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Social climber attachment in forming networks produces a phase transition in
a measure of connectivity
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The formation and fragmentation of networks are typically studied using percolation theory, but most previous
research has been restricted to studying a phase transition in cluster size, examining the emergence of a giant
component. This approach does not study the effects of evolving network structure on dynamics that occur at
the nodes, such as the synchronization of oscillators and the spread of information, epidemics, and neuronal
excitations. We introduce and analyze an alternative link-formation rule, called social climber (SC) attachment,
that may be combined with arbitrary percolation models to produce a phase transition using the largest eigenvalue
of the network adjacency matrix as the order parameter. This eigenvalue is significant in the analyses of many
network-coupled dynamical systems in which it measures the quality of global coupling and is hence a natural
measure of connectivity. We highlight the important self-organized properties of SC attachment and discuss
implications for controlling dynamics on networks.
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I. INTRODUCTION

Dynamics on networks has become a research area of broad
importance, with considerable effort focused on understanding
how dynamics are affected by network structure [1–17]. Of
particular interest are dynamics that depend on global mea-
sures of network connectivity and in particular on the largest
eigenvalue λ of the network adjacency matrix A (Aij �= 0 if a
link exists from node i to node j ). We will refer to this broad
class, which includes models for synchronization [1], genetic
expression [2], neural excitation [3], and epidemic spreading
[4,5], as connectivity-governed dynamics. We note, however,
that while analyses of such systems [1–5] typically assume
that the network structure is static and connected (i.e., lacking
isolated nodes or clusters), many applications exist for which
the network structure is nonstatic and/or fragmented, such as
epidemic spreading with immunization [5,6], communication
and transit systems operating under failure or attack [7], and
information processing in the brain [8].

The systems that we categorize as having connectivity-
governed dynamics share a common property of being easily
manipulated through changes in λ. For example, one can
prevent viral spreading in technological and social networks by
decreasing λ through immunization [5] or promote the dissem-
ination of information in communication and sensor networks
by increasing λ [9]. In recent years there has been much interest
in studying the effects of topological modification on λ and
developing efficient strategies for tuning λ through the addition
and/or subtraction of links and/or nodes [9–11]. However, such
perturbation techniques do not address networks undergoing
formation or fragmentation processes, a problem traditionally
studied with network percolation theory [12].
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From network resilience against targeted attacks and
failures [13,14] to dynamics on networks [1–5], which often
map spreading dynamics to percolation processes, there are
widespread applications for percolation theory in the field
of complex networks. However, applying such techniques
to the dynamics on evolving networks is hindered in that it
can require two levels of analysis: a theory for the change
in network topology and a theory for the dynamics. We
hypothesize that a central element frustrating the development
of this approach is that this field of research has largely
focused on studying a phase transition in the size of the largest
connected cluster by analyzing cluster aggregation and the
emergence of a giant component, a cluster whose size is of the
same order as the entire system [12]. However, the application
of subsequent percolation theory requires information about
cluster topology in addition to cluster size, which highlights
the need for percolation theory focusing on other cluster
properties such as the spectra of clusters (i.e., the eigenvalues
of adjacency matrices corresponding to clusters), modularity,
assortativity, and transitivity [15].

Here we study the link-percolation phase transition using λ

as an alternative order parameter, shedding light on a different
phase transition in connectivity, corresponding to a poorly
connected network becoming well connected (or vice versa)
in terms of the topology’s effect on the dynamics. In order to
produce such a transition, we introduce a link-formation rule
called social climber (SC) attachment for which we derive
the asymptotic scaling behavior of λ for large network size
N . We show that networks forming under SC attachment
exhibit maximal scaling λ ∼ O(N1/2), indicating that our
model may be of broad interest for the design of networks
with large λ, a property that is often beneficial [9] and
can lead to, for example, excellent robustness against attack
and failure [13,14] and very good spreading characteristics
[3,4]. It follows that SC attachment is a promising approach
for the design of self-organized communication and sensor
networks [16] with topologies designed for the rapid dissem-
ination of information. We demonstrate this application by
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showing that networks formed under SC attachment exhibit
enhanced spreading properties with respect to the susceptible-
infected-susceptible (SIS) model [4,5], a contagion model with
many applications including the dissemination of information,
sometimes referred to as gossip-based communication or
epidemic routing [17]. We note that the development of
this potential application may be facilitated by the fact that
SC attachment may be combined with arbitrary percolation
processes, such as Erdős-Rényi (ER) percolation [18] and
Achlioptas processes [19–21], to independently control cluster
aggregation (determined by the percolation process) and
connectivity within clusters (determined by SC attachment).

II. SOCIAL CLIMBER ATTACHMENT

A link-percolation process begins with N isolated nodes,
indexed n = 1,2, . . . ,N. In discrete steps t̂ = 1,2, . . ., a new
undirected link between two nodes is selected according to
a rule or set of rules and is then formed. Thus, after t̂ steps
there will be t̂ links in the network, resulting in clusters of
connected nodes, each of whose size (number of nodes in the
cluster) may range from one (an isolated node) to N (a cluster
that spans the entire network). Depending on the rules used
to select links, the evolution of cluster sizes, and in particular
the size of the largest cluster, may vary significantly. Social
climber attachment introduces a new link reselection step
between link selection and link formation, which we motivate
by analogy to a corresponding social process: Colloquially,
a social climber is someone who actively attempts to make
powerful friends in order to become more powerful himself.
When introduced to a new person, a social climber learns about
the relative popularity of the people in that person’s clique and
eventually befriends whoever is of maximal importance. With
this in mind, SC attachment is a link reselection step during
percolation where the proposed link between two nodes is
altered by allowing one of those nodes to act like a social
climber, choosing to link to the node of maximal importance
in the other node’s cluster. Therefore, given a link-percolation
process, we summarize SC attachment as follows. (i) Let x be a
proposed undirected link connecting nodes a and b, generated
by an arbitrary percolation model. (ii) Let clusters Ca and Cb be
the clusters to which nodes a and b belong, respectively. Then,
if Ca �= Cb the proposed link x is discarded and instead a link
y is made between node a and the largest-degree node in Cb,
as shown in Fig. 1(a). (iii) If nodes a and b belong to the same
cluster Ca = Cb, then the proposed link x is made without
modification. Note that SC attachment does not affect which
clusters combine, but does affect the topology of the resulting
joined cluster. The SC model chooses a connection to the node
of largest degree in a cluster using nodal degree as a proxy for
the dynamical importance measure DI = unvn [10], where u

and v denote the right and left eigenvectors of A corresponding
to λ. For the undirected networks considered here, symmetry
of A implies u = v and thus the node with largest eigenvector
entry un will have maximal DI in its cluster [10]. Provided
that the node with largest eigenvector entry un also has largest
degree kn, we allow the SC model to select nodes based
on degree for simplicity and ease of computation. One may
equivalently view SC attachment as forming a link to the node
with largest degree by using degree centrality as a proxy for
eigenvector centrality.
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FIG. 1. (Color online) Link x is proposed by an arbitrary
percolation model (dashed lines) to connect nodes a and b, thereby
merging clusters Ca and Cb. Because Ca �= Cb, the proposed link x

is discarded and instead one of the following new links is formed.
(a) Node a is linked to the largest-degree node in Cb with link y

to model SC attachment. (b) The largest-degree nodes from Ca and
Cb are linked together with link z to model DSC attachment. These
processes may be visualized using free PercoVIS software [22].

In addition to SC attachment, we introduce double social
climber (DSC) attachment, in which a proposed link between
nodes a and b is either replaced by a link between the nodes
with maximal degree in each cluster when Ca �= Cb, as shown
in Fig. 1(b), or formed between a and b without modification
when Ca = Cb. We note that DSC attachment corresponds to
maximizing connectivity of the resulting cluster, as measured
by λ, whenever the node of maximal degree is also the node of
maximal eigenvector entry in each cluster [9]. Social climber
and DSC attachment may be visualized using free PercoVIS
software [22].

III. ANALYSIS

Although we will later generalize our methods to other
percolation rules, we first analyze SC and DSC attachment
for the well-known ER percolation process [18]. The rule for
selecting a link in ER percolation is simple: Two nodes are
chosen uniformly at random and a link is formed if there is not
already a link between them. Traditional analysis has focused
on the relationship between the number of links added t̂ and
the size of the largest cluster Ĝ(t̂), called the giant component
(GC) when Ĝ(t̂) ∼ O(N ). It is convention to rescale both t̂

and Ĝ by N [i.e., t = t̂/N and G(t) = Ĝ(t)/N ], where one
obtains, in the asymptotic limit N → ∞ [18],

G(t) =
{

0, t � 0.5

1 − e−2tG(t), t > 0.5.
(1)

Here, for variable control parameter t , the network undergoes a
second-order phase transition in cluster size at the percolation
threshold tER

c = 0.5, as observed through the order parameter
G(t). Because SC attachment affects the topology of clusters
and not their sizes, Eq. (1) remains valid for ER percolation
combined with SC attachment.

We begin our analysis by studying the emergence of large-
degree nodes. For a given time t , consider a large cluster
C containing s � 1 nodes and let kmax denote the maximal
nodal degree in C. By large cluster we mean that s is with high
probability larger than the size of another randomly chosen
cluster in the network and eventually we will consider only
the case in which cluster C is the largest cluster in the entire
network. We will compute the expected change in kmax for the
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addition of a single link. When a link is proposed between
nodes a and b by ER percolation, kmax will increase by one if
(i) a /∈ C and b ∈ C [depicted in Fig. 1(a), where Cb = C)] or
(ii) a ∈ C and the degree of a is kmax or b ∈ C as well and the
degree of either a or b is kmax. Since ER percolation chooses
nodes uniformly at random, the probability that a /∈ C is 1 −
s/N and the probability that b ∈ C is s/N . Since a and b are
chosen independently, the probability of case (i) is (s/N)[1 −
s/N]. The probability that a randomly chosen node in a cluster
of size s has degree kmax is r/s, where r is the number of nodes
in that cluster with degree kmax. Thus the probability of case
(ii) is, to leading order as N → ∞, (s/N)[1 − s/N](r/s) +
(s/N)2[2r/s], where the first term corresponds to a ∈ C, b /∈
C and the second term corresponds to a,b ∈ C. We note that
other corrections may be included to address the chance in (i)
that the maximal degree of Ca is larger than the maximal degree
of Cb, kmax + 1, but such corrections decay rapidly as the size
difference between Cb and Ca increases. Since s � 1 while
r ∼ O(1), case (i) is the dominating process for sufficiently
large s, so the expected rate of change of kmax averaged over
all possible links is

E

[
dkmax

dt̂

]
= ζ

s

N

(
1 − s

N

)
. (2)

Here ζ = 1 for SC attachment and ζ = 2 for DSC attachment
since for DSC case (i) applies to both a /∈ C, b ∈ C and a ∈ C,
b /∈ C. Using d/dt̂ = Nd/dt , integration of Eq. (2) predicts
that the largest degree of a node within the GC at time t is

E
[
kmax

ER (t)
] = ζN

∫ t

0
[G(τ ) − G2(τ )]dτ. (3)

Note that this scaling with N is the largest achievable scaling of
a degree. For comparison, in networks with power-law degree
distribution P (k) ∝ k−γ , the expected maximal degree scales
as O(N1/(γ−1)), approaching O(N ) as γ → 2+.

In order to understand the implications of Eq. (3), we use
λ ≈ √

kmax, an asymptotically (N → ∞) accurate approxi-
mation derived in Ref. [23] and discussed further in Ref. [24].
While the model used to generate this estimate is not equivalent
to SC attachment, we find that it remains accurate here. Using
this estimate in conjunction with Eq. (3) and noting that
for t > tER

c the largest eigenvalue of the GC will be larger
than the largest eigenvalues of smaller clusters, we obtain the
following expression for the expected largest eigenvalue for
ER percolation with SC attachment:

E[λER(t)] =
√

ζN

∫ t

0
[G(τ ) − G2(τ )]dτ, (4)

implying that the network undergoes a continuous phase
transition in connectivity at precisely the same value t =
tER
c at which a phase transition in cluster size occurs. In

the supercritical regime, λ achieves maximal scaling λ ∼
O(N1/2). For comparison an all-to-all network has similar
scaling λ = √

N − 1, but uses O(N2) links compared to
O(N ) used by SC attachment. Asymptotic scaling constants
of Eq. (4) for large t may be solved by integrating with
respect to G, rather than t , and using a dilogarithm to obtain
λER(t)/

√
N →

√
1 − π2/12 ≈ 0.42 for SC attachment and

λER(t)/
√

N →
√

2 − π2/6 ≈ 0.6 for DSC attachment [25].
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FIG. 2. (Color online) Order parameter λER shown for ER
percolation with DSC attachment. Our prediction [Eq. (4) with G(t)
given by Eq. (1) (solid line)] agrees well with observed values for
simulations with N = 105 (crosses) and N = 106 (circles). Observed
values for λAE (pluses) also agree well with theory [Eq. (6) (dashed
line)] for AE percolation with DSC attachment for N = 106. In the
inset, for N = 106, the great extent to which SC and DSC attachment
increase connectivity is shown by comparing to λ for classical ER
percolation.

We confirm the accuracy of Eq. (4) by direct simulation of
our model, shown in Fig. 2, which demonstrates excellent
agreement between Eq. (4) (solid line) and observed values of
λER for ER percolation with DSC attachment with N = 105

(crosses) and N = 106 (circles). For integration in Eq. (4) we
use the asymptotic theoretical value G(t) given by Eq. (1).
In the inset of Fig. 2 we compare observed values of λER

for SC and DSC attachment to traditional ER percolation,
where our models’ main effects are highlighted: Under SC
or DSC attachment λER attains significantly larger values and
also undergoes a sharp increase at tER

c .
Because the expected connectivity, measured by λER, is

a function of G(·), developing scaling arguments for λER is
straightforward since scaling for Ĝ(t) is known: Ĝ ∼ log(N )
for t < tER

c and Ĝ ∼ N for t > tER
c [18]. Therefore, when SC is

used in conjunction with ER percolation, in the limit N → ∞
we have

λER(t) ∼
√

log N, t < tER
c , λER(t) ∼ N1/2, t > tER

c .

(5)

To validate Eq. (5) we estimate the change in λER when the
system size is increased by defining φER(t) as the ratio of
λER(t) for N = 106 to λER(t) for N = 105. As shown in Fig. 3,
we predict that φER(t) ≈ √

6/5 for t < tER
c (dashed line) and

φER(t) ≈ √
10 for t > tER

c (solid line), both of which agree
well with φER(t) calculated from a single simulation of each
system size (crosses).

The methods used to derive Eqs. (3)–(5), which involved
calculating the probability that an isolated cluster attaches to
the GC, may be easily adapted to other percolation models. For
example, consider Achlioptas processes [19–21] for which the
merging of clusters depends on cluster size (up to some bound).
This class of percolation models has recently received much
attention, focusing on analysis of a rapid phase transition in
cluster size referred to as explosive percolation [20,21,26].
Repeating the reasoning process in deriving Eqs. (3)–(5) for
adjacent-edge (AE) percolation [20], we predict the largest
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FIG. 3. (Color online) Scaling of λER(t) predicted in Eq. (5) is
demonstrated using the ratios of λER(t) for N = 106 and 105, denoted
by φER(t). Agreement between the prediction of Eq. (5) (lines) and
measurement from simulation (crosses) is good. Measurements from
AE percolation φAE(t) are also shown (circles).

eigenvalue to be

E[λAE(t)] =
√

ζN

2

∫ t

0
[G(τ ) + G2(τ ) − 2G3(τ )]dτ , (6)

where again ζ = 1 for SC and ζ = 2 for DSC. Note that despite
the near-discontinuous phase transition in G, maximal scaling
λ ∼ O(N1/2) is still achieved. In Fig. 2 we show good agree-
ment between observed values for λAE (pluses) and Eq. (6) for
DSC (dashed line), where observed values for G(t) were used
in Eq. (6) as an analytic expression has yet to be developed.
Note that λAE(t) < λER(t), which we attribute to the integrands
of Eqs. (4) and (6), which are maximized at G = 1/2 and
(1 + √

7)/6, respectively, and are zero at G = 0 and 1. Since
AE percolation produces rapid growth in G, the integrand of
Eq. (6) is not large over a majority of the integration interval,
so essentially the explosive growth in G minimizes the regime
during which SC attachment has a large effect on λ. In Fig. 3
we also show φAE(t), the ratio of λAE(t) for N = 106 and
105, where we observe similar scaling in the subcritical and
supercritical regimes as observed and predicted for λER.

IV. EXPERIMENTATION

We now demonstrate the effect of SC attachment on
dynamics. Because SC attachment produces networks with
maximal scaling of λ, we focus on an application in which
large λ is beneficial: the dissemination of information in
communication and wireless sensor networks [16], which is
often modeled as an epidemic [17]. We note, however, that
large λ is not always advantageous. For example, large λ

in ecological networks can promote instability and species
extinction [27]. (See Ref. [9] for a discussion of applications
in which it is beneficial to have either small or large λ.)
Here we study SIS contagion [4,5], which has been used to
study spreading process from viral propagation in social and
technological networks to the dissemination of information
such as rumors and data [17].

To briefly review, the SIS model is a continuous time
process in which each node may be susceptible to infection or
infected. Each infected node may infect each of its susceptible
network neighbors at rate α and each infected node may also
spontaneously heal and return to being susceptible at rate β.

The network state in which no nodes are infected and all nodes
are susceptible is a fixed point of the collective dynamics, but
this fixed point may not be stable to perturbation (i.e., a small
fraction of nodes being infected by some external agent). For
many topologies of connected networks in which a fraction of
nodes is initially infected, the expected steady-state fraction
of infected nodes f may either be zero (no infections, stable
fixed point) or nonzero (endemic infection, unstable fixed
point), depending on whether α/β surpasses the epidemic
threshold λ−1 [4,5]. Note that endemic infection can be
prevented by decreasing λ through immunization until λ−1 >

α/β. Interestingly, for very large infection rates, reducing
λ to prevent endemic infection can require the complete
fragmentation of the network. For example, if α/β � 0.5 the
prevention of endemic infection requires λ � 2, which guar-
antees fragmentation of the network [14]. This scenario has
been observed experimentally for virus propagation on mobile
phone devices [28], where slowly spreading Bluetooth viruses
may be inhibited by immunization (i.e., antiviral software),
but rapidly spreading messaging viruses are inhibited only by
a fragmented network.

We simulated SIS dynamics for moderate α/β on two net-
works forming under ER percolation, one with SC attachment
and the other without, predicting that SC attachment will have a
significant impact on the steady-state fraction of infected nodes
f . We simulated dynamics with (α,β) = (0.075,1) on N =
105 nodes at many points t in the percolation process, initially
infecting 1% of nodes and then allowing the system to reach
a steady-state fraction of infected nodes f (t), before allowing
percolation to continue to another value of t , where the dy-
namics were reinitialized, simulated, and so on. The resulting
curves f (t) are shown in Fig. 4, where the shaded region
highlights that networks forming with SC attachment (open
squares) have significantly enhanced spreading characteristics
compared with networks forming without SC attachment (solid
squares). To contrast this result, we also plot f (t) for a large
infection rate (α,β) = (0.5,1), where f (t) with SC attachment
(open circles) is indistinguishable from that without SC
attachment (solid circles). This is not surprising as one would
expect any initial infection to saturate the cluster in which it

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

t

f
( t

)

α = 0 .5

α = 0 .075
   SC attachment
enhances spreading

FIG. 4. (Color online) Susceptible-infected-susceptible epi-
demics [4] were simulated on a network forming by ER percolation
with SC attachment (open symbols) or without (solid symbols),
where tN is the number of links added. Here f (t) is the steady-state
fraction of infected nodes when 1% of nodes are initially infected.
The shaded region highlights the significant impact of SC attachment
for a moderate infection rate (squares). For a high infection rate, SC
attachment has no effect (circles).
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begins, in which case f (t) would depend primarily on cluster
size, not topology. We thus find two regimes of SIS dynamics
on fragmented networks: When α/β is sufficiently large, f

depends primarily on network fragmentation (i.e., the size of
the GC), but for moderate and small α/β, f depends strongly
on the connectivity of clusters (i.e., their respective λ values).

V. DISCUSSION

Motivated by the need for the development of analysis
for connectivity-governed dynamics [1–5] on evolving net-
works, we have developed a percolation theory focusing
on the connectivity of clusters, rather than their size. In
this pursuit, we have introduced a model, social climber
attachment, that produces networks with strong connectivity
and maximal scaling of λ and validated our claims using
two link-percolation models. While strong connectivity in
networks is achievable via other percolation models (e.g.,
networks with heavy-tailed degree distributions generated by
the Chung-Lu model [29]), such methods typically require that
the nodal degrees and network connectivity be defined a priori.
In contrast, two key properties distinguish SC attachment.
(i) First, SC attachment produces networks with large λ

via self-organization. Because λ governs many dynamical
processes [1–5], SC attachment provides a foundation for
designing networks that self-organize with properties linked
to large λ such as robustness [13,14] and the efficient spread of
information [9]. Our model is therefore promising as a starting
point for the development of self-organized communication
networks such as wireless sensor networks [16], where data
broadcasting may be modeled by SIS transmission [17].
Development and analysis of this application may be facilitated
by the fact that SC attachment does not affect cluster sizes,
only their internal topology. (ii) Second, a different phase
transition in connectivity occurs for networks forming under
SC attachment, which may have broad applications. For
example, λ(t) changes most rapidly near the percolation
threshold, so creating networks near criticality may offer an

effective approach for designing networks on which dynamics
can be efficiently controlled by adding or removing a minimal
number of links. This approach may therefore aid in the design
of critical infrastructure (e.g., the power grid, communication
networks, and airline networks) that can be easily switched
between topologies designed for high-flow and low-flow
conditions.

We conclude by suggesting several possible extensions
to this work that may be of interest to readers. First, SC
attachment uses complete information about the structures of
the clusters that it connects, yet in some applications this
information may be difficult or impossible to obtain. The
effects of incomplete information or noise on SC attach-
ment are as yet unexplored. For example, incorporating a
probabilistic (rather than deterministic) link reselection step
may be of interest as the resulting process would have some
similarity with the preferential attachment network growth
model [30]. Second, one may wish to adapt our model to study
various real-world networks. While networks formed under
SC attachment feature large λ, to incorporate this model for
the design of communication networks one would likely need
to consider many other design criteria such as betweenness
centrality and software protocols [16]. Finally, we named our
model social climber attachment to reflect the selfish behavior
of individuals in social situations, yet the generation of a
network topology similar to that observed in social networks
using the SC model would require additional link-formation
rules, such as those producing modularity and transitivity [15].
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[17] A. Demers et al., in PODC’Õ87: Proceeding of the Sixth Annual
ACM Symposium on Principles of Distributed Computing
(ACM, New York, 1987); A. Vahdat and D. Becker, Duke Uni-
versity Report No. CS-2000-06, 2000 (unpublished); A. Khelil
et al., in Proceeding of the Fifth ACM International Workshop
on Modeling, Analysis and Simulation of Wireless and Mobile
System (ACM, New York, 2002); D. Ganesan et al., University of
California, Los Angeles Report No. UCLA/CSD-TR 02-0013,
2002 (unpublished); P. T. Eugster et al., Computer 37, 60 (2004);
P. De et al., in Proceedings of the IEEE International Symposium
on a World of Wireless, Mobile and Multimedia Networks (IEEE
Computer Society, New York, 2006); Proceeding of the Fourth
IEEE International Conference on Mobile Ad Hoc and Sensor
Systems (IEEE Computer Society, New York, 2007); X. Zhang
et al., Comput. Networks 51, 2867 (2007).
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