

C H A P T E R 6

6

Q
ueue U

tilities

Queue Utilities 6

This chapter describes how your application can directly add elements to and remove
them from an operating-system queue. The Macintosh Operating System stores some of
the information it uses in data structures called queues. The Queue Utilities allow you to
manipulate those queues directly by adding and removing elements.

Ordinarily, you do not need to use the Queue Utilities. The Operating System itself is
responsible for managing the various operating-system queues that it creates internally,
and you should manipulate those queues only indirectly. For example, to add an element
to the notification queue maintained by the Notification Manager, you should call the
NMInstall function. To remove an element from that queue, you should call the
NMRemove function. But if you discover some unusual need for adding or removing
such elements directly, you can use the Queue Utilities routines. In addition, you can
use the Queue Utilities routines for directly manipulating queues that you create.

This chapter describes the general structure of operating-system queues and then

■ lists the routines your application should use to manipulate an operating-system
queue indirectly

■ shows how your application can use the Queue Utilities for directly manipulating
queues that you create.

About Queues 6

The Macintosh Operating System uses operating-system queues to keep track of a wide
variety of items, including VBL tasks, notifications, I/O requests, events, mounted
volumes, and disk drives (or other block-formatted devices). A queue is a list of
identically structured entries linked together by pointers. A single entry in a queue
is called a queue element. Figure 6-1 illustrates the general structure of an
operating-system queue.
About Queues 6-3

C H A P T E R 6

Queue Utilities

Figure 6-1 An operating-system queue

As you can see, the addresses of the first and last elements in the queue are stored in
a queue header. The queue header also contains some queue flags, which contain
information about the queue.

Each queue element contains the address of the next element in the queue (or the value
NIL if there is no next element), an indication of the type of queue to which the next
element belongs, and some data. The exact format and size of the data differs among the
various queue types. In some cases, the data in the queue element contains the address
of a routine to be executed. Table 6-1 on page 6-7 lists the different types of
operating-system queues used by the Macintosh Operating System.

Next queue

entry

Queue type

Data

Next queue

entry

Queue type

Data

Next queue

entry

Queue type

Data

Next queue

entry

Queue type

Data

NIL

Queue type

Data

Queue

head

Queue

tail

Queue header

First element Last element

Queue flagsQueue header pointer
6-4 About Queues

C H A P T E R 6

Queue Utilities

6

Q
ueue U

tilities

The Queue Header 6
The queue header is the head of a list of identically structured entries linked together by
pointers. Figure 6-2 shows the format of a queue header.

Figure 6-2 The format of a queue header

A queue header is a record defined by a data structure of type QHdr, which contains
three fields: flags, a pointer to the first element in the queue (qHead), and a pointer to the
last element in the queue (qTail). The flags field contains information specific to each
queue. Ordinarily, these flags are for use by the system software only, and your
application should not need to read or manipulate these flags. The qHead field is a
pointer to the first element in a queue, and the qTail field is a pointer to the last
element in a queue. If the queue has no elements, both of these fields are set to NIL.
Thus, if you have access to a variable myQueueHdr of type QHdrPtr, you can access the
corresponding first queue element of a non-empty queue with myQueueHdr^.qHead^
and access the last element with myQueueHdr^.qTail^.

Each queue element itself is a record of type QElem, which is described in the
next section.

Queue header Bytes

Queue flags 2

First queue element 4

Last queue element 4
About Queues 6-5

C H A P T E R 6

Queue Utilities

The Queue Element 6
The exact format of a queue element is not the same for all types of operating-system
queues; thus, a queue element is defined by a variant record that is a data structure of
type QElem. Figure 6-3 shows the format of a queue element.

Figure 6-3 The format of a queue element

Each queue element contains two fixed fields: a pointer to the next element in the queue
(qLink), a value describing the queue type (qType), and a variable data field specific to
each queue type.

The qLink field contains a pointer to the next element in the queue. All queue elements
are linked through these pointers. Each pointer points to the qLink field in the next
queue element, and the last queue element contains a NIL pointer. The data type of the
pointer to the next queue element is always QElemPtr.

The qType field contains an integer that usually designates the queue type; for example,
ORD(evType) for the event queue. Table 6-1 contains a list of all the supported
operating-system queue types.

Queue element Bytes

Next queue element 4

Queue type 2

Queue-specific data Variable
6-6 About Queues

C H A P T E R 6

Queue Utilities

6

Q
ueue U

tilities

Table 6-1 Operating-system queue types

Often, you need to set the qType field of a queue element to an appropriate value before
installing the queue element. However, some operating-system queues use this field for
different purposes. For example, the Time Manager uses an operating-system queue to
track Time Manager tasks. In the high bit of this field, the revised Time Manager places a
flag to indicate whether a task timer is active. The Time Manager (along with other parts
of the Operating System that use this field for their own purposes) shields you from the
implementation-level details of operating a queue. Indeed, there is no way for you to
access a Time Manager queue directly, and the QElem data type does not support access
of Time Manager task records from Time Manager queue elements.

The third field contains data that is specific to the type of operating-system queue to
which the queue element belongs. For example, a queue element in a vertical retrace
queue, maintained by the Vertical Retrace Manager, includes information about the task
procedure to be called, the number of interrupts, and the task phase. A queue element in
a notification queue, maintained by the Notification Manager, includes information
about the alert box, the sound response, the item to be marked in the Application menu,
a response procedure, and some reserved values. Figure 6-4 shows the format of these
two different types of queue elements.

Constant Queue type Description

vType Vertical retrace queue A list of tasks to be executed during VBL
interrupts

ioQType File I/O queue (or
driver I/O queue)

A list of parameter blocks for all asynchronous
routines awaiting execution

drvQType Drive queue A list of all disk drives connected to the
computer

evType Event queue A list of pending events

fsQType Volume control block
queue

A list of volume control blocks for each
mounted volume

sIQType Slot interrupt queue A list of slot interrupts

dtQType Deferred task queue A list of deferred tasks

nmQType Notification queue A list of notification requests

slpQType Sleep queue A list of routines to be notified before a
Macintosh Portable or a PowerBook is put into
the sleep state
About Queues 6-7

C H A P T E R 6

Queue Utilities

Figure 6-4 Formats of a vertical retrace queue element and a notification queue element

Figure 6-4 illustrates how the format and size of an operating-system queue element can
vary because of the variable data field. For example, an element of type vType (a vertical
retrace queue element) uses 10 bytes for VBL-specific data, whereas an element of type
nmType (a notification queue element) uses 30 bytes for notification-specific data. All
operating-system queue elements use at least 6 bytes: 4 bytes to store a pointer to the
next element in the queue and 2 bytes to store a value indicating the queue type.

Using the Queue Utilities 6

The Queue Utilities provide routines for directly adding elements to a queue and
removing them from a queue. The Enqueue procedure lets you add elements to the
end of a queue, and the Dequeue function lets you remove elements from a queue.

Notification

queue element Bytes

qLink 4

qType 2

nmFlags 2

nmPrivate 4

nmReserved 2

nmMark 2

nmIcon 4

nmSound 4

nmStr 4

nmResp 4

nmRefCon 4

Vertical retrace

queue element Bytes

qLink 4

qType 2

vblAddr 4

vblCount 4

Notification

queue data

Vertical

retrace

queue

data

vblPhase 2

Pointer to

next element

in vertical

retrace queue

Pointer

to task

procedure

Interrupts

until next

execution

Phase count

Pointer to next

element in

notification queue

Reserved

Reserved

Reserved

Item to mark

in menu

Handle

to icon

Handle to

sound

resource

Pointer to

appear in

alert box

Pointer to

response

procedure

For use by

application
6-8 Using the Queue Utilities

C H A P T E R 6

Queue Utilities

6

Q
ueue U

tilities

You should manipulate an operating-system queue used by the Macintosh Operating
System indirectly, by calling special-purpose routines. For example, to install a deferred
task into a deferred task queue, your application should use the DTInstall function
instead of the Enqueue procedure. However, if you create your own queues, you can
use the Enqueue procedure and the Dequeue function to manipulate these queues
directly. This section describes how to

■ search for an element in an operating-system queue

■ add an element to an operating-system queue

■ remove an element from an operating-system queue

Searching for an Element in an Operating-System Queue 6
You can search an operating-system queue for a specific element or elements. For
example, Listing 6-1 shows a simplified way to search a drive queue for all the drives
connected to the computer. The application-defined function, MySearchDriveQueue,
walks through the drive queue searches for all connected drives. If it finds any, it calls
the application-defined function DoDisplayDriveInfo to display information about
the connected drive.

Listing 6-1 Searching for drives in the drive queue

FUNCTION MySearchDriveQueue: Boolean;

VAR

driveQHdr: QHdrPtr;

result: Boolean;

BEGIN

result := FALSE; {assume no drivers in the queue}

driveQHdr := GetDrvQHdr; {get the drive queue header}

driveQPtr := DrvQElPtr(driveQHdr^.qHead);

WHILE (driveQPtr <> NIL) DO {while drive queue is not empty}

BEGIN

result := TRUE; {found a drive}

DoDisplayDriveInfo(driveQPtr); {display drive information}

{go to next drive in the queue}

driveQPtr := DrvQElPtr(driveQPtr^.qLink);

END; {of while}

MySearchDriveQueue := result; {return result of search}

END;
Using the Queue Utilities 6-9

C H A P T E R 6

Queue Utilities

Adding Elements to an Operating-System Queue 6
You should avoid direct manipulation of an operating-system queue used by the
Macintosh Operating System. Your application should, when possible, use the
installation routines in Table 6-2 to add new elements to an operating-system queue.

IMPORTANT

It is not recommended that you directly add elements to an
operating-system queue used by the Macintosh Operating System. If
at all possible, your application should use the installation routines
provided by the various managers. ▲

If you have created a queue for your own use, you can use the Enqueue procedure
to add a new element to your queue. For example, Listing 6-2 presents the
application-defined procedure DoAddBankCustomer, which uses the Enqueue
procedure for directly installing a customer into a bank-teller queue.

* No comparative installation routine available.

Table 6-2 Installation routines for operating-system queue elements

Queue element Installation routine Additional information

Slot-based VBL task SlotVInstall The chapter “Vertical Retrace Manager” in
Inside Macintosh: Processes

System-based VBL task VInstall The chapter “Vertical Retrace Manager” in
Inside Macintosh: Processes

Parameter block for an
asynchronous routine
awaiting execution

* The chapter “File Manager” in Inside Macintosh: Files

Disk drive AddDrive The chapter “File Manager” in Inside Macintosh: Files

Event PPostEvent
and PostEvent

The chapter “Event Manager” in Inside Macintosh:
Macintosh Toolbox Essentials

Volume control block * The chapter “File Manager” in Inside Macintosh: Files

Deferred task DTInstall The chapter “Deferred Task Manager” in
Inside Macintosh: Processes

Slot interrupt SIntInstall The chapter “Slot Manager” in Inside Macintosh:
Devices

Notification request NMInstall The chapter “Notification Manager” in
Inside Macintosh: Processes

Sleep SleepQInstall The chapter “Power Manager” in Inside Macintosh:
Devices
6-10 Using the Queue Utilities

C H A P T E R 6

Queue Utilities

6
Q

ueue U
tilities
Listing 6-2 Using the Enqueue procedure to add a bank customer to a teller queue

PROCEDURE DoAddBankCustomer(myQueueHdrPtr: QHdrPtr,

 Var bankCustomer: MyCustomerRecord);

BEGIN

WITH bankCustomer^ DO {get bank customer data}

BEGIN

qType := kTellerQType; {queue type for the bank-teller queue}

account := MyGetNextAccount; {get account number}

action := MyGetBankAction; {get action to perform}

amount := MyGetAmount; {get the amount}

END;

Enqueue(QElemPtr(bankCustomer), myQueueHdrPtr); {add customer to queue}

END;

Note that you are responsible for allocating memory for a queue element before you
insert into a queue and for deallocating that memory when you remove the queue
element.

Removing Elements From an Operating-System Queue 6

This section describes how your application can remove elements from an
operating-system queue. Whenever possible, your application should use the removal
routines listed in Table 6-3 to remove elements indirectly from an operating-system
queue used by the Macintosh Operating System.
Using the Queue Utilities 6-11

C H A P T E R 6

Queue Utilities
IMPORTANT

It is not recommended that you directly remove queue elements from an
operating-system queue used by the Macintosh Operating System. If at
all possible, your application should use the removal routines provided
by the various managers. ▲

If you have created a queue for your own use, you can use the Dequeue function to
remove elements from that queue.

Listing 6-3 shows the application-defined function DoRemoveBankCustomer, which
uses the Dequeue procedure for directly removing the first customer from a bank-teller
queue. The DoRemoveBankCustomer function returns TRUE if it removes the customer.

* No comparative removal routine available.

Table 6-3 Removal routines for operating-system elements

Queue element Removal routine Additional information

Slot-based VBL task SlotVRemove The chapter “Vertical Retrace Manager” in
Inside Macintosh: Processes

System-based VBL task VRemove The chapter “Vertical Retrace Manager” in
Inside Macintosh: Processes

Parameter block for an
asynchronous routine
awaiting execution

* The chapter “File Manager” in Inside Macintosh: Files

Disk drive * The chapter “File Manager” in Inside Macintosh: Files

Event WaitNextEvent The chapter “Event Manager” in Inside Macintosh:
Macintosh Toolbox Essentials

Volume control block * The chapter “File Manager” in Inside Macintosh: Files

Deferred task * The chapter “Deferred Task Manager” in
Inside Macintosh: Processes

Slot interrupt SIntRemove The chapter “Slot Manager” in Inside Macintosh:
Devices

Notification request NMRemove The chapter “Notification Manager” in
Inside Macintosh: Processes

Sleep SleepQRemove The chapter “Power Manager” in Inside Macintosh:
Devices
6-12 Using the Queue Utilities

C H A P T E R 6

Queue Utilities

6
Q

ueue U
tilities
Listing 6-3 Using Dequeue to remove the first customer in the bank-teller queue

FUNCTION DoRemoveBankCustomer (VAR myQueueHdr: QHdr): BOOLEAN;

VAR

bankCustomerPtr: MyCustomerRecordPtr;

customerRemoved: Boolean;

BEGIN

customerRemoved := FALSE;

bankCustomerPtr := MyCustomerRecordPtr(myQueueHdr.qHead);

IF bankCustomerPtr <> NIL THEN {Check for non-empty queue}

BEGIN

Dequeue(QElemPtr(bankCustomerPtr),&myQueueHdr) {remove customer}

customerRemoved := TRUE;

END; {of queue not empty}

DoRemoveCustomer := customerRemoved;

END;

Queue Utilities Reference 6

This section describes the data structures of operating-system queues and two Queue
Utilities routines for directly adding elements to and removing them from queues that
you create.

Data Structures 6
Each operating-system queue created and maintained by the Macintosh Operating
System consists of a queue header and a linked list of queue elements. This section
describes the structure of queue headers and queue elements.

Queue Headers 6

A queue header is a block of data that contains information about a queue. The QHdr
data type defines the structure of a queue header.

TYPE QHdr =

RECORD

qFlags: Integer; {information on queue}

qHead: QElemPtr; {pointer to first queue entry}

qTail: QElemPtr; {pointer to last queue entry}

END;
Queue Utilities Reference 6-13

C H A P T E R 6

Queue Utilities
Field descriptions

qFlags Queue flags. This field contains information that is different for
each queue type. Ordinarily, these flags are reserved for use by
system software.

qHead A pointer to the first element in the queue. If a queue has no
elements, this field is set to NIL.

qTail A pointer to the last element in the queue. If a queue has no
elements, this field is set to NIL.

Queue Elements 6

A queue element is a single entry in a queue. The exact structure of an element in an
operating-system queue depends on the type of the queue. The different queue types
that are accessible to your application are defined by the QTypes data type.

TYPE QTypes =

(dummyType, {reserved}

vType, {vertical retrace queue type}

ioQType, {file I/O or driver I/O queue type}

drvQType, {drive queue type}

evType, {event queue type}

fsQType, {volume-control-block queue type}

sIQType, {slot interrupt queue type}

dtQType, {deferred task queue type}

{nmType,} {notification queue type}

{slpQType} {sleep queue type}

);

Each of these enumerated queue types determines a different type of queue element. The
QElem data type defines the available queue elements.

TYPE QElem =

RECORD

CASE QTypes OF

vType: (vblQElem: VBLTask);

ioQType: (ioQElem: ParamBlockRec);

drvQType: (drvQElem: DrvQEl);

evType: (evQElem: EvQEl);

fsQType: (vcbQElem: VCB);

dtQType: (dtQElem: DeferredTask);

{siQType: (siQElem: SlotIntQElement);}

{nmType: (nmQElem: NMRec);}

{slpQType: (slpQElem: SleepQRec);}

END;

QElemPtr = ^QElem;
6-14 Queue Utilities Reference

C H A P T E R 6

Queue Utilities

6
Q

ueue U
tilities
Routines 6
The Queue Utilities provide two routines: Enqueue and Dequeue. The Enqueue
procedure allows you to add queue elements directly to an operating-system queue, and
the Dequeue function allows you to remove the element. Ordinarily, these routines are
used only by system software. If possible, you should manipulate an operating-system
queue indirectly, by calling special-purpose routines. For example, to install a task record
into a slot-based vertical retrace queue, your application should use the SlotVInstall
function (provided by the Vertical Retrace Manager) instead of the Enqueue procedure.
In addition, you can use the Queue Utilities routines for directly manipulating queues
that you create.

Enqueue 6

You can use the Enqueue procedure to add elements directly to an operating-system
queue or a queue that you create.

PROCEDURE Enqueue (qElement: QElemPtr; qHeader: QHdrPtr);

qElement A pointer to the queue element to add to a queue.

qHeader A pointer to a queue header.

Data type Additional information

VBLTask The chapter “Vertical Retrace Manager” in
Inside Macintosh: Processes

ParamBlockRec The chapter “File Manager” in Inside
Macintosh: Files

DrvQEl The chapter “File Manager” in Inside
Macintosh: Files

EvQEl The chapter “Event Manager” in Inside
Macintosh: Macintosh Toolbox Essentials

VCB The chapter “File Manager” in Inside
Macintosh: Files

DeferredTask The chapter “Deferred Task Manager” in
Inside Macintosh: Processes

SlotIntQElement The chapter “Slot Manager” in Inside
Macintosh: Devices

NMRec The chapter “Notification Manager” in Inside
Macintosh: Processes

SleepQRec The chapter “Power Manager” in Inside
Macintosh: Devices
Queue Utilities Reference 6-15

C H A P T E R 6

Queue Utilities
DESCRIPTION

The Enqueue procedure adds the queue element specified by qElement parameter to
the end of the queue specified by the qHeader parameter. The specified queue header is
updated to reflect the new queue element.

SPECIAL CONSIDERATIONS

Because interrupt routines are likely to manipulate operating-system queues, interrupts
are disabled for a short time while the specified queue is updated. You can call the
Enqueue procedure at interrupt time. Whenever possible, use the installation routines
listed in Table 6-2 on page 6-10 instead of the Enqueue procedure.

ASSEMBLY-LANGUAGE INFORMATION

The registers on entry and exit for the Enqueue procedure are

SEE ALSO

For a description of the QElem record, see page 6-14; for a description of the QHdr
record, see page 6-13.

Dequeue 6

You can use the Dequeue function to remove a queue element directly from an
operating-system queue or from a queue that you have created.

FUNCTION Dequeue (qElement: QElemPtr; qHeader: QHdrPtr): OSErr;

qElement A pointer to a queue element to remove from a queue.

qHeader A pointer to a queue header.

DESCRIPTION

The Dequeue function attempts to find the queue element specified by the qElement
parameter in the queue specified by the qHeader parameter. If Dequeue finds the

Registers on entry

A
0

Pointer to the queue element to be added

A
1

Pointer to the queue header

Registers on exit

A
1

Pointer to the queue header
6-16 Queue Utilities Reference

C H A P T E R 6

Queue Utilities

6
Q

ueue U
tilities
element, it removes the element from the queue, adjusts the other elements in the queue
accordingly, and returns noErr. Otherwise, it returns qErr, indicating that it could not
find the element in the queue. The Dequeue function does not deallocate the memory
occupied by the queue element.

SPECIAL CONSIDERATIONS

The Dequeue function disables interrupts as it searches through the queue for the
element to be removed. The time during which interrupts are disabled depends on the
length of the queue and the position of the entry in the queue. The Dequeue function
can be called at interrupt time. Whenever possible, use the removal routines listed in
Table 6-3 on page 6-12 instead the Dequeue function.

ASSEMBLY-LANGUAGE INFORMATION

The registers on entry and exit for the Dequeue function are

RESULT CODES

SEE ALSO

For a description the QElem record, see page 6-14; for a description of the QHdr record,
see page 6-13.

Registers on entry

A
0

Pointer to the queue element to be removed

A
1

Pointer to the queue header

Registers on exit

A
1

Pointer to the queue header

D0 Result code

noErr 0 No error
qErr –1 Entry is not in specified queue
Queue Utilities Reference 6-17

C H A P T E R 6

Queue Utilities
Summary of the Queue Utilities 6

Pascal Summary 6

Constants 6

CONST {queue types}

vType = 1; {vertical retrace queue type}

ioQType = 2; {file I/O or driver I/O queue type}

drvQType = 3; {drive queue type}

evType = 4; {event queue type}

fsQType = 5; {volume-control-block queue type}

sIQType = 6; {slot interrupt queue type}

dtQType = 7; {deferred task queue type}

nmType = 8; {notification queue type}

slpQType = 16; {sleep queue type}

Data Types 6

TYPE QHdr = {queue header record}

RECORD

qFlags: Integer; {information on queue}

qHead: QElemPtr; {pointer to the first queue element}

qTail: QElemPtr; {pointer to the last queue element}

END;

QHdrPtr = ^QHdr;

QTypes = ({queue types}

dummyType, {reserved}

vType, {vertical retrace queue type}

ioQType, {file I/O or driver I/O queue type}

drvQType, {drive queue type}

evType, {event queue type}

fsQType, {volume-control-block queue type}

sIQType, {slot interrupt queue type}

dtQType, {deferred task queue type}
6-18 Summary of the Queue Utilities

C H A P T E R 6

Queue Utilities

6
Q

ueue U
tilities
{nmType,} {notification queue type}

{slpQType} {sleep queue type}

);

QElem = {queue element record}

RECORD

CASE QTypes OF

dtQType: (dtQElem: DeferredTask); {deferred task }

{ queue element}

vType: (vblQElem: VBLTask); {vertical retrace }

{ queue element}

ioQType: (ioQElem: ParamBlockRec); {file I/O queue element}

drvQType: (drvQElem: DrvQEl); {drive queue element}

evType: (evQElem: EvQEl); {event queue element}

fsQType: (vcbQElem: VCB); {volume-control-block }

{ queue element}

{sIQType: (siQElem: SlotIntQElement;} {slot interupt }

{ queue element}

{nmType: (nmQElem: NMRec);} {notification }

{ queue element}

{slpQType: (slpQElem: SleepQRec);} {sleep queue element}

END;

QElemPtr = ^QElem;

Routines 6

PROCEDURE Enqueue (qElement: QElemPtr; qHeader: QHdrPtr);

FUNCTION Dequeue (qElement: QElemPtr; qHeader: QHdrPtr): OSErr;

C Summary 6

Constants 6

enum { /*queue types*/

vType = 1, /*vertical retrace queue type*/

ioQType = 2, /*file I/O or driver I/O queue type*/

drvQType = 3, /*drive queue type*/

evType = 4, /*event queue type*/

fsQType = 5, /*volume-control-block queue type*/
Summary of the Queue Utilities 6-19

C H A P T E R 6

Queue Utilities
sIQType = 6, /*slot interrupt queue type*/

dtQType = 7, /*deferred task queue type*/

};

enum { /*value for the notification queue type*/

nmType = 8 /*notification queue type*/

};

enum { /*value for the sleep queue type*/

slpQType = 16 /*sleep queue type*/

};

Data Types 6

struct QHdr { /*queue header record*/

short qFlags; /*information on queue*/

QElemPtr qHead; /*pointer to the first queue element*/

QElemPtr qTail; /*pointer to the last queue element*/

};

typedef struct QHdr QHdr;

typedef QHdr *QHdrPtr;

typedef unsigned short QTypes; /*queue types*/

struct QElem { /*queue element record*/

struct QElem *qLink; /*pointer to the next queue element*/

short qType; /*type of queue element*/

short qData[1]; /*variable array of data; type of data and */

/* length depend on the queue type, */

/* specified in the qType field*/

};

typedef struct QElem QElem;

typedef QElem *QElemPtr;

Routines 6

pascal void Enqueue (QElemPtr qElement, QHdrPtr qHeader);

pascal OSErr Dequeue (QElemPtr qElement, QHdrPtr qHeader);
6-20 Summary of the Queue Utilities

C H A P T E R 6

Queue Utilities

6
Q

ueue U
tilities
Assembly-Language Summary 6

QHdr Data Structure

QElem Data Structure

Result Codes 6

0 qFlags word information on queue

2 qHead long pointer to first queue entry

6 qTail long pointer to last queue entry

0 qLink long pointer to the next queue element

4 qType word type of queue element

6 qData word variable array of data; type of data and length depend on
the queue type, specified in the qType field

noErr 0 No error
qErr –1 Entry is not in specified queue
Summary of the Queue Utilities 6-21

	 Title
	 Copyright
	 Table of Contents
	 Figures, Tables, and Listings
	 Preface
	 Gestalt Manager TOC
	 Gestalt Manager
	 System Error Handler TOC
	 System ErrorHandler
	 Mathematical and Logical Utilities TOC
	 Mathematical and Logical Utilities
	 Date, Time, and Measurement Utilities TOC
	 Date, Time, and Measurement Utilities
	 Control Panels Extensions TOC
	 Control Panels Extensions
	 Queue Utilities TOC
	Queue Utilities
	About Queues
	The Queue Header
	The Queue Element

	Using the Queue Utilities
	Searching for an Element in an Operating-System Qu...
	Adding Elements to an Operating-System Queue
	Removing Elements From an Operating-System Queue

	Queue Utilities Reference
	Data Structures
	Queue Headers
	Queue Elements

	Routines

	Summary of the Queue Utilities
	Pascal Summary
	Constants
	Data Types
	Routines

	C Summary
	Constants
	Data Types
	Routines

	Assembly-Language Summary
	Result Codes

	 Parameter RAM Utilities TOC
	 Parameter RAM Utilities
	 Trap Manager TOC
	 Trap Manager
	 Start Manager TOC
	 Start Manager
	 Package Manager TOC
	 Package Manager
	 Glossary
	 Index
	 Colophon

