dust ring is predicted to exist between Phobos and Deimos.
A third possibility for their origin as satellites of Mars is the involvement of a third body or a type of impact disruption. More-recent lines of evidence for Phobos having a highly porous interior, and suggesting a composition containing mainly phyllosilicates and other minerals known from Mars, point toward an origin of Phobos from material ejected by an impact on Mars that reaccreted in Martian orbit, similar to the prevailing theory for the origin of Earth's satellite. Although the visible and near-infrared (VNIR) spectra of the moons of Mars resemble those of outer-belt asteroids, the thermal infrared spectra of Phobos are reported to be inconsistent with chondrites of any class. It is also possible that Phobos and Deimos were fragments of an older moon, formed by debris from a large impact on Mars, and then destroyed by a more recent impact upon the satellite.
Human observations and exploration
The history of observations of Mars is marked by oppositions of Mars when the planet is closest to Earth and hence is most easily visible, which occur every couple of years. Even more notable are the perihelic oppositions of Mars, which are distinguished because Mars is close to perihelion, making it even closer to Earth.
Ancient observations
The ancient Sumerians named Mars Nergal, the god of war and plague. During Sumerian times, Nergal was a minor deity of little significance, but, during later times, his main cult center was the city of Nineveh. In Mesopotamian texts, Mars is referred to as the "star of judgement of the fate of the dead". The existence of Mars as a wandering object in the night sky was also recorded by the ancient Egyptian astronomers and, by 1534 BCE, they were familiar with the retrograde motion of the planet. By the period of the Neo-Babylonian Empire, the Babylonian astronomers were making regular records of the positions of the planets and systematic observations of their behavior. For Mars, they knew that the planet made 37 synodic periods, or 42 circuits of the zodiac, every 79 years. They invented arithmetic methods for making minor corrections to the predicted positions of the planets. In Ancient Greece, the planet was known as . Commonly, the Greek name for the planet now referred to as Mars, was Ares. It was the Romans who named the planet Mars, for their god of war, often represented by the sword and shield of the planet's namesake.
In the fourth century BCE, Aristotle noted that Mars disappeared behind the Moon during an occultation, indicating that the planet was farther away. Ptolemy, a Greek living in Alexandria, attempted to address the problem of the orbital motion of Mars. Ptolemy's model and his collective work on astronomy was presented in the multi-volume collection later called the Almagest (from the Arabic for "greatest"), which became the authoritative treatise on Western astronomy for the next fourteen centuries. Literature from ancient China confirms that Mars was known by Chinese astronomers by no later than the fourth century BCE. In the East Asian cultures, Mars is traditionally referred to as the "fire star" based on the Wuxing system.
Early modern observations
In 1609 Johannes Kepler published a 10 year study of Martian orbit, using the diurnal parallax of Mars, measured by Tycho Brahe, to make a preliminary calculation of the relative distance to the planet. From Brahe's observations of Mars, Kepler deduced that the planet orbited the Sun not in a circle, but in an ellipse. Moreover, Kepler showed that Mars sped up as it approached the Sun and slowed down as it moved farther away, in a manner that later physicists would explain as a consequence of the conservation of angular momentum.
In 1610 the first use of a telescope for astronomical observation, including Mars, was performed by Italian astronomer Galileo Galilei. With the telescope the diurnal parallax of Mars was again measured in an effort to determine the Sun-Earth distance. This was first performed by Giovanni Domenico Cassini in 1672. The early parallax measurements were hampered by the quality of the instruments. The only occultation of Mars by Venus observed was that of 13 October 1590, seen by Michael Maestlin at Heidelberg.
Martian "canals"
By the 19th century, the resolution of telescopes reached a level sufficient for surface features to be identified. On 5 September 1877, a perihelic opposition to Mars occurred. The Italian astronomer Giovanni Schiaparelli used a telescope in Milan to help produce the first detailed map of Mars. These maps notably contained features he called canali, which, with the possible exception of the natural canyon Valles Marineris, were later shown to be an optical illusion. These canali were supposedly long, straight lines on the surface of Mars, to which he gave names of famous rivers on Earth. His term, which means "channels" or "grooves", was popularly mistranslated in English as "canals".
Influenced by the observations, the orientalist Percival Lowell founded an observatory which had 30- and 45-centimetre (12- and 18-in) telescopes. The observatory was used for the exploration of Mars during the last good opportunity in 1894, and the following less favorable oppositions. He published several books on Mars and life on the planet, which had a great influence on the public. The canali were independently observed by other astronomers, like Henri Joseph Perrotin and Louis Thollon in Nice, using one of the largest telescopes of that time.
The seasonal changes (consisting of the diminishing of the polar caps and the dark areas formed during Martian summers) in combination with the canals led to speculation about life on Mars, and it was a long-held belief that Mars contained vast seas and vegetation. As bigger telescopes were used, fewer long, straight canali were observed. During observations in 1909 by Antoniadi with an telescope, irregular patterns were observed, but no canali were seen.
Robotic exploration
Dozens of crewless spacecraft, including orbiters, landers, and rovers, have been sent to Mars by the Soviet Union, the United States, Europe, India, the United Arab Emirates, and China to study the planet's surface, climate, and geology. NASA's Mariner 4 was the first spacecraft to visit Mars; launched on 28 November 1964, it made its closest approach to the planet on 15 July 1965. Mariner 4 detected the weak Martian radiation belt, measured at about 0.1% that of Earth, and captured the first images of another planet from deep space.
Once spacecraft visited the planet during NASA's Mariner missions in the 1960s and 1970s, many previous concepts of Mars were radically broken. After the results of the Viking life-detection experiments, the hypothesis of a dead planet was generally accepted. The data from Mariner 9 and Viking allowed better maps of Mars to be made, and the Mars Global Surveyor mission, which launched in 1996 and operated until late 2006, produced complete, extremely detailed maps of the Martian topography, magnetic field and surface minerals. These maps are available online at websites including Google Mars. Both the Mars Reconnaissance Orbiter and Mars Express continued exploring with new instruments and supporting lander missions. NASA provides two online tools: Mars Trek, which provides visualizations of the planet using data from 50 years of exploration, and Experience Curiosity, which simulates traveling on Mars in 3-D with Curiosity.
, Mars is host to ten functioning spacecraft. Eight are in orbit: 2001 Mars Odyssey, Mars Express, Mars Reconnaissance Orbiter, MAVEN, ExoMars Trace Gas Orbiter, the Hope orbiter, and the Tianwen-1 orbiter. Another two are on the surface: the Mars Science Laboratory Curiosity rover and the Perseverance rover.
Planned missions to Mars include:
• NASA's EscaPADE spacecraft, planned to launch in 2025.
• The Rosalind Franklin rover mission, designed to search for evidence of past life, which was intended to be launched in 2018 but has been repeatedly delayed, with a launch date pushed to 2028 at the earliest. The project was restarted in 2024 with additional funding.
• A current concept for a joint NASA-ESA mission to return samples from Mars would launch in 2026.
• China's Tianwen-3, a sample return mission, scheduled to launch in 2030.
, debris from these types of missions has reached over seven tons. Most of it consists of crashed and inactive spacecraft as well as discarded components.
In April 2024, NASA selected several companies to begin studies on providing commercial services to further enable robotic science on Mars. Key areas include establishing telecommunications, payload delivery and surface imaging.
Habitability and the search for life
During the late 19th century, it was widely accepted in the astronomical community that Mars had life-supporting qualities, including the presence of oxygen and water. However, in 1894 W. W. Campbell at Lick Observatory observed the planet and found that "if water vapor or oxygen occur in the atmosphere of Mars it is in quantities too small to be detected by spectroscopes then available". That observation contradicted many of the measurements of the time and was not widely accepted. Campbell and V. M. Slipher repeated the study in 1909 using better instruments, but with the same results. It was not until the findings were confirmed by W. S. Adams in 1925 that the myth of the Earth-like habitability of Mars was finally broken. However, even in the 1960s, articles were published on Martian biology, putting aside explanations other than life for the seasonal changes on Mars.
The current understanding of planetary habitability – the ability of a world to develop environmental conditions favorable to the emergence of life – favors planets that have liquid water on their surface. Most often this requires the orbit of a planet to lie within the habitable zone, which for the Sun is estimated to extend from within the orbit of Earth to about that of Mars. During perihelion, Mars dips inside this region, but Mars's thin (low-pressure) atmosphere prevents liquid water from existing over large regions for extended periods. The past flow of liquid water demonstrates the planet's potential for habitability. Recent evidence has suggested that any water on the Martian surface may have been too salty and acidic to support regular terrestrial life.
The environmental conditions on Mars are a challenge to sustaining organic life: the planet has little heat transfer across its surface, it has poor insulation against bombardment by the solar wind due to the absence of a magnetosphere and has insufficient atmospheric pressure to retain water in a liquid form (water instead sublimes to a gaseous state). Mars is nearly, or perhaps totally, geologically dead; the end of volcanic activity has apparently stopped the recycling of chemicals and minerals between the surface and interior of the planet.
Evidence suggests that the planet was once significantly more habitable than it is today, but whether living organisms ever existed there remains unknown. The Viking probes of the mid-1970s carried experiments designed to detect microorganisms in Martian soil at their respective landing sites and had positive results, including a temporary increase in production on exposure to water and nutrients. This sign of life was later disputed by scientists, resulting in a continuing debate, with NASA scientist Gilbert Levin asserting that Viking may have found life. A 2014 analysis of Martian meteorite EETA79001 found chlorate, perchlorate, and nitrate ions in sufficiently high concentrations to suggest that they are widespread on Mars. UV and X-ray radiation would turn chlorate and perchlorate ions into other, highly reactive oxychlorines, indicating that any organic molecules would have to be buried under the surface to survive.
Small quantities of methane and formaldehyde detected by Mars orbiters are both claimed to be possible evidence for life, as these chemical compounds would quickly break down in the Martian atmosphere. Alternatively, these compounds may instead be replenished by volcanic or other geological means, such as serpentinite. Impact glass, formed by the impact of meteors, which on Earth can preserve signs of life, has also been found on the surface of the impact craters on Mars. Likewise, the glass in impact craters on Mars could have preserved signs of life, if life existed at the site.
The Cheyava Falls rock discovered on Mars in June 2024 has been designated by NASA as a "potential biosignature" and was core sampled by the Perseverance rover for possible return to Earth and further examination. Although highly intriguing, no definitive final determination on a biological or abiotic origin of this rock can be made with the data currently available.
Human mission proposals
Several plans for a human mission to Mars have been proposed throughout the 20th and 21st centuries, but none have come to fruition. The NASA Authorization Act of 2017 directed NASA to study the feasibility of a crewed Mars mission in the early 2030s; the resulting report eventually concluded that this would be unfeasible. In addition, in 2021, China was planning to send a crewed Mars mission in 2033. Privately held companies such as SpaceX have also proposed plans to send humans to Mars, with the eventual goal to settle on the planet. As of 2024, SpaceX has proceeded with the development of the Starship launch vehicle with the goal of Mars colonization. In plans shared with the company in April 2024, Elon Musk envisions the beginning of a Mars colony within the next twenty years. This enabled by the planned mass manufacturing of Starship and initially sustained by resupply from Earth, and in situ resource utilization on Mars, until the Mars colony reaches full self sustainability. Any future human mission to Mars will likely take place within the optimal Mars launch window, which occurs every 26 months. The moon Phobos has been proposed as an anchor point for a space elevator. Besides national space agencies and space companies, there are groups such as the Mars Society and The Planetary Society that advocates for human missions to Mars.
In culture
Mars is named after the Roman god of war (Greek Ares), but was also associated with the demi-god Heracles (Roman Hercules) by ancient Greek astronomers, as detailed by Aristotle. This association between Mars and war dates back at least to Babylonian astronomy, in which the planet was named for the god Nergal, deity of war and destruction. It persisted into modern times, as exemplified by Gustav Holst's orchestral suite The Planets, whose famous first movement labels Mars "the bringer of war". The planet's symbol, a circle with a spear pointing out to the upper right, is also used as a symbol for the male gender. The symbol dates from at least the 11th century, though a possible predecessor has been found in the Greek Oxyrhynchus Papyri.
The idea that Mars was populated by intelligent Martians became widespread in the late 19th century. Schiaparelli's "canali" observations combined with Percival Lowell's books on the subject put forward the standard notion of a planet that was a drying, cooling, dying world with ancient civilizations constructing irrigation works. Many other observations and proclamations by notable personalities added to what has been termed "Mars Fever". High-resolution mapping of the surface of Mars revealed no artifacts of habitation, but pseudoscientific speculation about intelligent life on Mars still continues. Reminiscent of the canali observations, these speculations are based on small scale features perceived in the spacecraft images, such as "pyramids" and the "Face on Mars". In his book Cosmos, planetary astronomer Carl Sagan wrote: "Mars has become a kind of mythic arena onto which we have projected our Earthly hopes and fears."
The depiction of Mars in fiction has been stimulated by its dramatic red color and by nineteenth-century scientific speculations that its surface conditions might support not just life but intelligent life. This gave way to many science fiction stories involving these concepts, such as H. G. Wells's The War of the Worlds, in which Martians seek to escape their dying planet by invading Earth; Ray Bradbury's The Martian Chronicles, in which human explorers accidentally destroy a Martian civilization; as well as Edgar Rice Burroughs's series Barsoom, C. S. Lewis's novel Out of the Silent Planet (1938), and a number of Robert A. Heinlein stories before the mid-sixties. Since then, depictions of Martians have also extended to animation. A comic figure of an intelligent Martian, Marvin the Martian, appeared in Haredevil Hare (1948) as a character in the Looney Tunes animated cartoons of Warner Brothers, and has continued as part of popular culture to the present. After the Mariner and Viking spacecraft had returned pictures of Mars as a lifeless and canal-less world, these ideas about Mars were abandoned; for many science-fiction authors, the new discoveries initially seemed like a constraint, but eventually the post-Viking knowledge of Mars became itself a source of inspiration for works like Kim Stanley Robinson's Mars trilogy.

火星有兩個天然衛星:火衛一和火衛二,形狀不規則,可能是其捕獲的小行星。根據探測到的證據,火星兩極有冰冠覆蓋,亦觀察到季節性的水氣及類似地下水湧出的現象,而過往的火星亦可能被大面積的海洋、湖泊及河流覆蓋。而研究發現,火星目前仍有液態水存在。
由於火星位於太陽系的宜居帶,同時有更多證據證明火星曾擁有類似地球的環境,與及豐富的資源,故此火星成為各國研究的重點,其中美國及中國已有載人登陸火星的計劃,未來將在火星建立基地。
Read more...: 命名 物理性質 內部結構 地理特徵 地質 地形 火山 隕石坑 板塊邊界 洞穴 大氣 天氣和氣候 水文 運動規律 衛星 來源 發現者 命名 觀測探測 古代 20世紀 21世紀 人類登陸 火星生命 相關文化及網絡用語 註釋
命名
• 古中國:取其「熒熒如火、亮度與位置變化甚大使人迷惑」之意,命名「熒惑」。《尚書·舜典》記載:「在璿璣玉衡以齊七政。」孔穎達疏:「七政,其政有七,於璣衡察之,必在天者,知七政謂日月與五星也。木曰歲星,火曰熒惑星,土曰鎮星,金曰太白星,水曰辰星。」據說,古人觀察熒惑呈赤色,赤色於「五行」屬火,而命名為「火星」。
• 古希臘:因其火紅之色而取名為「Ares」(音:阿瑞斯),源自希臘神話的戰神,天神宙斯的兒子阿瑞斯(希臘語:)。
• 古羅馬:因其火紅之色而取名為「Mars」(音:馬爾斯),源自羅馬神話的戰神瑪爾斯(拉丁語:)。
物理性質
以直徑、質量、表面重力來說,火星約介於地球和月球中間:火星直徑約為地球的一半、月球的兩倍,質量約為地球的九分之一、月球的九倍,表面重力約為地球的38%、月球的2.4倍。火星體積約為地球的15%,質量約為11%,表面積略小于地球陸地面積,密度則比其他三顆類地行星還要小很多。2012年8月,加利福尼亞大學洛杉磯分校的教授尹安在分析了100張來自火星勘測軌道飛行器的衛星圖片後發現,火星有類似地球主要板塊劃分的構造特點。
長期觀測火星發現,南半球地勢比北半球高,北極盆地顯示有過大撞擊,推論約45億年前遭冥王星大小天體撞擊之後,不但形成火衛一和火衛二,亦逼使內核熱能散溢出上地幔、內部攪拌逐漸停止,無法以發電機原理持續對流生成磁場。由於火星比地球小,相對表面積與體積成反比而較大,因此火星核心也冷卻得比地球的快,地質活動趨緩,磁場和板塊運動消逝,太陽風帶走大氣變薄導致氣壓偏低,而造成液態水在低溫就會沸騰、無法穩定存在。
內部結構
火星的地殼平均厚約50公里,最厚可達125公里。火星的地幔由硅酸鹽組成,包裹著半徑約為1300至2400公里,可能由液態鐵及少量硫組成的地核。
地理特徵
地質
火星基本上是沙漠行星,地表沙丘、礫石遍佈,沒有穩定的液態水體。二氧化碳為主的大氣既稀薄又寒冷,沙塵懸浮其中,每年常有塵暴發生。與地球相比,地質活動不活躍。
火星地表地貌大部份於遠古較活躍的時期形成,充滿撞擊坑,有密佈的隕石坑、火山與峽谷。奧林帕斯山是太陽系最高的山,水手號峽谷是太陽系最大的峽谷。另一個獨特的特徵是南北半球的明顯差別:南方是古老、充滿隕石坑的高地,北方則是較年輕的平原,兩極皆有主要以水冰組成的極冠,而上覆的乾冰會隨季節消長。
基於撞擊坑密度的撞擊坑計數法可判別出其地表年齡:撞擊坑大而密集處較老,反之則年輕,進而將地質年代分為四個階段:前諾亞紀、諾亞紀、赫斯珀利亞紀和亞馬遜紀。前諾亞紀沒有留下實質地表,此時地形南北差異形成,有全球性磁層;諾亞紀有大量隕石撞擊,火山活動旺盛,可能有溫暖潮濕的大氣、河川和海洋,侵蝕旺盛,但到末期這些活動已減弱很多;赫斯珀利亞紀,火山活動仍然繼續;亞馬遜紀則是大氣稀薄乾燥,以冰為主要活動,如極冠、冰凍層、冰河,並有週期性變遷,溝壑也是這時期形成,火山活動趨緩並集中在塔爾西斯與埃律西昂。
現今火星風成地形遍佈,如吹蝕、磨蝕等風蝕作用,和沙塵遇地形阻礙而填積、侵積等風積作用。(名詞解釋:)前者形成如廣泛分布於梅杜莎槽溝層的風蝕脊,後者則如大瑟提斯高原上撞擊坑下風處的沙塵堆積,和撞擊坑中常見的沙丘。
地形
火星和地球一樣擁有多樣的地形,有高山、平原和峽谷。南北半球的地形有著強烈的對比:北方是被熔岩填平的低原,南方則是充滿撞擊坑的古老高地,而兩者之間以明顯的斜坡分隔;火山地形穿插其中,眾多峽谷分布各地,南北極有以水冰與乾冰組成的極冠,而風成沙丘廣布整個星球。隨著衛星拍攝的照片越來越多,更發現很多的地形景觀。
20世紀早期,地面以無線電波測量火星地形。1976年海盜號進行的地形測量,發現了峽谷和南北半球的巨大差異,而衍生出北方平原本是海洋的假說。火星全球勘測者自1999年起以雷射進行更精確的地形測量,得出目前使用的全球地形圖,以火星大地水準面(Areoid)為基準,最高點在奧林帕斯山,高21,229公尺;最低點在希臘平原,低於基準8,200公尺。現在很多探測器,如火星勘察衛星、火星快車號和火星探測漫遊者會運用航照圖的地形判別方法,以視差法來測量區域地形,並製成高解析度立體照片。此外,火星的經度坐標採用東經0至360度,而非地球的東西經各180度。
火山
塔爾西斯高原擁有許多座大型火山,其中包括一座盾狀火山——奧林帕斯山。它的寬度超過600千米,高度超過21千米,其高度達到了茂納凱亞火山的兩倍,與灶神星雷亞希爾維亞盆地的中央山丘高度相當,是太陽系中最高的山峰之一。
隕石坑
人類已在火星上發現了超過4.3萬個直徑大于5公里的隕石坑。其中,最大的隕石坑是希臘平原,寬約2300公里,深約7公里,是一個清晰的反照率特徵。同時,火星還有其它大型隕石坑,如阿耳古瑞平原(寬約1800公里)及伊希斯平原(寬約1500公里)。火星隕石坑的形態表明,在隕石撞擊後,其地面曾經變得濕潤。
板塊邊界
火星上的水手谷長約4000公里(與歐洲相當),深度約7公里。它的形成可能是由於塔爾西斯高原的擴大而導致的地殼塌陷。在2012年,科學家提出水手谷並不是一個地塹,而是一個已漂移了150公里的板塊的邊界。
洞穴
來自火星奧德賽號上熱輻射成像系統(THEMIS)的影像顯示阿爾西亞山北坡有七個可能的深洞,照片中光線無法抵達底部,推測底部可能更深、更寬,可能免受微隕星、紫外線、太陽閃焰和其他高能粒子的侵害,可能是未來尋找液態水或生命痕跡的可行地點。但後來火星勘察衛星的更高解析度HiRISE影像部分推翻了之前猜測,認為只是光線角度造成深不見底的樣子。
大氣
火星大氣層相對較薄,平均地表氣壓只有6百帕,約為地球表面氣壓的0.6%,相當於地球表面算起35公里高的氣壓,如此低的氣壓使聲音傳播的距離只有在地球上的1.5%。隨著季節的變化,火星氣壓變化可達20%。火星大氣層按高度可分為低層大氣、中層大氣、上層大氣和外氣層。其中低層大氣由於氣懸微塵與地表的熱,這部份相對溫暖;中層大氣存在有高速氣流;上層大氣(或熱氣層)溫度很高,大氣分子也不再像下層那樣分布均勻;外氣層高度在200公里以上,大氣漸漸過渡到太空,無明顯外層邊界。火星大氣成分為95%的二氧化碳,3%的氮氣,1.6%氬氣,很少的氧氣、水氣等,亦充滿著很多吸收藍光的懸浮塵埃,使天空成黃褐色。2003年火星大衝時地面望遠鏡在大氣中發現了甲烷;2004年3月,火星奧德賽號確認了這一發現。由於甲烷易被紫外線分解,存在甲烷表示現在或者最近幾百年內在火星上存在製造甲烷的來源,火山作用、地質作用、彗星或小行星撞擊甚至生物來源如甲烷古菌等都有可能。2013年9月19日,根據從好奇號得到的進一步測量數據,NASA科學家報告,並沒有偵測到大氣甲烷(atmospheric methan)存在跡象,因此總結甲烷微生物活性概率很低,可能不存在生命。但是,很多微生物並不會排出任何甲烷,仍舊可能在火星發現這些不會排出任何甲烷的微生物。
火星大氣環流主要為單胞環流,由赤道相對熱空氣上升,漂至極區下沉,再沿地面回到赤道。另外,在火星的北半球,極冠的二氧化碳昇華進入大氣,使氣壓升高;而南半球由於二氧化碳凝華,氣壓下降。由於進出大氣的二氧化碳量高達25%,造成南北壓力差,空氣便傾向由高壓的夏半球流向低壓的冬半球,形成另一依季節而變向的環流。因此火星的天氣系統一般為全球性的,例如塵暴。
天氣和氣候
由于火星的自轉軸傾角與地球的相當,火星的氣候是在太陽系中與地球最相似的,但一個季節的時間比地球的要長。火星離太陽較遠,表面接收到的陽光僅有地球的43%,且大氣層較薄,無法存儲過多熱量,因此火星表面的溫差較大(-110 °C~35 °C)。
火星天氣重覆次數較高,比地球的容易預測。如果一個氣象事件在一年的特定時間中發生,可提供的資料(相當稀疏)指出,那個事件很可能在下一年幾乎同一個位置再發生一次,誤差最多一個星期。
2008年9月29日,鳳凰號拍下了降雪事件,是在接近鳳凰號登陸地點附近海姆達爾撞擊坑之上,為高4.5公里的幡狀雲降雪。這次降雪在到達火星表面時就已蒸發。火星上的風速要超過地球100倍。
水文
火星地表遍佈著流水的遺跡,有些是洪水刻畫而成,有些則是降雨或地下水流動而形成,但多半年代久遠。沖蝕溝則是另一類規模較小的地形,但形成年代十分年輕,常分布於撞擊坑壁,型態多樣。關於其成因有兩派說法,一派認為是由流動的水造成,另一方則認為是凹處累積的乾冰促使了鬆軟物質滑動。
火星南北極有明顯的極冠,曾被認為是由乾冰組成,但實際上絕大部分為水冰,只有表面一層為乾冰。這層乾冰在北極約1公尺厚,在南極則約8公尺厚,是冬季時凝華而成,到夏季則再度昇華進入大氣,不過南極的乾冰並不會完全昇華。夏季仍存在的部分稱為永久極冠,而整體構造稱做極地層狀沉積(Polar Layered Deposits),和地球南極洲與格陵蘭冰層一樣為一層層的沉積構造。北極冠寬達1,100公里,厚達2公里,體積82.1萬立方公里;南極冠寬達1,400公里,最厚達3.7公里,體積約1.6百萬立方公里。兩極冰冠皆有獨特的螺旋狀凹谷,推論主要是由光照與夏季接近昇華點的溫度使溝槽兩側水冰發生差異融解和凝結而逐漸形成的。
2011年由火星勘察衛星的淺地層雷達發現南極冠有部分原本認為是水冰的地層其實是乾冰,所含二氧化碳量相當於大氣含量的80%,這比以往認為的要多很多。根據此的模擬結果,十萬年一週期的氣候變遷中藉由乾冰昇華、凝結,大氣總質量的變化幅度會達數倍。由這些乾冰沉積上方地表的下陷與裂隙判斷,乾冰正在慢慢昇華。
自海盜號即發現,火星北半球中緯度有幾處峽谷底含有條紋流動狀的地表特徵,但不確定是富含冰的山崩、含冰土的流動或是塵礫覆蓋的冰河。但根據更新任務的資料與比對地球的相關地形,支持這些是冰河,且推測是自轉軸傾角較大時的氣候狀態下所累積的。
由火星奧德賽號X射線光譜儀的中子偵測器得知,自極區延伸至緯度約60°的地方表層一公尺的土壤含冰量超過60%,推測有更大量的水凍在厚厚的地下冰層(cryosphere)。
另外一個關於火星上曾存在液態水的證據,就是發現特定礦物,如赤鐵礦和針鐵礦,而這兩者都需在有水環境才能形成。
對於在火星上有冰存在的直接證據在2008年6月20日被鳳凰號發現,鳳凰號在火星上挖掘發現了八粒白色的物體,當時研究人員揣測這些物體不是鹽(在火星有發現鹽礦)就是冰,而四天後這些白粒就憑空消失,因此這些白粒一定昇華了,鹽不會有這種現象。2008年7月31日,美國航空航天局科學家宣布,鳳凰號火星探測器在火星上加熱土壤樣本時鑑別出有水蒸氣產生,從而最終確認火星上有水存在。
2013年9月26日,美國航空航天局科學家報告,火星探測車好奇號發現火星土壤含有豐富水分,重量約佔1.5%~3%,顯示火星有足夠的水資源供給未來移民使用。
2015年9月28日,美國航空航天局宣佈,在火星上發現液態的鹽水。根據火星勘測軌道飛行器配備的光譜儀獲得的數據,研究人員在火星的斜坡上發現了水合礦物。這些暗色條紋表明火星地表隨時間變化有流水存在。在較溫暖的季節,這些線條的顏色變得更深,表明水流在斜坡上出現,在較冷的季節,這些地表特徵變淺。在火星的部分地區,最高溫度可以達到攝氏零下23度,此時深色線條最明顯。
2018年7月25日,據意大利媒體報道,該國科學家在火星上首度發現一個地下液態水湖。該研究稱,「火星地下及電離層高級探測雷達」在火星南極冰層下1.5千米處發現一個大型液態水湖,裡面含有鹽。湖的直徑約為20千米,溫度至少為零下10度。
運動規律
火星與太陽平均距離為1.52AU,公轉週期為1.88地球年,687地球日,或668.6火星日。火星公轉軌道和地球的一樣,受太陽系其他天體影響而不斷變動。軌道離心率有兩個變化週期,分別是9.6萬年和210萬年,於0.002至0.12間變化;而地球的是10萬年和約40萬年,於接近0至0.07間變化(見米蘭科維奇循環)。
1火星日平均為24小時39分35.244秒,或1.027地球日。火星目前自轉軸傾角為25.19度,和地球的相近。不同於地球的穩定處於22.1和24.5度間,由於火星沒有如月球般的巨大衛星來維持自轉軸,其自轉軸傾角可在13度至40度間變化,其變化週期為一千多萬年。由于沒有大衛星的潮汐作用,火星自轉週期變化小,不像地球的會被慢慢拉長。
火星自轉軸有明顯傾斜,日照的年變化形成明顯的四季變化,而一季的長度約為地球的兩倍。由於火星軌道離心率大,為0.093(地球只有0.017),使各季節長度不一致,又因遠日點接近北半球夏至,北半球春夏比秋冬各長約40天。雖然火星沒有地球般受海洋影響的複雜氣候,但仍有以下特殊之處:火星軌道離心率比地球大,造成日射量在一年當中變化更大,位於近日點時,南半球處夏季,比北半球遠日點夏季所造成的升溫更強;隨季節交替,二氧化碳和水氣會昇華和凝結而在兩極冠間遷移,驅動大氣環流;地表反照率特徵,因顏色深淺和沙、岩性質差異而造成的容積熱容不同,可影響大氣環流;易發生的塵暴會將沙塵粒子捲入高空,沙塵粒子吸收日光與再輻射會使高層大氣增溫,但遮蔽天空的沙塵會使地表降溫;自轉軸傾角和軌道離心率的長期變化則造成了氣候的長期變遷。火星表面的平均溫度比地球低30度以上。
目前,火星與地球最短距離正慢慢減小。當地球與火星之間的距離最小時,稱為火星衝日。火星相鄰兩次衝日的時間間隔約為779天。當地球、太陽和火星連成一線時,在火星上便可看到地球凌日,在太陽的位置可看到地球的黑點通過,同理還有水星凌日,在地球上則不會看到火星凌日。
衛星
火星有兩個天然衛星——火衛一與火衛二,最長直徑各為27公里和16公里,形狀不規則並充滿撞擊坑,以近圓形的軌道於接近火星赤道面處公轉。它們雖然很小,但由於接近火星,使火衛一從火星上看約有滿月直徑的二分之一至三分之一大,而火衛一的視星等可達-7,火衛二可達-5,白天可能可見。和月球一樣,這兩顆衛星都被火星潮汐鎖定。火衛一的公轉週期比火星自轉更快,所以在火星上來看是西升東落的,且僅需約4個小時;而火衛二的公轉周期只比火星自轉慢一些,東升西落要花約2.4個火星日。因為火衛一離火星很近,火星的潮汐力會慢慢但穩定地減小它的軌道半徑,預計再過約760萬年,火衛一將因軌道低於3620公里(火星的洛希極限)而被瓦解。另一方面,火衛二因為離火星足夠遠,所以它的軌道反而正在慢慢地被向外推進。
來源
兩顆衛星可能是捕獲的小行星,但新研究認為可能是撞擊事件、或原本的衛星被火星潮汐力拉碎後,由散佈軌道上的岩屑再度吸積而形成。
發現者
兩顆衛星是在1877年被阿薩夫·霍爾發現的。
命名
以希臘神話中的福波斯和得摩斯命名,兩者皆為戰神阿瑞斯的兒子。
觀測探測
古代
火星的火紅色,自古就吸引著人們,希臘人稱火星為「戰神」。此時的火星觀測和其他天體一樣,大部分是為了占星,而後漸漸涉及科學方面,如克卜勒探索行星運動定律時依據了第谷積累的大量而精密的火星運行觀測資料。
望遠鏡出現後,人們對火星可以進行更進一步的觀測。使用望遠鏡觀測星空的伽利略所見的火星只是一個橘紅小點,然而隨著望遠鏡的發展,觀測者開始辨別到一些明暗特徵。惠更斯依此測出火星自轉週期約為24.6小時,而他亦為首次紀錄火星南極冠的人。一開始由于各人各自觀測,意見不一致,地名也未統一(例如用繪製者名字命名)。後來義大利的喬范尼·斯基亞帕雷利統合了各家說法而繪製了地圖,地名取自地中海、中東等的地名和聖經等作為來源,而其餘則依照舊有的觀念:暗區被認為是湖、海等水體,如太陽湖、塞壬海、明顯的暗大三角——大瑟提斯;而亮區則是陸地,如亞馬遜。這個命名系統一直延續下來。
當時,斯基亞帕雷利和同期觀測者一樣,觀察到了火星表面似乎有一些從暗區延伸出的細線,因為對於暗區是水體的傳統,這些細線被命名為「水道」。而後來觀察到暗區會在冬季時縮小、夏季時擴張。有人提出暗區是植物覆蓋、而暗區的擴大縮小則是消長所引起的,改變以往認為暗區是水的說法。帕西瓦爾·羅威爾觀察到並宣稱那些「水道」其實是人工挖掘的「運河」,用來灌溉植物,因為水道應太細不可見,而看到的細線應是灌溉出的大片植物。風靡大眾的火星科幻和火星人即源于此。不過這些細線大多已被證明不存在,部分則是峽谷或隕石坑後延伸出的深色沙子。而火星表面顏色的改變則是因為沙被風吹移,或發生沙塵暴。
20世紀
蘇聯、美國、日本在這個世紀發射了不少太空船研究火星表面、地質和氣候。這些太空船包括軌道衛星、登陸器和漫遊車,但相當大部分任務在完成前或剛要開始時就因種種原因而失敗。
1960年10月10日,蘇聯向火星發射了第一枚探測器火星1A號,但以失敗告終。此後蘇聯經過多次嘗試,終於在1962年11月1日,蘇聯向火星發射了火星1號,這枚探測器終於進入了前往火星的軌道,然而1963年3月21日它飛行到距離地球1.06億公里的距離時,與地面失去了通信聯繫。1965年,NASA的水手4號飛掠火星。1971年水手9號進入火星軌道,成為第一個環繞火星的探測船。1971年蘇聯火星計畫火星2號的登陸器墜毀後數日,相同的火星3號的登陸器成功登陸火星,是第一個成功登陸火星的探測器,但登陸十幾秒後隨即失去聯繫,攜帶的火星車Prop-M也未能將訊息傳回地球。1975年,NASA發射海盜號,包括兩組軌道衛星和登陸器。海盜1號和2號軌道衛星各運作了六年和三年。兩個登陸器皆於1976年成功登陸,並傳送了第一張火星地景的彩色照片,而軌道衛星也繪製了全面的火星地圖,甚至到今天都還在使用。
1988年蘇聯發射弗伯斯1號、2號以探測火星和兩個衛星。弗伯斯1號於抵達前失去聯繫,而弗伯斯2號雖然成功拍攝了火星和火衛一,但在放出兩艘登陸器到火衛一前也失去聯繫,所攜帶的著陸器也未能在火星表面著陸。
在1992年火星觀察者失敗後,NASA於1996年11月發射了火星全球勘測者。火星全球勘測者於1997年進入火星環繞軌道,其出色地完成任務,它在2001年完成了地圖繪製的任務,並三次延長任務,直到2006年11月2日失去聯繫而結束,總計在太空中運作了10年。在火星全球勘測者發射一個月後,NASA發射了火星探路者,並攜帶一個登陸器和漫遊車——旅居者號(Sojourner),於1997年7月登陸在阿瑞斯峽谷。旅居者號成為第一個在火星上成功運作的火星車,並運作長達83個火星日傳回了大量照片。
NASA的火星勘測98計畫於1998、99年發射了火星氣候衛星與火星極地登陸者,前者預計研究氣候、水與二氧化碳等,後者則預計於南極登陸,探測器搭載的深空2號則計劃於火星極地登陸者進入大氣時與它分離,直接降落並穿入地表進行研究。但火星氣候探測者號在1999年9月23日在進入火星軌道的過程中失去聯絡,最終任務失敗,極地登陸者則在1999年12月3日探測器登陸火星時失去聯絡,兩者均以失敗告終。
另外,1996年12月16日,俄羅斯發射了火星96號探測器,探測器進入地球軌道後未能成功點火進入前往火星的軌道,而宣告失敗。1998年7月3日日本發射的希望號探測器,於2003年12月10日進行最後的遠程遙控修復作業仍告無效之後,日本放棄讓「希望號」進入火星軌道的嘗試,項目也以失敗告終。
21世紀
這個世紀,更多國家和地區的航天部門加入到火星探測的行動中。
2001年NASA發射了2001火星奧德賽號,任務成功進行並延續到2010年9月。船上的伽瑪射線光譜儀於地表下一公尺內偵測到大量的氫,證明有大量的水分子存在火星近地表。2003年NASA發射了兩台相同的火星探測漫遊者——精神號(MER-A)和機會號(MER-B)。兩台皆於2004年1月成功登陸並工作超過預定時間。傳回的資料中最有價值的是兩地過去有水的確實證據。偶爾的塵捲風和風暴清除了太陽能板上的沙塵,使它們的工作時長超過了預定任務時間。
2003年歐洲太空總署發射了火星快車號,包括軌道衛星和登陸器——小獵犬2號,而小獵犬2號於2004年2月降落失敗(後查証為降落後無法正常部署而失聯)。2004年船上的行星傅立葉光譜儀於其大氣中偵測到甲烷。2006年6月ESA宣布火星快車號發現極光。
2005年8月NASA發射了火星勘察衛星,於2006年3月進入火星軌道展開為期2年的工作。它搭載更先進的通訊系統,頻寬比之前任務總和還寬,且傳回的資料遠多於過去任務的總和。其擁有解析度高達0.3公尺的相機——HiRISE,拍攝地表和天氣以尋找未來任務的適合登陸地點。2008年2月19日拍攝到北極冠邊緣的一系列雪崩影像。
2007年2月25日,探測彗星的羅塞塔號近距離飛掠火星並拍照,拍到火星的高空雲系。
NASA於2007年8月發射鳳凰號,於2008年5月登陸在火星北緯68度的極區。鳳凰號登陸器有一支可伸及2.5公尺的機械手臂,並可挖掘土壤1公尺深。它還搭載一座顯微鏡,解析度達人類頭髮寬度的千分之一。2008年6月20日,其確認了在2008年6月15日發現的地表白色物質為水冰。2008年11月10日,NASA由於火星進入冬季而無法繼續聯繫鳳凰號,任務結束。2009年2月17日,黎明號飛掠火星以重力助推前往目的地灶神星和穀神星,並在接近火星時拍照。
2011年11月9日,中俄合作的福布斯-土壤號升空,預計送回火衛一土壤樣本。而該探測器還搭載了一顆重110公斤的火星探測器,也就中國第一艘火星軌道環繞器螢火一號(YH-1),預計乘坐俄羅斯的聯盟號運載火箭升空,航程大約10個月。螢火一號主要研究火星的電離層及周圍空間環境,火星磁場等。但該探測器發射到近地軌道後,因為與地面失去聯繫變軌失敗,探測器的碎片于莫斯科時間2012年1月15日墜落在太平洋海域。
繼鳳凰號之後,NASA於2011年的發射的火星科學實驗室(好奇號),在2012年8月6日05:31UTC成功登陸火星的蓋爾撞擊坑。它和火星探測漫遊者一樣是火星車,但比火星探測漫遊者更大、速度更快,而且設備更完善。它搭載了雷射化學檢測儀,可在13公尺外分析岩石的組成。比起之前其它火星任務,它攜帶了更多先進科學儀器。本次任務的總成本達到了25億美元,是歷來最貴的火星探測任務。2013年11月19日NASA發射MAVEN探測器,研究火星大氣。2014年9月22日進入環繞火星的軌道,MAVEN至今仍在運作。2014年9月24日,印度的火星軌道探測器也成功進入火星軌道。
2016年3月14日,ESA與俄羅斯聯邦航天局合作研發的火星微量氣體衛星成功發射,該衛星將分析火星大氣層,並將運載斯基亞帕雷利演示登陸器至火星進行登陸。其可挖掘兩公尺深以尋找有機物甚至火星生命。登陸器於2016年10月19日登陸火星,但由於登陸器與火星高速碰撞,造成登陸計劃失敗。原定於2020年7月發射的羅莎琳·富蘭克林號,則被推遲到2022年。
2020年7月下旬,阿聯酋希望號火星探測器、中國國家航天局的天問一號、與NASA的毅力號,先後發射升空。2021年2月9日希望號到達火星。2月18日毅力號成功登陸火星,毅力號還攜帶一台火星無人直升機機智號,機智號在2021年4月19日首次試飛獲得成功,這是人類首次實現飛行器在其他星球的受控飛行。4月20日,毅力號成功將火星大氣的二氧化碳轉化成氧,這是地球以外的首次成功造氧。5月15日,中國國家航天局的天問一號著陸器和祝融號火星車在火星烏托邦平原南部預選著陸區成功著陸,5月22日,祝融號被成功釋放到火星表面,中國成為了繼美國之後第二個在火星著陸並且成功部署火星車的國家,而且是第一個一次完成環繞、登陸、巡視的國家。
人類登陸
目前,將一公斤物體由地球表面送往火星平均要花費約30,900美元。2004年美國總統布什宣布載人火星任務為太空探索展望中的長期目標。NASA和洛克希德·馬丁已開始研究獵戶座太空船,計劃於2020年以前送人類到月球,作為人類登陸火星的準備。2007年9月28日,NASA執行長聲明NASA預計於2037年以前送人類到火星。ESA也希望於2030至2035年間將人類送上火星。
直達火星是羅伯·祖賓——火星學會的創始人和主席——提出的極低成本載人火星任務,使用重載的農神五號級火箭,省略軌道組裝、低地軌道會合和月球燃料補給站而直接用小的太空船前往火星。修改後的計劃,稱為「Mars to Stay」,改為先不送回第一批登陸者。狄恩·尤尼克說明,送回一開始的四到六人所花費用比送他們到火星還高,反而還可再送二十人。
火星生命
2000年,美國科學家在南極洲發現了一塊火星隕石。這是一塊碳酸鹽隕石,後被編號為ALH84001。美國國家航空航天局聲稱在這塊隕石上發現了一些類似微體化石的結構,有人認為這可能是火星生命存在的証據,但也有人認為這只是自然生成的礦物晶體。直到2004年,爭論的雙方仍然沒有任何一方占據上風。
有証據顯示火星曾比現在更適合生命存在,但生命在火星上到底是否真正存在過還沒有確切的結論。某些研究者認為源自火星的ALH84001隕石有過去生命活動的証據,但這個看法至今尚未得到公認。另有反對的觀點認為,自幾十億年前產生以來,該隕石從未長期處于液態水存在的溫度下,因而不會曾有生命活動。
海盜號曾做實驗檢測火星土壤中可能存在的微生物。實驗只分析了海盜號著陸點處的土壤並給出了陽性的結果,但隨後即被許多科學家所否定,而這一結果也仍就處在爭議之中。現存生物活動也是火星大氣中存在微量甲烷的解釋之一,但亦有其它與生命無關的解釋。人類若對外星殖民,由于火星的適宜條件(同其他行星相比,火星最像地球,而且距離相對較近),它將是人類的首選地點。
2018年6月6日,美國太空總署宣布,好奇號探測車在火星古老湖床的岩石裏發現有機物質。這可能對尋找生命給出重要線索。
相關文化及網絡用語
中國古人認為火星在位置及亮度上都常變不定,故稱為「熒惑」,在星占學上象徵殘、疾、喪、飢、兵等惡象。「熒惑守心」是火星留守在心宿(天蠍座)的天文現象,心宿主要有三顆星,中間這顆最亮,代表皇帝,旁邊的兩顆代表太子、庶子。熒惑守心是很罕見的天象,被認為最不祥,可能出現兩種結果一是皇帝駕崩,或是宰相下台。西漢成帝綏和二年(前7年),天文台觀測到了熒惑守心,宰相翟方進被漢成帝賜了毒酒自殺。翟方進死沒幾天,漢成帝突然暴斃,王莽後來稱帝,翟方進之子翟義起兵反王莽。
台灣國立清華大學黃一農教授在他的專書《名家專題精講系列—社會天文學史十講》內的其中一篇文章《中國星占學上最凶的天象──「熒惑守心」》提到,現在以電腦推算發現當年並未發生此天象,中國史籍中記載熒惑守心共二十三次,但有十七次是偽造的。中國歷史上實際發生過的熒惑守心則共有三十八次,且在中國史籍多無記錄。
火星文是中文互聯網曾經流行的一種特殊的文本,大量使用同音字、音近字、特殊符號來表音,難以閱讀,取「地球人看不懂的文字」的諷刺意味。
除此之外,關于火星的神話傳說有:
• 阿瑞斯,希臘戰神
• 瑪爾斯,羅馬戰神
• 內爾伽勒,巴比倫神祇
• 提爾,北歐神話中的戰神
• 火星 (妖怪),中國神話中的妖怪,記載于《搜神記》
註釋
Text | Count |
---|---|
陳書 | 1 |
新唐書 | 1 |
五代會要 | 11 |
金史 | 10 |
周書 | 29 |
三國志 | 9 |
明史 | 76 |
大越史記全書 | 3 |
舊唐書 | 17 |
北齊書 | 1 |
新五代史 | 1 |
資治通鑑 | 2 |
舊五代史 | 1 |
通志 | 1 |
後漢書 | 8 |
三國史記 | 2 |
越史略 | 3 |
魏書 | 30 |
遼史 | 2 |
元史 | 346 |
吳越備史 | 1 |
宋書 | 51 |
十六國春秋 | 7 |
十六國春秋別傳 | 1 |
宋史 | 278 |
後梁春秋 | 3 |
Enjoy this site? Please help. | Site design and content copyright 2006-2025. When quoting or citing information from this site, please link to the corresponding page or to http://ctext.org. Please note that the use of automatic download software on this site is strictly prohibited, and that users of such software are automatically banned without warning to save bandwidth. 沪ICP备09015720号-3 | Comments? Suggestions? Please raise them here.Do not click this link |