CHAPTER 5

Control Panel Extensions

This chapter describes how you can create a control panel extension to add a panel to an
existing control panel. Some of the control panels provided with the Macintosh system
software allow you to install additional panels to control settings for your own devices.
You can also install additional panels to allow the user to manipulate other system-wide
settings or configuration data not directly associated with any hardware.

You need to read this chapter if you are developing hardware or software that provides
system-wide services and that has one or more settings that a user might want to alter.
However, you need to read this chapter only if some existing control panel is extensible
in the way described in the next section, “About Control Panel Extensions.” Currently,
only certain versions of the Sound control panel and the Video control panel allow

you to add panels by creating control panel extensions. In all other cases, you'll need
to create a control panel to handle any necessary user interaction. For a complete
description of how to create a control panel, see the chapter “Control Panels” in

Inside Macintosh: More Macintosh Toolbox. (Also see the chapter “Control Panels”

if you are the manufacturer of a video card and need to create an extension to the
Monitors control panel.)

To use this chapter, you should already be familiar with creating dialog boxes and
handling user actions in them. See the chapters “Dialog Manager” and “Event Manager”
in Inside Macintosh: Macintosh Toolbox Essentials for more information about these topics.
Because control panel extensions are components, you also need to be familiar with the
Component Manager, described in Inside Macintosh: More Macintosh Toolbox.

Note

The programming interface to control panel extensions described in this
chapter is virtually identical to the programming interface to sequence
grabber panel components, described in the chapter “Sequence Grabber
Panel Components” in Inside Macintosh: QuickTime Components. If you
are programming in C, you might find it useful to consult the source
code samples, which are in C in that chapter. O

About Control Panel Extensions

A control panel manages the settings of a system-wide feature, such as the amount of
memory allocated to a disk cache, the speed at which the cursor moves relative to
movement of the mouse, the background pattern used on the desktop, or the picture
displayed by a screen saver. On the screen, a control panel appears as a modeless dialog
box with controls that let users specify basic settings and preferences for the feature. A
control panel such as the General Controls or Color control panel usually defines the
contents of its display area and manages the settings of its own controls; however, a
control panel such as the Sound or Video control panel may use one or more control
panel extensions to manage parts of its display area. The rest of this chapter discusses
control panels that use control panel extensions and describes how to write a control
panel extension. For information on control panels that do not use control panel
extensions, see the chapter “Control Panels” in Inside Macintosh: More Macintosh Toolbox.

About Control Panel Extensions 5-3

SUOISU3)XT [dued |0AU0D -

CHAPTER 5

Control Panel Extensions

A control panel extension works in conjunction with and at the request of a control
panel to manage a certain part of the control panel’s display area. The area managed by
a control panel extension is called a panel. A panel contains controls and other items
related to the features managed by the control panel extension. These items are the same
items used in dialog and alert boxes. The control panel extension is responsible for
handling events in its panel and for responding to requests from its associated control
panel. A control panel that uses control panel extensions typically includes a pop-up
menu, from which the user chooses which panel to view. The control panel displays the
current panel’s items within a dotted-line border extending from its pop-up menu.

Figure 5-1 shows the Sound control panel introduced with version 3.0 of the Sound
Manager. The Sound control panel manages the pop-up menu in its display area. When
the user chooses a menu item from the pop-up menu, the Sound control panel uses a
control panel extension to display the panel corresponding to the user’s choice. The
control panel extension is responsible for managing the area within its panel.

Figure 5-1 A control panel with a panel

SO=———— Sound

Panel-selection ——=I " Rlert Sounds - |
pop-up menu

=4 Droplet 3
Indigo
Quack

Sosumi
Wild Eep

Settings area
(managed by
| control panel
ik extension)

o

Built-in [Add.. | [Remouve |
Volume

As shown in Figure 5-1, control panels that use control panel extensions typically include
a pop-up menu from which the user can choose one or more items. Each item typically
corresponds to a feature managed by a control panel extension. For example, Figure 5-2
shows the menu items in the pop-up menu of the Sound control panel. This pop-up
menu can have the items Alert Sounds, Sound In, Sound Out, or Volumes as well as
items corresponding to other control panel extensions. Apple supplies the control panel
extensions for Alert Sounds, Sound In, Sound Out, and Volumes.

About Control Panel Extensions

CHAPTER 5

Control Panel Extensions

Figure 5-2 Panel-selection pop-up menu in a control panel

SI=———-—— Sound gl

« Alert Sounds

Panel-selection Sound In
pop-up menu S5ound Out ||
lolumes
Quack
Simple Beep
Sosumi
Wild Eep
e i
Built-in [Add...) [Remoue]

lolume

As shown in Figure 5-2, when the user chooses the Alert Sounds pop-up menu item, the
Sound control panel calls the Alert Sounds control panel extension to display a panel
and manage the items associated with the extension. The Alert Sounds control panel
extension is responsible for the items within its panel: the volume slider, the scrollable
list of sounds, and the two buttons.

The user interface for a panel consists of the display area defined by the owning control
panel and includes the items defined and managed by your panel. Each control panel
that supports control panel extensions defines the bounding area in which panels can
place items. For example, the panel inserted into the Sound control panel is given a
default rectangle size of 185 pixels in height, and 302 pixels in width. All of the items
for this panel must be placed at least 13 pixels from the dialog’s border.

Control panel extensions are implemented as components. A control panel uses the
Component Manager to request services from the appropriate control panel extension as
needed. For example, when the user opens a control panel, the Finder sends the control
panel an initialization request. In response to this request, the control panel uses the
Component Manager to determine which control panel extensions are available and
includes the name of each available extension in its pop-up menu.

The control panel then uses the Component Manager to open the control panel extension
associated with the current pop-up menu item and set up the panel. (For example, if the
Sound control panel determines that its panel area should display information for Alert
Sounds panel, the Sound control panel opens the Alert Sounds control panel extension.)
As directed, the control panel extension returns information about its controls and other
items in its panel area and sets initial values for these items. The control panel continues
to use the Component Manager to communicate with the control panel extension,
requesting it to respond to user events within the panel area. When the user closes the
control panel, the control panel uses the Component Manager to close the current control
panel extension before the control panel terminates.

About Control Panel Extensions 5-5

SUOISU3)XT [dued |0AU0D -

CHAPTER 5

Control Panel Extensions

This chapter describes the general structure of a control panel extension. For information
on providing a control panel extension for a specific control panel, see the
documentation describing that control panel. For example, for information on the

Video control panel, see the chapter “Sequence Grabber Panel Components” in

Inside Macintosh: QuickTime Components.

Writing a Control Panel Extension

5-6

A control panel extension is a component that works with a control panel to manage a
panel—a certain part of an existing control panel’s display area. Because a control panel
extension is a component, it must be able to respond to standard request codes sent by
the Component Manager. In addition, a control panel extension must

s return information about the items in its panel
= handle user actions and other events in its panel
= get and set the values of its items

This section describes how to write a control panel extension. You need to read this
section if you want to create a new panel for an existing control panel.

Creating a Component Resource for a Control Panel Extension

A control panel extension is stored as a component resource. It contains a number of
resources, including icons, strings, pictures, and the standard component resource (a
resource of type ' t hng') required of any Component Manager component. In addition,
a control panel extension must contain code to handle required request codes passed to
it by the Component Manager as well as panel-specific request codes. A control panel
extension also usually contains an item list resource (' DI TL') that defines the items for
the panel.

Note

For complete details on components and their structure, see the chapter
“Component Manager” in Inside Macintosh: More Macintosh Toolbox. This
section provides specific information about control panel extensions. O

The component resource binds together all the relevant resources contained in a
component; its structure is defined by the Conponent Resour ce data type.

TYPE Component Resource =

RECORD
cd: Conponent Descri pti on;
conponent : Resour ceSpec;
conmponent Nane: Resour ceSpec;

Writing a Control Panel Extension

CHAPTER 5

Control Panel Extensions

conponent | nf o: Resour ceSpec;
conmponent | con: Resour ceSpec;
END;

The cd field contains a component description record that specifies the component type,
subtype, manufacturer, and flags. The conponent field specifies the resource type and
resource ID of the component’s executable code. By convention, this resource should be
of the same type as the conponent Type field of the component description record
referenced through the cd field. (You can, however, specify some other resource type

if you wish.) The resource ID can be any integer greater than or equal to 128. See the
next section, “Dispatching to Control Panel Extension-Defined Routines,” for further
information about this code resource. The Resour ceSpec data type has this structure:

TYPE ResourceSpec =

RECORD
resour ceType: ResType;
resourcel D I nt eger;
END;

The conponent Nane field of the Resour ceSpec data type specifies the resource type
and resource ID of the resource that contains the component’s name. Usually the name is
contained in a resource of type ' STR ' . This string should be as short as possible.

The conponent | nf o field specifies the resource type and resource ID of the resource
that contains a description of the component. Usually the description is contained in a
resource of type' STR ' . This information is not currently used by control panels, but
some development tools may use it.

The conponent | con field specifies the resource type and resource ID of the resource
that contains an icon for the component. Usually the icon is contained in a resource of
type ' | CON . This icon is not currently used by control panels, but some development
tools may use it.

As previously described, the cd field of the Conponent Resour ce structure is a
component description record, which includes additional information about the
component. A component description record is defined by the

Conponent Descri pti on data structure.

TYPE Conponent Descri ption =

RECORD
conmponent Type: Longl nt;
conponent SubType: Longl nt;
conponent Manuf acturer: Longlnt;
conponent Fl ags: Longl nt;
conponent Fl agsMask: Longl nt;
END;

Writing a Control Panel Extension 5-7

SUOISU3)XT [dued |0AU0D -

5-8

CHAPTER 5

Control Panel Extensions

For control panel extensions, the conponent Type field must be set to a value associated
with an existing control panel. Currently, you can specify one of two available
component types for control panel extensions:

CONST
SoundPanel Type = 'sndP' ; {sound panel }
Vi deoPanel Type = 'vidP; {vi deo panel }

In addition, the conmponent SubType field must be set to a value that indicates the type
of control panel services your panel provides. For example, the Apple-supplied control
panel extensions for the Sound control panel have these subtypes:

CONST
kAl ert SoundsPanel ="alrt"; {al ert sounds panel}
kl nput sPanel = 'mcs'; {i nput devices panel}
kQut put sPanel = 'spek'; {out put devi ces panel}
kVol unesSubType = 'vol s'; {vol unes panel }

If you add panels to the Sound control panel, you should assign some other subtype.

Note
Apple reserves for its own uses all types and subtypes composed solely
of lowercase letters. O

You can assign any value you like to the conponent Manuf act ur er field; typically, you
put the signature of your control panel extension in this field.

The conmponent Fl ags field of the component description for a control panel extension
contains bit flags that encode information about the extension. Currently, you can use
this field to specify whether the control panel should open your extension’s resource file.

CONST
channel Fl agDont OpenResFile = 2; {do not open resource file}

The channel Fl agDont OpenResFi | e bit indicates to the owning control panel
whether or not to open the component’s resource file. When bit 2 is cleared (set to 0),

the control panel opens the component’s resource file for you. In general, this is the most
convenient way to gain access to your extension’s resources. However, if the component
is linked with an application and does not have its own resource file, you might not want
the control panel to try to open the resource file. In that case, set this bit to 1.

You should set the conponent Fl agsMask field to 0.

Your control panel extension is contained in a resource file. The creator of the file can be
any type you wish, but the type of the file must be ' t hng' . If the extension contains a

" BNDL' resource, then the file’s bundle bit must be set. Control panel extensions should
be located in the Control Panels folder (or Extensions folder if the component needs
automatic registration).

Listing 5-1 shows the Rez listing of a component resource that describes a control panel
extension.

Writing a Control Panel Extension

CHAPTER 5

Control Panel Extensions

Listing 5-1 A component resource for a control panel extension

resource 'thng' (kExanpl ePanel | D, kExanpl eNane, purgeable) {
kExanpl ePanel Conponent Type, / *conmponent type*/

kExanpl ePanel SubType, / *conponent subtype*/
kExanpl eManuf act urer, / *conmponent manuf act urer*/
cnpWant sRegi st er Message, /*control flags*/

0, /*control flags nask*/

/*code res type, res I D*/
kExanpl ePanel CodeType, kExanpl ePanel Codel D,
'"STR ', kExanpl ePanel Nanmel D, /*nane res type, res |D*/
"STR ', kExanpl ePanellnfolD, /*info res type, res |ID*/
"I CON, kExanpl ePanellconlD /*icon res type, res |D*/

}s

Dispatching to Control Panel Extension-Defined Routines

As explained in the previous section, the code stored in the control panel extension
component should be contained in a resource whose resource type matches the type
stored in the conponent Type field of the component description record. The
Component Manager expects that the entry point in this resource is a function having
this format:

FUNCTI ON MyPanel Di spat ch (VAR parans: Conponent Par anet ers;
storage: Handl e): Conponent Result;

Whenever the Component Manager receives a request for your control panel extension,
it calls your component’s entry point and passes any parameters, along with information
about the current connection, in a component parameters record. The Component
Manager also passes a handle to the global storage (if any) associated with that instance
of your component.

When your component receives a request, it should examine the parameters to
determine the nature of the request, perform the appropriate processing, set an error
code if necessary, and return an appropriate function result to the Component Manager.

The component parameters record is defined by a data structure of type

Conmponent Par anet er s. The what field of this record contains a value that specifies
the type of request. Your component’s entry point should interpret the request code and
possibly dispatch to some other subroutine. Your extension must be able to handle the
required request codes, defined by these constants:

CONST
kComponent OpenSel ect = -1;
kConmponent C oseSel ect = -2;
kConponent CanDoSel ect = -3;
kComponent Ver si onSel ect = -4,

Writing a Control Panel Extension 5-9

SUOISU3)XT [dued |0AU0D -

CHAPTER 5

Control Panel Extensions

Note

For complete details on required component request codes, see the

chapter “Component Manager” in Inside Macintosh: More Macintosh

Toolbox. O

In addition, your extension must be able to respond to panel-specific request codes.
Currently, you need to be able to handle these request codes:

CONST
kPanel GCet Di t | Sel ect =
kPanel Get Titl eSel ect =
kPanel | nst al | Sel ect =
kPanel Event Sel ect =
kPanel | t entel ect =
kPanel RenpoveSel ect
kPanel Val i dat el nput Sel ect
kPanel Get Setti ngsSel ect
kPanel Set Setti ngsSel ect

{get panel's itemlist}

{get panel's nane}

{restore item settings}
{handl e event in panel}
{handl e click in a panel iten}
{panel is about to be renoved}
{val i date panel settings}

{get panel settings}

{set panel settings}

NSO REONREO

You should respond to these request codes by performing the requested action. To
service the request, your component may need to access additional information
provided in the par ans field of the component parameters record. The par ans field
is an array that contains the parameters specified by the control panel that called your
component. You can directly extract the parameters from this array, or you can use the
Cal | Conmponent Functi on or Cal | Conponent Functi onW t hSt or age function to
extract the parameters from this array and pass these parameters to a subroutine of
your component.

Listing 5-2 illustrates how to define the entry-point routine for a control panel extension.

Listing 5-2 Handling Component Manager request codes

FUNCTI ON MyPanel Di spat ch (VAR parans: Component Paramet ers; storage: Handl e)

CONST

Conponent Resul t ;

kPanel Version = 1

kExanpl ePanel DI TLI D

128;

kDef aul tButton = 1

kExanmpl eQt her But t on

1
N

kExanpl eBeepButton = 3;

kExanmpl eRadi oButtonl = 4;
kExanpl eRadi oButtonl = 5;
TYPE
Panel d obal sRec = {gl obal storage for this conponent instance}
RECORD
itenffset: I nt eger;
5-10 Writing a Control Panel Extension

CHAPTER 5

Control Panel Extensions

nySel f: Conponent | nst ance;
END;
Panel d obal sPtr = ~Panel G obal sRec;
Panel G obal sHandl e = ~“Panel d obal sPtr;
VAR
nyd obal s: Panel d obal sHandl e;
sel ector: I nt eger;
BEG N
CASE par ans. what OF
kConponent OpenSel ect : {conponent is opening}
BEG N
nmyd obal s : =
Panel A obal sHandl e(NewHandl eC ear (Si zeOf (Panel d obal sRec)));
IF nyd obals <> NIL THEN
BEG N
nyd obal s*. nySel f : = Conponent | nst ance(par ans. parans[0]);
Set Conponent | nst anceSt or age(nyd obal s, mySel f,
Handl e(nyd obal s));

MyPanel Di spatch : = noErr;
END
ELSE
MyPanel Di spatch := MenError;
END;
kConmponent C oseSel ect : {conponent is closing; clean up}
BEG N

| F storage <> NIL THEN
Di sposeHandl e(st orage);
MyPanel Di spatch : = noErr;

END;
kConponent CanDoSel ect : {i ndi cat e whet her conponent }
{ supports this request code}
BEG N
sel ector := Integer((Ptr(parans. paramnms)”));

I F (((kConponent Ver si onSel ect <= sel ector)
AND (sel ector <= kConponent OpenSel ect))
OR ((kPanel GetDi tl Sel ect <= sel ector)
AND (sel ector <= kPanel Set SettingsSelect))) THEN
MyPanel Di spatch := 1 {valid request}
ELSE
MyPanel Di spatch :

0;{invalid request}
END;

Writing a Control Panel Extension 5-11

SUOISU3)XT [dued |0AU0D -

5-12

CHAPTER 5

Control Panel Extensions

kConponent Ver si onSel ect: {return versi on nunber}
MyPanel Di spatch : = kPanel Ver si on;

kPanel GetDi t | Sel ect : {get panel's itemlist}
MyPanel Di spatch : = Cal | Conponent Functi onW t hSt or age
(storage, parans,
Component Functi on(@WPanel Get DI TL)) ;

kPanel | nst al | Sel ect : {restore itens' settings if necessary}
MyPanel Di spatch : = Cal | Component Functi onWt hSt or age
(storage, parans,
Conponent Functi on(@4 Panel I nstall));

kPanel Event Sel ect : {handl e event in panel}
MyPanel Di spatch : = Cal | Component Functi onWt hSt or age
(storage, pararnms,
Conponent Functi on(@4 Panel Event));

kPanel I t enSel ect : {handl e hit in one of panel's itens}
MyPanel Di spatch : = Cal | Conponent Functi onW t hSt or age
(storage, parans,
Component Functi on(@WPanel ltem) ;

kPanel RenoveSel ect: {panel is about to be renoved, respond as needed}

MyPanel Di spatch : = Cal | Component Functi onWt hSt or age

(storage, parans,
Conponent Functi on(@4 Panel Renove)) ;

kPanel Val i dat el nput Sel ect: {val i date panel settings}

MyPanel Di spatch : =

Cal | Component Functi onWt hSt oMyPanel Val i dat el nput r age
(storage, pararnms,
Conponent Functi on(@4 Panel Val i dat el nput));

kPanel Get Titl eSel ect : {get panel's nane}
MyPanel Di spatch : = Cal | Conponent Functi onW t hSt or age
(storage, parans,
Component Functi on(@WPanel Get Title));

kPanel Get Setti ngsSel ect: {get panel settings}
MyPanel Di spatch : = Cal | Component Functi onWt hSt or age
(storage, parans,
Conponent Functi on(@4 Panel Get Setti ngs));

Writing a Control Panel Extension

CHAPTER 5

Control Panel Extensions

kPanel Set Setti ngsSel ect: {set panel settings}
MyPanel Di spatch : = Cal | Conponent Functi onW t hSt or age
(storage, parans,
Component Functi on(@WPanel Set Settings));

OTHERW SE {unrecogni zed request code}
MyPanel Di spatch : = badConponent Sel ect or;
END; {of CASE}
END;

The MyPanel Di spat ch function defined in Listing 5-2 simply inspects the what field
of the component parameters record to determine which request code to handle. For
panel-specific request codes, it dispatches to the appropriate function in the control
panel extension. See the following sections for more details on handling panel-specific
request codes.

Your extension can be dynamically loaded or unloaded at any time. When the owning
control panel first discovers the extension, it loads it into a subheap of some existing
heap. In all likelihood, your extension is loaded into either the system heap or temporary
memory. In some cases, however, your extension might be loaded into an application’s
heap. Your extension is guaranteed 32 KB of available heap space. You should do all
allocation in that heap using normal Memory Manager routines.

If you need to access resources that are stored in your control panel extension, you can
use the OpenConponent ResFi | e and O oseConponent ResFi | e functions (which
are provided by the Component Manager), or you can allow the control panel to open
your resource fork for you automatically by setting the appropriate component flag. The
OpenConponent ResFi | e routine requires the Conponent | nst ance parameter
supplied to your routine. You should not call the Resource Manager routines
OpenResFi | e or Cl oseResFi | e.

A WARNING

Do not leave any resource files open when your control panel extension
is closed. Their maps will be left in the subheap when the subheap is
freed, causing the Resource Manager to crash. a

The following sections illustrate how to write control panel extension functions that
respond to panel-specific request codes.

Installing and Removing Panel Items

After opening your control panel extension, the control panel calls your control panel
extension with a get-item list request followed by an install request. When your
component receives a get-item list request, it should return the item list that defines

the items in its panel. When your component receives an install request, it should set the
default values of any items in the panel or set up any user items in the panel. For
example, your component can restore previous settings as set by the user or create lists

Writing a Control Panel Extension 5-13

SUOISU3)XT [dued |0AU0D -

CHAPTER 5

Control Panel Extensions

at this time. When your component receives a remove request, it should perform any
processing that is necessary before the panel is removed from the display area of
the control panel.

A control panel that uses your control panel extension calls your component with the
get-item list request (followed by an install request) before displaying the panel to the
user. If your component returns a result code of NoEr r in response to both of these
request codes, the control panel displays your panel to the user.

The relevant fields in the component parameters record when your component receives
a get-item list request are:

Field Description
what This field is set to kPanel Get Di t | Sel ect .
par ans The first entry in this array contains a handle to a block of memory.

Your component should resize the handle as necessary and then use this
memory to return an item list of the items supported by your control
panel extension.

In response to a get-item list request, set your component’s function result to noEr r if
your component successfully placed the item list in memory; otherwise, set it to a
nonzero value.

Listing 5-3 shows an example of a control panel extension-defined routine that handles
the get-item list request.

Listing 5-3 Responding to the get-item list request

5-14

FUNCTI ON MyPanel Get DI TL(gl obal s: Panel d obal sHandl e;
di tl Handl e: Handl e): Conponent Resul t;
BEG N
MyPanel Get DI TL : = resNot Found; {set default return val ue}
ditl Handl e : = Get 1Resource(' DI TL', kExanpl ePanel DI TLI D) ;
IF (ditl Handl e <> NIL)
BEG N
Det achResour ce(di t| Handl e) ;
MyPanel Get DI TL : = noErr;
END;
END;

Writing a Control Panel Extension

CHAPTER 5

Control Panel Extensions

The relevant fields in the component parameters record when your component receives
an install request are:

Field Description
what This field is set to kPanel | nst al | Sel ect .
par ans The first entry in this array contains the dialog pointer of the owning

control panel. The dialog box can be a color dialog box on systems that
support color windows. The second entry contains the item offset to your
panel’s first item.

In response to an install request, set your component’s function result to noEr r if your
component successfully handled the request; otherwise, set it to a nonzero value.

Listing 5-4 shows an example of a control panel extension-defined routine that handles
the install request.

Listing 5-4 Responding to the install request

FUNCTI ON MyPanel I nstal | (gl obal s: Panel d obal sHandl e;
cpDi al ogPtr: DialogPtr;
itemOffset: Integer): ConponentResult;

BEG N
{restore previous settings of panel itenms as set by user}
MyPanel I nstall := My/RestoreSettings(globals, itenOffset,
cpDi al ogPtr);
END;

The MyPanel | nst al | function shown in Listing 5-4 calls one of its own routines
(MyRest or eSet t i ngs) to set the panel’s items to the last settings chosen by the user. In
response to the install request, you can also create other elements needed by your panel,
such as lists.

The relevant fields in the component parameters record when your component receives a
remove request are:

Field Description
what This field is set to kPanel RenoveSel ect .
par ans The first entry in this array contains the dialog pointer of the owning

control panel. The dialog box can be a color dialog box on systems that
support color windows. The second entry contains the item offset to your
panel’s first item.

In response to a remove request, dispose of any additional dialog data you created (for
example, if you created a list, call LDi spose), but do not dispose of your component’s
global storage. Also, set your component’s function result to noEr r if your component
successfully handled the request; otherwise, set it to a nonzero value.

Writing a Control Panel Extension 5-15

SUOISU3)XT [dued |0AU0D -

CHAPTER 5

Control Panel Extensions

Handling Panel Items

Your control panel extension typically receives an item-select request (indicated by the
kPanel | t enBel ect request code) when the user clicks in one of your panel’s items.
When your component receives an item-select request, it should perform the appropriate
action for the selected item.

Note that when a click in one of your panel’s items occurs, the owning control panel

first sends your component an event-select request, giving your component a chance

to filter the event, if necessary. A control panel sends your component an item-select
request only if your component returns FALSE in the handl ed parameter in response to
an event-select request. Typically, your component only returns FALSE in response to an
event-select request if the event is a mouse event. The event-select request is discussed in
detail in the next section, “Handling Events in a Panel” beginning on page 5-17.

The relevant fields in the component parameters record when your component receives
an item-select request are:

Field Description
what This field is set to kPanel | t enSel ect .
par ams The first entry in this array contains the dialog pointer of the owning

control panel. The dialog box can be a color dialog box on systems that
support color windows. The second entry contains the item number of
the item selected by the user. Note that to map the item number to an
item in your panel, you must offset the item number by the number of
items in the owning control panel.

You must set your component’s function result to NoEr r in response to an item-select
request; otherwise, the owning control panel closes the panel.

Listing 5-5 shows an example of a control panel extension-defined routine that handles
an item-select request.

Listing 5-5 Responding to an item-select request

5-16

FUNCTI ON MyPanel | t enSel ect (gl obal s: Panel d obal sHandl e;
cpDi al ogPtr: DialogPtr;
itenHit: Integer): ConponentResult;

BEG N
MyPanel | t enSel ect : = noErr; {set return val ue}
{adj ust item nunber to take into account control panel's itens}
itenHit :=itenHit - (globals?).itensOfset;

CASE itenHit OF
kExanpl eBeepButton: {user clicked beep button}

SysBeep(40);
kExanpl et her Button: {user clicked this button}
MyPanel | t enSel ect := MyDoButton(cpDi al ogPtr, itenHit);

kExanpl eRadi oButt onl: {user clicked this radi o button}

Writing a Control Panel Extension

CHAPTER 5

Control Panel Extensions

MyPanel | t enSel ect : = MySet Radi oButt on(cpDi al ogPtr,
itemHit);
kExanpl eRadi oButt on2: {user clicked this radio button}
MyPanel | t enSel ect : = MySet Radi oButt on(cpDi al ogPtr,
itemHit);
kDef aul t But t on: {user clicked the default button}

MyPanel | t enSel ect : =
MyDoDef aul t But t onAct i on(cpDi al ogPtr,
itenmHit);
END; {of CASE}
END;

Handling Events in a Panel

A control panel sends an event-select request (indicated by the kPanel Event Sel ect
request code) to your extension whenever an event occurs in your panel. The
event-select request is intended to provide your extension with the ability to respond
just like an event filter function specified in calls to the Modal Di al og procedure or
other Dialog Manager routines. A control panel sends your extension the event-select
request to give it an opportunity to intercept events in its panel and handle events
before, or instead of the owning control panel. For example, you can change a keystroke
into a click on an item, use idle time during null events, or track the movement of the
cursor through mouse events.

The relevant fields in the component parameters record when your component receives
an event-select request are:

Field Description
what This field is set to kPanel Event Sel ect .
par ams The first entry in this array contains the dialog pointer of the owning

control panel. The second entry contains the item offset to your panel’s
first item. Note that to map the item number to an item in your panel,
you must offset the item number by the number of items in the owning
control panel. The third entry contains an event record describing the
event. If your extension handles the event, it should return in the fourth
entry the item number of the associated panel item. On exit, your
extension should indicate in the fifth entry whether it has handled the
event by returning TRUE (handled the event) or FALSE (did not handle
the event).

When your extension receives an event-select request, it indicates (through the fifth entry
in par ans) whether it handled the event or not. Typically, your extension responds to an
event-select request in this manner:

= maps the Return or Enter key to the default button, performs the action
corresponding to the default button, and returns TRUE and the item number of the
default button through entries in par ans

Writing a Control Panel Extension 5-17

SUOISU3)XT [dued |0AU0D -

CHAPTER 5

Control Panel Extensions

= maps the Esc (Escape) key or Command-period combination to the Cancel button (if
any), performs the action corresponding to the Cancel button, and returns TRUE and
the item number through entries in par ans

= updates the panel if needed (typically updating only those items that need updating
apart from the standard updating performed by the Dialog Manager, such as
user-defined panel items or lists) and returns TRUE and the item number of the
default button through entries in par ans

= activates certain panel items (such as lists) as necessary and returns TRUE

= maps keyboard equivalents (if any) to corresponding item numbers, performs the
corresponding action for that item number, and returns TRUE

= tracks movement of the cursor as needed (typically tracking the cursor only in those
items, such as user-defined items or lists, that the Dialog Manager doesn’t handle)
and returns TRUE

In general, for all other events, your extension should return FALSE (in the fifth entry
of par ans) and allow the owning control panel to handle the event. However, note that
if your extension returns FALSE, the owning control panel calls your extension with the
item-select request code. See the previous section, “Handling Panel Items” on page 5-16
for information on handling clicks in your panel’s items.

Listing 5-6 shows an example of a control panel extension-defined routine that handles
the event-select request.

Listing 5-6 Responding to an event-select request

FUNCTI ON MyPanel Event (gl obal s: Handl e; dialog: D alogPtr;
itemOf fset: Integer;
t heEvent: event Record;
VAR itenmHi t: Integer;
VAR handl ed: Bool ean): Conponent Resul t;

VAR
i tenlype: I nt eger;
i tenHandl e: Handl e;
itemRect: Rect ;
final Ti cks: Longl nt;
BEG N
MyPanel Event := noErr;

CASE t heEvent . what OF
keyDown, aut oKey:
BEG N
CASE ((char) (theEvent - >message & char CodeMask))
kEnt er Key, kRet ur nKey:
BEG N {respond as if user clicked Default button}
itenH t := kDefaultButton + itenmOffset;

5-18 Writing a Control Panel Extension

CHAPTER 5

Control Panel Extensions

CGetDialoglten(dialog, itenHit, itenlype,
itenHandl e, itenRect);
HiliteControl (Control Handl e(i t enHandl e), i nButton);
Del ay(kVi sual Del ay, fi nal Ticks);
Hi l'iteControl (Control Handl e(i temHandl e), 0) ;
MyPanel Event : =
MyDoDef aul t Butt onActi on(di al og, itenHit);
END;
OTHERW SE
{let control panel/Di alog Myr handl e ot her keyboard events}
handl ed : = FALSE;
END; {of CASE keyDown, autoKey}
updat eEvt :
DoUpdat ePanel (gl obal s, dial og);
OTHERW SE
{let owning control panel & Dialog Myr handl e ot her events}
handl ed : = FALSE;
END; {of CASE}
END;

Handling Title Requests

A control panel may send your control panel extension a title request to determine the
name it should display for the panel in the control panel’s pop-up menu. Note that a
control panel usually uses the name of your component as the name to display.

The relevant fields in the component parameters record when your component receives
a title request are:

Field Description
what This field is set to kPanel Get Ti t | eSel ect .
par ans The first entry in this array contains a value that identifies a specific

instance of your component. In the second entry of this array, your
component should return the name you want displayed in the pop-up
menu associated with your panel.

Note
Current versions of the Sound and Video control panels do not send the
kPanel Get Ti t | eSel ect request code. O

Managing Control Panel Settings

A control panel may send the kPanel Val i dat el nput Sel ect,
kPanel Get Set ti ngsSel ect, or kPanel Set Setti ngsSel ect request codes to your
extension to request it to validate the settings of its items, or return or set the current

Writing a Control Panel Extension 5-19

SUOISU3)XT [dued |0AU0D -

CHAPTER 5

Control Panel Extensions

settings of its items. If a control panel sends this request code, your extension should
respond appropriately.

Note

Current versions of the Sound and Video control panels do not send the
kPanel Val i dat el nput Sel ect, kPanel Get Setti ngsSel ect, or
kPanel Set Set ti ngsSel ect request code. O

Control Panel Extensions Reference

This section describes the extension-defined routines that you can write to handle the
panel-specific request codes that your control panel extension receives. See “Writing a
Control Panel Extension” beginning on page 5-6 for information on creating a
component that contains these extension-defined routines.

Control Panel Extension-Defined Routines

This section describes the routines you'll need to define in order to write a control panel
extension. You need to write routines that respond to panel-specific request codes. The
panel-specific request codes request your control panel extension to perform various
actions. These actions include:

= returning an item list describing the panel’s items and setting up the initial values of
these items

= receiving and handling events in the panel
» getting and setting a panel’s settings

Your control panel extension-defined routines should always return result codes of type
Conponent Resul t . If a routine succeeds, it should return noEr r.

See “Dispatching to Control Panel Extension-Defined Routines” beginning on page 5-9
for a description of how you call these routines from within a control panel extension.

Managing Panel Components

5-20

A control panel extension should respond to the kPanel Get Di t | Sel ect,

kPanel | nst al | Sel ect, kPanel Get Ti t| eSel ect, and kPanel RenpoveSel ect
request codes. You typically define subroutines that the main program of your control
panel extension calls (using Cal | Conponent Funct i onW t hSt or age) to handle
these requests. You can choose any name for these subroutines, but by convention
they’re called MyPanel Get DI TL, MyPanel I nstal | , MyPanel Get Titl e,

and MyPanel Renove.

When the appropriate control panel prepares to add a control panel extension’s items to
a control panel, it obtains a list of those items by calling the extension and specifying the

Control Panel Extensions Reference

CHAPTER 5

Control Panel Extensions

kPanel Get Di t| Sel ect request code. The control panel extension typically responds
by calling a subroutine (for example, MyPanel Get DI TL) to handle the request. Once
the control panel has installed the items, it calls the extension and specifies the

kPanel I nst al | Sel ect request code to give the extension the opportunity to set any
default values in the panel. The extension’s MyPanel | nst al | function responds to this
request code.

Before the control panel removes the panel from its display, it calls the extension and
specifies the kPanel RenmpbveSel ect request code. The extension’s MyPanel Renpve
function responds to this request code. The kPanel Get Ti t | eSel ect request code is
currently optional for control panel extensions. If your extension responds to this request
code, it should return the name that the control panel should display for the panel in the
control panel’s pop-up menu. The extension’s MyPanel Get Ti t | e function responds to
this request code.

MyPanelGetDITL

DESCRIPTION

A control panel extension must respond to the kPanel Get Di t | Sel ect request code. A
control panel sends this request code to an extension to obtain a list of the panel’s items.
A control panel extension typically responds to the kPanel Get Di t | Sel ect request
code by calling an extension-defined subroutine (for example, MyPanel Get DI TL) to
handle the request.

FUNCTI ON MyPanel Get DI TL (gl obal s: Handl e; VAR ditl: Handl e)
Conponent Resul t ;

gl obal s A handle to the control panel extension’s global data.

ditl On entry, a handle to a block of memory in your application heap. On
exit, a handle to an item list.

Your MyPanel Get DI TL function should return, through the di t | parameter, an item
list of the items supported by your extension. The control panel then places those items
into the control panel and, after installing the panel, displays the panel to the user. When
the control panel creates the panel, it places the items at the locations specified in the
item list.

On entry to your MyPanel Get DI TL function, the di t | parameter contains a handle to a
block of memory in your application heap. You should resize the handle as necessary to
hold the item list you return to the control panel. (If you use a Resource Manager routine
such as Get 1Resour ce, the Resource Manager automatically resizes the handle for you.)

In general, the owning control panel disposes of the handle you pass it once it’s finished
constructing the panel. As a result, you must make sure that the handle you pass to the
control panel is not a resource handle. If you obtain your item list by reading it into
memory from a resource, you should call the Resource Manager’s Det achResour ce

Control Panel Extensions Reference 5-21

SUOISU3)XT [dued |0AU0D -

RESULT CODES

SEE ALSO

CHAPTER 5

Control Panel Extensions

procedure to convert that resource handle into one that is suitable for use with the
MyPanel Get DI TL function.

The conponent Fl ags field of the component description record for a control panel
extension contains a bit flag, channel Fl agDont OpenResFi | e, that indicates
whether the control panel should open your extension’s resource file before calling
your extension.

Set the channel FI agDont OpenResFi | e component flag to 0 if you want the

control panel to open your extension’s resource file before calling your extension. Set the
channel FI agDont OpenResFi | e component flag to 1 to specify that the control panel
should not open your extension’s resource file before calling your extension.

Your MyPanel Get DI TL function should return noEr r if successful, or an appropriate
result code otherwise.

For an example of the MyPanel Get DI TL function, see Listing 5-3 on page 5-14.

MyPanellnstall

DESCRIPTION

5-22

A control panel extension must respond to the kPanel | nst al | Sel ect request code.
A control panel sends this request code to an extension immediately after sending the
kPanel Get Di t1 Sel ect request code (which initially adds your panels’s items to

the control panel) and just before displaying the panel to the user. A control panel
extension typically responds to the kPanel | nst al | Sel ect request code by calling an
extension-defined subroutine (for example, MyPanel | nst al |) to handle the request.

FUNCTI ON MyPanel I nstall (gl obals: Handle; dialog: D alogPtr;
itemOffset: Integer): ConponentResult;

gl obal s A handle to the control panel extension’s global data.

di al og A pointer to the dialog record of the owning control panel. The owning
control panel displays your panel’s items in the dialog box referenced
through this parameter.

itenOX f set
An offset to the panel’s first item.

Your MyPanel | nst al | function should perform any processing that must occur after
the panel is created but before it is displayed to the user. For example, your

Control Panel Extensions Reference

RESULT CODES

SEE ALSO

CHAPTER 5

Control Panel Extensions

MyPanel | nst al | function can set or restore default values of various items in the
panel. You can also use this opportunity to create user items (such as lists) in the panel.

The i t emOf f set parameter specifies the offset from 1 to the first item in your panel.
The items installed by your control panel extension are contained in a larger dialog box
containing other items; as a result, if you call the Get Di al ogl t emprocedure to obtain
a handle to an item, you need to increment the i t enNo parameter passed to

Cet Di al ogl t emby the value of i t enTX f set .

In most cases, you'll need to save the value passed in the i t enf f set parameter in
your extension’s global storage for later use. For example, you usually need this value
to determine which panel item the user selected when your extension responds to the
kPanel | t enel ect request code.

The value passed to your MyPanel | nst al | function in the i t enX f set parameter
may be different each time MyPanel | nst al | is called. You should not assume it is
always the same value.

Your MyPanel | nst al | function should return noEr r if successful, or an appropriate
result code otherwise.

For an example of the MyPanel | nst al | function, see Listing 5-4 on page 5-15.

MyPanelGetTitle

A control panel extension should respond to the kPanel Get Ti t | eSel ect request code
but is not required to do so. A control panel sends this request code to your extension to
get the name of your panel extension. A control panel extension typically responds to the
kPanel Get Ti t | eSel ect request code by calling an extension-defined subroutine (for
example, MyPanel Get Ti t | e) to handle the request.

FUNCTI ON MyPanel Get Titl e (sel f: Conponentlnstance; title: Str255)
Conponent Resul t ;

sel f A component instance identifying the specific instance of your control
panel extension.

title On exit, the name of your control panel extension as you want it to
appear in the panel-selection pop-up menu of the control panel.

Control Panel Extensions Reference 5-23

SUOISU3)XT [dued |0AU0D -

DESCRIPTION

CHAPTER 5

Control Panel Extensions

Your MyPanel Get Ti t | e function should return, through the ti t | e parameter, a string
that is the desired title of your control panel extension. This name appears as a menu
item in the pop-up menu that lets the user select which panel to view.

SPECIAL CONSIDERATIONS

RESULT CODES

Currently, all control panels use the component name as the title of the control panel
extension. The MyPanel Get Ti t | e function is intended to allow your extension to
assign a title different from the component name. Future control panels are likely to call
your MyPanel Get Ti t | e function.

Your MyPanel Get Ti t | e function should return noEr r if successful, or an appropriate
result code otherwise.

MyPanelRemove

DESCRIPTION

5-24

A control panel extension must respond to the kPanel RenbveSel ect request code. A
control panel sends this request code to an extension just before removing the panel
from the enclosing dialog box. A control panel extension typically responds to the
kPanel RenpveSel ect request code by calling an extension-defined subroutine (for
example, M/Panel Renpve) to handle the request.

FUNCTI ON MyPanel Renpbve (gl obal s: Handl e; dialog: DialogPtr;
itemOffset: Integer): ConponentResult;

gl obal s Ahandle to the control panel extension’s global data.
di al og A pointer to the dialog record of the owning control panel.
itenOf f set

An offset to the panel’s first item.

Your MyPanel Renpve function should perform any processing that must occur

before your panel is removed from the enclosing dialog box. For example, your

MyPanel Renpve function can save the current values of any items in the dialog box.
You can also use this opportunity to dispose of any user items (such as lists) in the dialog
box. If the control panel opened your component’s resource file, that file is still open at
the time MyPanel Renpve is called.

The i t enX f set parameter specifies the offset from 1 to the first item in your control
panel. The dialog items installed by your control panel extension are contained in a
larger dialog box containing other items; as a result, if you call the Get Di al ogl t em

Control Panel Extensions Reference

RESULT CODES

CHAPTER 5

Control Panel Extensions

procedure to obtain a handle to a dialog item, you need to increment the i t eniNo
parameter passed to Get Di al ogl t emby the value of i t enf f set .

The value passed to your MyPanel Renpve function in the i t enOf f set parameter may
be different each time MyPanel Renpve is called. You should not assume it is always the
same value.

Your MyPanel Renpve function should return noEr r if successful, or an appropriate
result code otherwise.

Handling Panel Events

A control panel extension should respond to the kPanel | t enfSel ect and
kPanel Event Sel ect request codes. You typically define subroutines that

the main program of your control panel extension calls (using the

Cal | Conponent Funct i onW t hSt or age function) to handle these requests.
You can choose any name for these subroutines, but by convention they're called
MyPanel | t emand MyPanel Event . These two routines should respond to mouse
clicks and other events in the items of the panel.

MyPanelltem

A control panel extension must respond to the kPanel | t enSel ect request code. In
general, a control panel sends this request code to your extension whenever the user
clicks an item in your panel. A control panel extension typically responds to the
kPanel |t enSel ect request code by calling an extension-defined subroutine (for
example, MyPanel | t em) to handle the request.

FUNCTI ON MyPanel Item (gl obal s: Handl e; dialog: Dial ogPtr;
itenOffset: Integer; itenNum |Integer)
Conponent Resul t ;

gl obal s A handle to the control panel extension’s global data.

di al og A pointer to the dialog record of the owning control panel. The owning
control panel displays your panel’s items in the dialog box (of the control
panel) referenced through this parameter.

itenOX fset
An offset to the panel’s first item.

i temNum The item number of the item selected by the user. This item number is an
index into the list of items in the dialog box. To map this value to the item
list you passed to the control panel (in the MyPanel Get DI TL function),
you need to compensate for the offset reported in the i t enf f set
parameter.

Control Panel Extensions Reference 5-25

SUOISU3)XT [dued |0AU0D -

DESCRIPTION

RESULT CODES

CHAPTER 5

Control Panel Extensions

Your MyPanel | t emfunction should handle mouse clicks on specific items in your
panel. The owning control panel calls your control panel extension with the

kPanel | t enSel ect whenever your component returns FALSE in response to an
event-select request. Your MyPanel | t emfunction is therefore typically invoked
each time the user clicks on some item in your panel. Your function should respond
appropriately, according to the item that was clicked.

As just described, note that when a click in one of your panel’s items occurs, the

owning control panel first sends your component an event-select request, giving your
component a chance to filter the event, if necessary. In this case, if your component
returns FALSE in the handl ed parameter, then the control panel sends your component
the item-select request code; if your component returns TRUE in the handl ed parameter,
the control panel does not send your component the subsequent item-select request code.

Your MyPanel | t emfunction should return noEr r if successful, or an appropriate result
code otherwise.

SEE ALSO
For an example of the MyPanel | t emfunction, see Listing 5-5 on page 5-16. For
information on responding to events, see the description of the MyPanel Event function
in the next section.

MyPanelEvent

5-26

A control panel extension must respond to the kPanel Event Sel ect request code. A
control panel sends this request code to your extension whenever an event occurs in
your panel. A control panel extension typically responds to the kPanel Event Sel ect
request code by calling an extension-defined subroutine (for example, MyPanel Event)
to handle the request.

FUNCTI ON MyPanel Event (gl obal s: Handl e; dialog: DialogPtr;
itemOffset: Integer;
t heEvent: event Record;
VAR itenmHi t: Integer;
VAR handl ed: Bool ean): Conponent Result;

gl obal s A handle to the control panel extension’s global data.

di al og A pointer to the dialog record of the owning control panel. The owning
control panel displays your items in the dialog box (of the control panel)
referenced through this parameter.

Control Panel Extensions Reference

DESCRIPTION

RESULT CODES

SEE ALSO

CHAPTER 5

Control Panel Extensions

itenOf f set
An offset to the panel’s first item.

t heEvent An event record describing the event being reported to your control panel
extension.

itemHit On entry, the item number of an item. This number is valid only for
mouse events (on input, do not interpret this parameter for any other type
of event). On exit, if the MyPanel Event function has handled the event,
it should return the item number of the associated item in this parameter.

handl ed On entry, the value FALSE for mouse events; the value TRUE for all other

events. On exit, the MyPanel Event function should return a Boolean
value that indicates whether it has handled the event (TRUE) or has not
handled the event (FALSE).

Your MyPanel Event function is called whenever an event occurs in your panel. The
parameter t heEvent contains a complete description of the event. A control panel
handles events in its own items and also gives your component a chance to handle
events in its own panel.

The MyPanel Event function is intended to operate just like an event filter function
specified in calls to the Modal Di al og procedure or other Dialog Manager routines.
The main difference between MyPanel Event and other event filter functions is that
MyPanel Event does not return a Boolean value as its function result. Instead, it
indicates whether it handled the event in the handl ed parameter.

If the specified event is a mouse event, you might prefer your extension’s MyPanel | t em
function to handle the event. In that case, you should return FALSE in the handl ed
parameter. Otherwise, you should attempt to handle the event.

If your MyPanel Event function does handle the event, it should update the i t enHi t
parameter to reflect the affected item and return TRUE in the handl ed parameter. If you
set handl ed to FALSE, the owning control panel sends your panel an item-select request.

Your MyPanel Event function should return noEr r if successful, or an appropriate
result code otherwise.

For an example MyPanel Event function, see Listing 5-6 on page 5-18. See the
description of MyPanel | t emon page 5-25 for information on handling clicks in dialog
items. For a description of the fields of the event record, see the chapter “Event
Manager” in Inside Macintosh: Macintosh Toolbox Essentials.

Control Panel Extensions Reference 5-27

SUOISU3)XT [dued |0AU0D -

CHAPTER 5

Control Panel Extensions

Managing Panel Settings

A control panel extension should respond to the kPanel Val i dat el nput Sel ect,
kPanel Get Setti ngsSel ect, and kPanel Set Set t i ngsSel ect request codes. You
typically define subroutines that the main program of your control panel extension calls
(using the routine Cal | Conponent Functi onW t hSt or age) to handle these requests.
You can choose any name for these subroutines, but by convention they’re called
MyPanel Val i dat el nput, MyPanel Get Setti ngs, and MyPanel Set Setti ngs.
These routines should manage item settings in a panel.

Note

Current versions of the Sound and Video control panels do not send the
kPanel Val i dat el nput Sel ect, kPanel Get Setti ngsSel ect, or
kPanel Set Setti ngsSel ect request code. O

MyPanelValidatelnput

A control panel extension must respond to the kPanel Val i dat el nput Sel ect request
code. A control panel sends this request code to your extension whenever the user

clicks a control panel’s close box. A control panel extension typically responds to

the kPanel Val i dat el nput Sel ect request code by calling an extension-defined
subroutine (for example, MyPanel Val i dat el nput) to handle the request.

FUNCTI ON MyPanel Val i dat el nput (gl obal s: Handl e; VAR ok: Bool ean)
Conponent Resul t ;

gl obal s Ahandle to the control panel extension’s global data.

ok On return, a Boolean value that indicates whether the panel’s current
values are valid (TRUE) or invalid (FALSE).

DESCRIPTION

Your MyPanel Val i dat el nput function should perform any processing necessary to
validate the current settings in the panel. For example, if your panel contains any
editable text items, you might need to ensure that the text they contain makes sense.
The control panel calls this function when the user clicks the control panel’s close box.

If the current settings of the panel items are acceptable, set the ok parameter to TRUE
before returning from MyPanel Val i dat el nput . If the current settings are not valid, set
ok to FALSE. When you set ok to FALSE, the control panel ignores any of the user’s
subsequent clicks in the panel’s OK button.

RESULT CODES

Your MyPanel Val i dat el nput function should return noEr r if successful, or an
appropriate result code otherwise.

5-28 Control Panel Extensions Reference

CHAPTER 5

Control Panel Extensions

MyPanelGetSettings

DESCRIPTION

RESULT CODES

A control panel extension must respond to the kPanel Get Set ti ngsSel ect request
code. A control panel sends this request code to your extension to get the panel’s
current settings. A control panel extension typically responds to the

kPanel Get Set ti ngsSel ect request code by calling an extension-defined
subroutine (for example, MyPanel Get Set t i ngs) to handle the request.

FUNCTI ON MyPanel Get Settings (gl obals: Handle; VAR ud: UserDat a;
flags: Longlnt): ConponentResult;

gl obal s A handle to the control panel extension’s global data.
ud A handle to the control panel’s configuration data.
flags Reserved. This parameter is always 0.

Your MyPanel Get Set ti ngs function should return, through the ud parameter, a copy
of the panel’s current settings. This copy is maintained privately by the control panel.
The control panel may subsequently restore your panel’s settings by passing those
settings to your MyPanel Set Set ti ngs function.

Your control panel extension is responsible for allocating storage for the configuration
data to which ud is a handle. You might do that when the Component Manager passes
your extension the kConponent OpenSel ect parameter. Your extension should not
dispose of that storage until it closes (that is, when the Component Manager passes it
the kConponent O oseSel ect parameter).

You can arrange the panel configuration data in any way you like. The data needs to
contain whatever information is necessary for your MyPanel Set Set t i ng function to
set all relevant panel items to specified values. For example, the standard Apple sound
panels save information such as the component type of the default sound output device,
the current volumes levels, the current alert beep, and so forth. You might want to begin
the configuration data with a version number so that you can easily change the format of
the rest of the data, if necessary.

The information you return to the control panel may get stored as part of the owner’s
configuration information and might therefore persist across system restarts. As a result,
you should not store values that might change without the control panel’s knowledge
(such as component ID numbers, file reference numbers, and similar volatile
information).

Your MyPanel Get Set ti ngs function should return noEr r if successful, or an
appropriate result code otherwise.

Control Panel Extensions Reference 5-29

SUOISU3)XT [dued |0AU0D -

CHAPTER 5

Control Panel Extensions

MyPanelSetSettings

DESCRIPTION

RESULT CODES

5-30

A control panel extension must respond to the kPanel Set Set ti ngsSel ect request
code. A control panel sends this request code to your extension to request that your
extension set the panel’s current settings to the specified values. A control panel
extension typically responds to the kPanel Set Set t i ngsSel ect request code by
calling an extension-defined subroutine (for example, M/Panel Set Set t i ngs) to
handle the request.

FUNCTI ON MyPanel Set Settings (gl obal s: Handl e; ud: UserDat a;
flags: Longlnt): ConponentResult;

gl obal s Ahandle to the control panel extension’s global data.
ud A handle to the control panel’s configuration data.
flags Reserved. This parameter is always 0.

Your MyPanel Set Set ti ngs function should parse the block of configuration data
passed in the ud parameter and set the values of the items in the panel based on that
data. The control panel calls this function just before your panel is displayed to the user
and whenever a user cancels changes to your panel. You can assume that the data passed
in the ud parameter was created by a previous call to your extension’s

MyPanel Get Set t i ng function.

It’s possible that your extension might not able to set the value of one or more panel
items to the values specified in the configuration data. (For example, the hardware
environment might have changed since the configuration data was last stored by the
control panel.) When this happens, you should try to match the specified panel settings
as closely as possible. If you cannot match perfectly, you should return some nonzero
result code.

Your MyPanel Set Set ti ngs function should return noEr r if successful, or an
appropriate result code otherwise.

Control Panel Extensions Reference

CHAPTER 5

Control Panel Extensions

Summary of Control Panel Extensions

Pascal Summary

Constants

CONST
{conponent types}
SoundPanel Type = 'sndP'; {sound panel }
Vi deoPanel Type = 'vidP; {vi deo panel}

{conponent subtypes}

kAl ert SoundsPanel ="'alrt"; {al ert sounds panel}
kl nput sPanel = 'mcs'; {i nput devi ces panel}
kCut put sPanel = 'spek'; {out put devi ces panel}
kVol unesSubType = 'vols'; {vol unes panel }

{conponent fl ags}
channel Fl agDont OpenResFi | e = 2; {do not open resource file}

{ Conponent Manager request codes for routines}

kPanel Get Di t | Sel ect = {get panel's itemlist}

kPanel Get Titl eSel ect = {get panel's nane}

kPanel | nst al | Sel ect = {restore item settings}

kPanel Event Sel ect = {handl e event in panel}

kPanel | t entel ect {handle click in a panel itent
kPanel RenmbveSel ect = {panel is about to be renoved}
kPanel Val i dat el nput Sel ect = {val i date panel settings}
kPanel Get Setti ngsSel ect {get panel settings}

kPanel Set Set ti ngsSel ect {set panel settings}

N ONREO

Control Panel Extension-Defined Routines

Managing Panel Components

FUNCTI ON MyPanel Get DI TL (globals: Handle; VAR ditl: Handle)
Conponent Resul t ;

Summary of Control Panel Extensions 5-31

SUOISU3)XT [dued |0AU0D -

CHAPTER 5

Control Panel Extensions

FUNCTI ON MyPanel | nst al | (gl obal s:

itenOXfset:
(self: Conponentlnstance; title: Str255)

FUNCTI ON MyPanel Get Titl e

Handl e; dial og: Dial ogPtr;
I nt eger):

Conponent Resul t ;

Conmponent Resul t ;

FUNCTI ON MyPanel Renpve (gl obal s:
itenOffset:

Handling Panel Events

FUNCTI ON MyPanel It em (gl obal s:

itenOf fset:

Handl e; dial og: Dial ogPtr;
I nteger):

Component Resul t ;

Handl e; dial og: Dial ogPtr;
Integer; itemNum |Integer)

Conponent Resul t ;

FUNCTI ON MyPanel Event (gl obal s:

itenOf fset:
VAR itenHit:

Handl e; dial og: Dial ogPtr;
I nteger; theEvent: eventRecord;
I nteger; VAR handl ed: Bool ean)

Component Resul t;

Managing Panel Settings

FUNCTI ON MyPanel Val i dat el nput
(gl obal s:

Handl e; VAR ok: Bool ean)

Component Resul t ;

FUNCTI ON MyPanel Get Settings (gl obals:

Handl e; VAR ud: User Dat a;

flags: Longlnt): ConponentResult;

FUNCTI ON MyPanel Set Setti ngs (gl obal s:

Handl e; ud: User Dat a;

flags: Longlnt): ConponentResult;

C Summary

Constants

/ *conponent types*/

#def i ne SoundPanel Type 'sndP
#def i ne Vi deoPanel Type "vi dP'
/ *conmponent subt ypes*/

#defi ne kAl ert SoundsPanel "alrt’
#def i ne Kkl nput sPanel "m cs'
#def i ne kQut put sPanel ' spek’
#def i ne kVol unesSubType "vol s'

5-32 Summary of Control Panel Extensions

/*sound panel */
/*vi deo panel */

/*al ert sounds panel */
/*input devices panel */
/ *out put devi ces panel */
/*vol unmes panel */

CHAPTER 5

Control Panel Extensions

/ *conmponent fl ags*/

enum {

channel Fl agDont OpenResFi | e =2
1
/ *Conponent Manager request codes for
enum {

kPanel Get Di t| Sel ect = 0,

kPanel Get Titl eSel ect,
kPanel | nst al | Sel ect,
kPanel Event Sel ect

kPanel | t entel ect

kPanel RenoveSel ect

kPanel Val i dat el nput Sel ect,
kPanel Get Setti ngsSel ect,
kPanel Set Setti ngsSel ect

b

Control Panel Extension-Defined Routines

/*do not open resource file*/

routi nes*/

/*get panel's itemlist*/

/*get panel's nane*/

/*restore itemsettings*/
/*handl e event in panel*/
/*handle click in a panel itent/
/*panel is about to be renoved*/
/*val i dat e panel settings*/
/*get panel settings*/

/*set panel settings*/

Managing Panel Components

Handl e *ditl);

Di al ogPtr di al og,

short itentOffset);

(Component I nst ance self, StringPtr title);

Di al ogPtr di al og,

short itenOffset);

Di al ogPtr di al og,

short itenOfset, short itemNun;

pascal Component Result MPanel Get DI TL

(Handl e gl obal s,
pascal Conponent Result MyPanel I nstal |

(Handl e gl obal s,
pascal Conponent Result MyPanel GetTitle
pascal Component Result MPanel Renove

(Handl e gl obal s,
Handling Panel Events
pascal Component Result MyPanelltem

(Handl e gl obal s,
pascal Component Result MPanel Event

(Handl e gl obal s,

Di al ogPtr di al og,

short itenOffset, eventRecord *theEvent,

short *itenHit,

Summary of Control Panel Extensions

Bool ean *handl ed) ;

5-33

SUOISU3)XT [dued |0AU0D -

CHAPTER 5

Control Panel Extensions

Managing Panel Settings

pascal Component Result MPanel Val i dat el nput

(Handl e gl obal s, Bool ean *o0k);
pascal Component Result MyPanel Get Setti ngs

(Handl e gl obals, UserData *ud, long flags);
pascal Component Result MyPanel Set Setti ngs

(Handl e gl obals, UserData *ud, |ong flags);

5-34 Summary of Control Panel Extensions

	 Title
	 Copyright
	 Table of Contents
	 Figures, Tables, and Listings
	 Preface
	 Gestalt Manager TOC
	 Gestalt Manager
	 System Error Handler TOC
	 System ErrorHandler
	 Mathematical and Logical Utilities TOC
	 Mathematical and Logical Utilities
	 Date, Time, and Measurement Utilities TOC
	 Date, Time, and Measurement Utilities
	 Control Panels Extensions TOC
	Control Panel Extensions
	About Control Panel Extensions
	Writing a Control Panel Extension
	Creating a Component Resource for a Control Panel ...
	Dispatching to Control Panel Extension-Defined Rou...
	Installing and Removing Panel Items
	Handling Panel Items
	Handling Events in a Panel
	Handling Title Requests
	Managing Control Panel Settings

	Control Panel Extensions Reference
	Control Panel Extension-Defined Routines
	Managing Panel Components
	Handling Panel Events
	Managing Panel Settings

	Summary of Control Panel Extensions
	Pascal Summary
	Constants
	Control Panel Extension-Defined Routines

	C Summary
	Constants
	Control Panel Extension-Defined Routines

	 Queue Utilities TOC
	 Queue Utilities
	 Parameter RAM Utilities TOC
	 Parameter RAM Utilities
	 Trap Manager TOC
	 Trap Manager
	 Start Manager TOC
	 Start Manager
	 Package Manager TOC
	 Package Manager
	 Glossary
	 Index
	 Colophon

