CHAPTER 6

Queue Utilities

This chapter describes how your application can directly add elements to and remove
them from an operating-system queue. The Macintosh Operating System stores some of
the information it uses in data structures called queues. The Queue Utilities allow you to
manipulate those queues directly by adding and removing elements.

Ordinarily, you do not need to use the Queue Utilities. The Operating System itself is
responsible for managing the various operating-system queues that it creates internally,
and you should manipulate those queues only indirectly. For example, to add an element
to the notification queue maintained by the Notification Manager, you should call the

NM nst al | function. To remove an element from that queue, you should call the
NMRenove function. But if you discover some unusual need for adding or removing
such elements directly, you can use the Queue Utilities routines. In addition, you can

use the Queue Utilities routines for directly manipulating queues that you create.

This chapter describes the general structure of operating-system queues and then

= lists the routines your application should use to manipulate an operating-system
queue indirectly

» shows how your application can use the Queue Utilities for directly manipulating
queues that you create.

About Queues

The Macintosh Operating System uses operating-system queues to keep track of a wide
variety of items, including VBL tasks, notifications, I/ O requests, events, mounted
volumes, and disk drives (or other block-formatted devices). A queue is a list of
identically structured entries linked together by pointers. A single entry in a queue

is called a queue element. Figure 6-1 illustrates the general structure of an
operating-system queue.

About Queues 6-3

samnn anand n

CHAPTER 6

Queue Utilities

Figure 6-1

An operating-system queue

Queue header

Queue header pointer I:> Queue flags

Queue

/

First element

head

Queue
tail

Last element

NI L

Next queue |:> Next queue Next queue Next queue
entry entry entry entry
Queue type Queue type Queue type Queue type
Data Data Data Data

Queue type

Data

As you can see, the addresses of the first and last elements in the queue are stored in
a queue header. The queue header also contains some queue flags, which contain
information about the queue.

Each queue element contains the address of the next element in the queue (or the value
NI L if there is no next element), an indication of the type of queue to which the next
element belongs, and some data. The exact format and size of the data differs among the
various queue types. In some cases, the data in the queue element contains the address

of a routine to be executed. Table 6-1 on page 6-7 lists the different types of
operating-system queues used by the Macintosh Operating System.

About Queues

CHAPTER 6

Queue Utilities

The Queue Header

The queue header is the head of a list of identically structured entries linked together by
pointers. Figure 6-2 shows the format of a queue header.

Figure 6-2 The format of a queue header
Queue header Bytes
Queue flags 2
First queue element 4
Last queue element 4

A queue header is a record defined by a data structure of type QHdr, which contains
three fields: flags, a pointer to the first element in the queue (QHead), and a pointer to the
last element in the queue (qTai |). The flags field contains information specific to each
queue. Ordinarily, these flags are for use by the system software only, and your
application should not need to read or manipulate these flags. The qHead field is a
pointer to the first element in a queue, and the qTai | field is a pointer to the last
element in a queue. If the queue has no elements, both of these fields are set to NI L.
Thus, if you have access to a variable ny QueueHdr of type QHdr Pt r, you can access the
corresponding first queue element of a non-empty queue with myQueueHdr”.qHead”
and access the last element with myQueueHdr”.qTail.

Each queue element itself is a record of type QEl em which is described in the
next section.

About Queues 6-5

samnn anand n

CHAPTER 6

Queue Utilities

The Queue Element

The exact format of a queue element is not the same for all types of operating-system
queues; thus, a queue element is defined by a variant record that is a data structure of
type QEl em Figure 6-3 shows the format of a queue element.

6-6

Figure 6-3 The format of a queue element
Queue element Bytes
Next queue element 4
Queue type 2

{ Queue-specific data { Variable

Each queue element contains two fixed fields: a pointer to the next element in the queue
(gLi nk), a value describing the queue type (qType), and a variable data field specific to
each queue type.

The gLi nk field contains a pointer to the next element in the queue. All queue elements
are linked through these pointers. Each pointer points to the qLi nk field in the next
queue element, and the last queue element contains a NI L pointer. The data type of the
pointer to the next queue element is always QEl enPtr.

The qType field contains an integer that usually designates the queue type; for example,
ORD(evType) for the event queue. Table 6-1 contains a list of all the supported
operating-system queue types.

About Queues

CHAPTER 6

Queue Utilities

Table 6-1 Operating-system queue types
Constant Queue type Description
vType Vertical retrace queue A list of tasks to be executed during VBL
interrupts
i oQType File I/O queue (or A list of parameter blocks for all asynchronous
driver I/O queue) routines awaiting execution
dr vQlype Drive queue Alist of all disk drives connected to the
computer
evType Event queue A list of pending events
f sQlype Volume control block A list of volume control blocks for each
queue mounted volume
sl Qlype Slot interrupt queue Alist of slot interrupts
dt Qlype Deferred task queue A list of deferred tasks
nmQType Notification queue A list of notification requests
sl pQType Sleep queue A list of routines to be notified before a

Macintosh Portable or a PowerBook is put into
the sleep state

Often, you need to set the qType field of a queue element to an appropriate value before
installing the queue element. However, some operating-system queues use this field for
different purposes. For example, the Time Manager uses an operating-system queue to
track Time Manager tasks. In the high bit of this field, the revised Time Manager places a
flag to indicate whether a task timer is active. The Time Manager (along with other parts
of the Operating System that use this field for their own purposes) shields you from the
implementation-level details of operating a queue. Indeed, there is no way for you to
access a Time Manager queue directly, and the QEl emdata type does not support access
of Time Manager task records from Time Manager queue elements.

The third field contains data that is specific to the type of operating-system queue to
which the queue element belongs. For example, a queue element in a vertical retrace
queue, maintained by the Vertical Retrace Manager, includes information about the task
procedure to be called, the number of interrupts, and the task phase. A queue element in
a notification queue, maintained by the Notification Manager, includes information
about the alert box, the sound response, the item to be marked in the Application menu,
a response procedure, and some reserved values. Figure 6-4 shows the format of these
two different types of queue elements.

About Queues 6-7

samnn anand n

CHAPTER 6

Queue Utilities

Figure 6-4 Formats of a vertical retrace queue element and a notification queue element
Vertical retrace Notification
gueue element Bytes gqueue element Bytes
Pointer to . Pointer to next .
next element gLi nk 4 element in gLi nk 4
in vertical notification queue
retrace queue
qType 2 qType 2
Point n
ointer n ags 2
Reserved 9
to task vbl Addr 4
procedure
Reserved nnPrivate 4
Interrupts - Vertical
until next vbl Count 4 | retrace
execution queue Reserved nnReser ved 2
data
Phase count vbl Phase 2 Item to mark nmivar k 2
—J in menu
Handle nm con 4
to icon
Handle to — Notification
sound nnSound 4 queue data
resource
Pointer to
appear in nnStr 4
alert box
Pointer to
response nnResp 4
procedure
For use by
application nnRef Con 4
_

Figure 6-4 illustrates how the format and size of an operating-system queue element can
vary because of the variable data field. For example, an element of type vType (a vertical
retrace queue element) uses 10 bytes for VBL-specific data, whereas an element of type
nmrype (a notification queue element) uses 30 bytes for notification-specific data. All
operating-system queue elements use at least 6 bytes: 4 bytes to store a pointer to the
next element in the queue and 2 bytes to store a value indicating the queue type.

Using the Queue Utilities

6-8

The Queue Utilities provide routines for directly adding elements to a queue and
removing them from a queue. The Enqueue procedure lets you add elements to the
end of a queue, and the Dequeue function lets you remove elements from a queue.

Using the Queue Utilities

CHAPTER 6

Queue Utilities

You should manipulate an operating-system queue used by the Macintosh Operating
System indirectly, by calling special-purpose routines. For example, to install a deferred
task into a deferred task queue, your application should use the DTl nst al | function
instead of the Enqueue procedure. However, if you create your own queues, you can
use the Enqueue procedure and the Dequeue function to manipulate these queues
directly. This section describes how to

= search for an element in an operating-system queue
= add an element to an operating-system queue

= remove an element from an operating-system queue

Searching for an Element in an Operating-System Queue

You can search an operating-system queue for a specific element or elements. For
example, Listing 6-1 shows a simplified way to search a drive queue for all the drives
connected to the computer. The application-defined function, MySear chDr i veQueue,
walks through the drive queue searches for all connected drives. If it finds any, it calls
the application-defined function DoDi spl ayDri vel nf o to display information about
the connected drive.

Listing 6-1 Searching for drives in the drive queue

FUNCTI ON MySear chDri veQueue: Bool ean;

VAR
driveQHdr: QHdr Pt r;
result: Bool ean;
BEG N
result := FALSE; {assume no drivers in the queue}
drive@dr := GetDrvQHdr; {get the drive queue header}

drive@tr := DrvQEl Ptr(driveQ@idr”. gHead);

WHI LE (driveQPtr <> NIL) DO

{while drive queue is not enpty}

BEG N
result := TRUE {found a drive}
DoDi spl ayDri vel nfo(driveQ@Ptr); {di splay drive information}

{go to next drive in the queue}

driveQPtr := DrvQEl Ptr(driveQPtr”. qLink);
END;, {of while}
MySear chDri veQueue : = result; {return result of search}

END;

Using the Queue Utilities 6-9

samnn anand n

CHAPTER 6

Queue Utilities

Adding Elements to an Operating-System Queue

You should avoid direct manipulation of an operating-system queue used by the
Macintosh Operating System. Your application should, when possible, use the
installation routines in Table 6-2 to add new elements to an operating-system queue.

Table 6-2 Installation routines for operating-system queue elements
Queue element Installation routine Additional information
Slot-based VBL task SlotVlnstall The chapter “Vertical Retrace Manager” in

Inside Macintosh: Processes

System-based VBL task Vinstal | The chapter “Vertical Retrace Manager” in

Inside Macintosh: Processes

Parameter block for an The chapter “File Manager” in Inside Macintosh: Files
asynchronous routine
awaiting execution

Disk drive AddDri ve The chapter “File Manager” in Inside Macintosh: Files
Event PPost Event The chapter “Event Manager” in Inside Macintosh:
and Post Event Macintosh Toolbox Essentials
Volume control block ’ The chapter “File Manager” in Inside Macintosh: Files
Deferred task DTl nst al | The chapter “Deferred Task Manager” in
Inside Macintosh: Processes
Slot interrupt Sintlnstall The chapter “Slot Manager” in Inside Macintosh:
Devices
Notification request NM nst al | The chapter “Notification Manager” in
Inside Macintosh: Processes
Sleep Sl eepQ nst al | The chapter “Power Manager” in Inside Macintosh:
Devices

" No comparative installation routine available.

6-10

IMPORTANT

It is not recommended that you directly add elements to an
operating-system queue used by the Macintosh Operating System. If
at all possible, your application should use the installation routines
provided by the various managers. a

If you have created a queue for your own use, you can use the Enqueue procedure
to add a new element to your queue. For example, Listing 6-2 presents the
application-defined procedure DoAddBankCust orer, which uses the Enqueue
procedure for directly installing a customer into a bank-teller queue.

Using the Queue Utilities

CHAPTER 6

Queue Utilities

Listing 6-2 Using the Enqueue procedure to add a bank customer to a teller queue

PROCEDURE DoAddBankCust omer (myQueueHdrPtr: CQHdrPtr,
Var bankCustomer: MyCust omer Record);

BEG N
W TH bankCust onmer® DO {get bank custoner data}
BEG N
gType := kTel |l er QType; {queue type for the bank-teller queue}
account := MyGet Next Account; {get account nunber}
action := MyGet BankActi on; {get action to perforni
amount : = MyGet Anount ; {get the amount}
END;
Enqueue(QEl enPt r (bankCust oner), myQueueHdrPtr); {add customer to queue}
END;

Note that you are responsible for allocating memory for a queue element before you
insert into a queue and for deallocating that memory when you remove the queue
element.

Removing Elements From an Operating-System Queue

This section describes how your application can remove elements from an
operating-system queue. Whenever possible, your application should use the removal
routines listed in Table 6-3 to remove elements indirectly from an operating-system
queue used by the Macintosh Operating System.

Using the Queue Utilities 6-11

samnn anand n

CHAPTER 6

Queue Utilities

Table 6-3 Removal routines for operating-system elements
Queue element Removal routine Additional information
Slot-based VBL task Sl ot VRenove The chapter “Vertical Retrace Manager” in
Inside Macintosh: Processes
System-based VBL task VRenove The chapter “Vertical Retrace Manager” in

Parameter block for an
asynchronous routine
awaiting execution

Disk drive

Event

Volume control block

Deferred task
Slot interrupt
Notification request

Sleep

Wi t Next Event

S| nt Rermove

NMRenove

Sl eepQRenove

* .
No comparative removal routine available.

IMPORTANT

Inside Macintosh: Processes

The chapter “File Manager” in Inside Macintosh: Files

The chapter “File Manager” in Inside Macintosh: Files

The chapter “Event Manager” in Inside Macintosh:
Macintosh Toolbox Essentials

The chapter “File Manager” in Inside Macintosh: Files

The chapter “Deferred Task Manager” in
Inside Macintosh: Processes

The chapter “Slot Manager” in Inside Macintosh:
Devices

The chapter “Notification Manager” in
Inside Macintosh: Processes

The chapter “Power Manager” in Inside Macintosh:
Devices

It is not recommended that you directly remove queue elements from an
operating-system queue used by the Macintosh Operating System. If at
all possible, your application should use the removal routines provided
by the various managers. a

If you have created a queue for your own use, you can use the Dequeue function to

remove elements from that queue.

Listing 6-3 shows the application-defined function DoRenbveBankCust oner, which
uses the Dequeue procedure for directly removing the first customer from a bank-teller
queue. The DoRenmpveBankCust omer function returns TRUE if it removes the customer.

6-12 Using the Queue Utilities

CHAPTER 6

Queue Utilities

Listing 6-3 Using Dequeue to remove the first customer in the bank-teller queue

FUNCTI ON DoRenpveBankCust oner (VAR nyQueueHdr: QHdr): BOCLEAN,
VAR

bankCust omer Pt r: MyCust omer RecordPtr;

cust omer Renoved: Bool ean;

BEG N
cust omer Renoved : = FALSE;
bankCust orrer Pt r MyCust oner Recor dPt r (myQueueHdr . qHead) ;
| F bankCustonerPtr <> NIL THEN {Check for non-enpty queue}
BEG N
Dequeue(QEl enPt r (bankCust oner Ptr), &myQueueHdr) {renpbve custoner}
cust omer Renoved : = TRUE;
END; {of queue not enpty}
DoRermoveCust oner : = cust omer Renoved;
END;

Queue Utilities Reference

This section describes the data structures of operating-system queues and two Queue
Utilities routines for directly adding elements to and removing them from queues that
you create.

Data Structures

Each operating-system queue created and maintained by the Macintosh Operating
System consists of a queue header and a linked list of queue elements. This section
describes the structure of queue headers and queue elements.

Queue Headers

A queue header is a block of data that contains information about a queue. The QHdr
data type defines the structure of a queue header.

TYPE QHdr =
RECORD
gFl ags: I nt eger; {informati on on queue}
gHead: QEl enPtr; {pointer to first queue entry}
gTail : QEl enPtr; {pointer to | ast queue entry}
END;

Queue Utilities Reference 6-13

samnn anand n

CHAPTER 6

Queue Utilities

Field descriptions

gFl ags Queue flags. This field contains information that is different for
each queue type. Ordinarily, these flags are reserved for use by
system software.

qHead A pointer to the first element in the queue. If a queue has no
elements, this field is set to NI L.
gTai | A pointer to the last element in the queue. If a queue has no

elements, this field is set to NI L.

Queue Elements

A queue element is a single entry in a queue. The exact structure of an element in an
operating-system queue depends on the type of the queue. The different queue types
that are accessible to your application are defined by the QTypes data type.

TYPE Qlypes =
(dummyType, {reserved}
vType, {vertical retrace queue type}
i 0QType, {file I/Oor driver 1/0O queue type}
dr vQType, {drive queue type}
evType, {event queue type}
f sQlype, {vol urme- control - bl ock queue type}
sl QType, {slot interrupt queue type}
dt Qlype, {deferred task queue type}
{nnType, } {notification queue type}
{sl pQlype} {sl eep queue type}
)

Each of these enumerated queue types determines a different type of queue element. The
QEl emdata type defines the available queue elements.

TYPE CEl em =
RECORD
CASE Qlypes OF

vType: (vbl QEl em VBLTask);
i oQType: (i oQEl em Par anBl ockRec) ;
dr vQrlype: (drvQeElem DrvQEl);
evType: (evQEl em EvCQEl) ;
f sQlype: (vcbQElem VCB);
dt Qlype: (dt QEl em Def erredTask) ;
{si Qlype: (si QEl em Sl ot I nt QEl enent) ; }
{ nnilype: (nmQEl em NMRec) ; }

{sl pQrype: (slpQlem SleepQRec);}
END;

Bl enPtr = "QEl em

6-14 Queue Utilities Reference

Routines

CHAPTER 6

Queue Utilities

Data type
VBLTask

Par anBl ockRec
Dr vCEI

EvCQEl

VCB

Def er r edTask

Sl ot | nt QeI enent
NVRec

Sl eepQRec

Additional information

The chapter “Vertical Retrace Manager” in
Inside Macintosh: Processes

The chapter “File Manager” in Inside
Macintosh: Files

The chapter “File Manager” in Inside
Macintosh: Files

The chapter “Event Manager” in Inside
Macintosh: Macintosh Toolbox Essentials

The chapter “File Manager” in Inside
Macintosh: Files

The chapter “Deferred Task Manager” in
Inside Macintosh: Processes

The chapter “Slot Manager” in Inside
Macintosh: Devices

The chapter “Notification Manager” in Inside
Macintosh: Processes

The chapter “Power Manager” in Inside
Macintosh: Devices

Enqueue

The Queue Utilities provide two routines: Enqueue and Dequeue. The Enqueue
procedure allows you to add queue elements directly to an operating-system queue, and
the Dequeue function allows you to remove the element. Ordinarily, these routines are
used only by system software. If possible, you should manipulate an operating-system

queue indirectly, by calling special-purpose routines. For example, to install a task record
into a slot-based vertical retrace queue, your application should use the S| ot VI nst al |
function (provided by the Vertical Retrace Manager) instead of the Enqueue procedure.
In addition, you can use the Queue Utilities routines for directly manipulating queues
that you create.

You can use the Enqueue procedure to add elements directly to an operating-system
queue or a queue that you create.

PROCEDURE Enqueue (gEl enent: QEl enPtr; qgHeader: QHdrPtr);

gEl enent
gHeader

A pointer to the queue element to add to a queue.

A pointer to a queue header.

Queue Utilities Reference 6-15

samnn anand n

DESCRIPTION

CHAPTER 6

Queue Utilities

The Enqueue procedure adds the queue element specified by gEl enent parameter to
the end of the queue specified by the qHeader parameter. The specified queue header is
updated to reflect the new queue element.

SPECIAL CONSIDERATIONS

Because interrupt routines are likely to manipulate operating-system queues, interrupts
are disabled for a short time while the specified queue is updated. You can call the
Enqueue procedure at interrupt time. Whenever possible, use the installation routines
listed in Table 6-2 on page 6-10 instead of the Enqueue procedure.

ASSEMBLY-LANGUAGE INFORMATION

The registers on entry and exit for the Enqueue procedure are

Registers on entry

A Pointer to the queue element to be added
0

A Pointer to the queue header

1

Registers on exit

A Pointer to the queue header
1

SEE ALSO
For a description of the QEl emrecord, see page 6-14; for a description of the QHdr
record, see page 6-13.
Dequeue
You can use the Dequeue function to remove a queue element directly from an
operating-system queue or from a queue that you have created.
FUNCTI ON Dequeue (qEl enent: QElenPtr; qHeader: QHdrPtr): OSErr;
gEl enent A pointer to a queue element to remove from a queue.
gHeader A pointer to a queue header.
DESCRIPTION
The Dequeue function attempts to find the queue element specified by the gEl enent
parameter in the queue specified by the qHeader parameter. If Dequeue finds the
6-16 Queue Utilities Reference

CHAPTER 6

Queue Utilities

element, it removes the element from the queue, adjusts the other elements in the queue
accordingly, and returns noEr r. Otherwise, it returns qEr r, indicating that it could not
find the element in the queue. The Dequeue function does not deallocate the memory
occupied by the queue element.

SPECIAL CONSIDERATIONS

The Dequeue function disables interrupts as it searches through the queue for the
element to be removed. The time during which interrupts are disabled depends on the
length of the queue and the position of the entry in the queue. The Dequeue function
can be called at interrupt time. Whenever possible, use the removal routines listed in
Table 6-3 on page 6-12 instead the Dequeue function.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The registers on entry and exit for the Dequeue function are

Registers on entry
A Pointer to the queue element to be removed

0
A Pointer to the queue header
1

Registers on exit

A Pointer to the queue header
1

DO Result code

noErr 0 No error
gErr -1 Entry is not in specified queue

For a description the QEI emrecord, see page 6-14; for a description of the QHdr record,
see page 6-13.

Queue Utilities Reference 6-17

samnn anand n

CHAPTER 6

Queue Utilities

Summary of the Queue Utilities

Pascal Summary

Constants

CONST {queue types}

vType = 1; {vertical retrace queue type}
i 0QType = 2; {file I/O or driver 1/0O queue type}
drvQlype = 3; {drive queue type}
evType = 4; {event queue type}
fsQlype = 5; {vol urme- control - bl ock queue type}
sl QType = 6; {slot interrupt queue type}
dt Qlype = 7; {deferred task queue type}
nmrype = 8; {notification queue type}
sl pQType = 16; {sl eep queue type}
Data Types
TYPE QHdr = {queue header record}
RECORD
gFl ags: I nt eger; {informati on on queue}
gHead: CEl enPtr; {pointer to the first queue el emrent}
gTail : QEl enPtr; {pointer to the |ast queue el enent}
END;
QHdrPtr = ~QHdr;
Qrypes = ({queue types}
dumyType, {reserved}
vType, {vertical retrace queue type}
i 0QType, {file I/O or driver 1/0O queue type}
dr vQType, {drive queue type}
evType, {event queue type}
f sQlype, {vol urme- control - bl ock queue type}
sl Qlype, {slot interrupt queue type}
dt Qlype, {deferred task queue type}

6-18 Summary of the Queue Utilities

CHAPTER

Queue Utilities

6

{nnType, } {notification queue type}
{sl pQlype} {sl eep queue type}
);
Bl em = {queue el enent record}
RECORD
CASE Qlypes OF
dt Qlype: (dt QEl em Def err edTask) ; {deferred task }
{ queue el enent}
vType: (vbl QEl em VBLTask); {vertical retrace }
{ queue el enent}
i 0QType: (i oQEl em Par anmBl ockRec) ; {file 1/ 0O queue el enent}
dr vQrlype: (drvQElem DrvQEl); {drive queue el ement}
evType: (evQEl em EvQEl) ; {event queue el enent}
f sQlype: (vcbhQElem VCB); {vol urme- control - bl ock }
{ queue el enent}
{sl QType: (si QEl em SlotIntQEl ement;} {slot interupt }
{ queue el enent}
{ nmlype: (nnEl em NVRec) ; } {notification }
{ queue el enent}
{sl pQrype: (slpQlem SleepQRrec);} {sl eep queue el enent}
END;

Bl enPtr = "QEl em

Routines

PROCEDURE Engueue
FUNCTI ON Dequeue

(gEl ement: C(El enPtr; gHeader: QHdrPtr);
(gEl enent: CEl enPtr; gHeader: QHdrPtr): OSErr;

C Summary
Constants
enum { / *queue types*/
vType = 1, /*vertical retrace queue type*/
i 0QType = 2, /[*file 1/O or driver 1/0O queue type*/
drvQlype = 3, /*drive queue type*/
evType = 4, /*event queue type*/
fsQlype =5, /*vol unme-control - bl ock queue type*/

Summary of the Queue Utilities 6-19

samnn anand n

CHAPTER 6

Queue Utilities

sl Qlype = 6, /*slot interrupt queue type*/
dt Qlype =7, /*deferred task queue type*/
1
enum { /*value for the notification queue type*/
nmrype =8 /*notification queue type*/
1
enum { /*value for the sleep queue type*/
sl pQType = 16 /*sl eep queue type*/
b
Data Types

struct QHdr { /*queue header record*/

short gFl ags; /*information on queue*/
CEl enPtr gHead; /*pointer to the first queue el ement*/
QEl enPtr gTail ; /*pointer to the |last queue el enent*/

b

typedef struct QHdr QHdr;

typedef QHdr *QHdrPtr;

t ypedef unsi gned short Qlypes; / *queue types*/

struct QElem{ /*queue el enment record*/

struct QElem *qLi nk; /*pointer to the next queue el enent*/
short gType; /*type of queue el enent*/
short gbat a[1] ; /*variable array of data; type of data and */

/* length depend on the queue type, */
/* specified in the qType field*/

b

typedef struct QEl em CQEl em

typedef QEl em *CQEl enPtr;

Routines
pascal void Enqueue (CEl enPtr gEl erent, QHdrPtr qHeader);
pascal OSErr Dequeue (CEl enPtr gEl ement, QHdrPtr qHeader);

6-20 Summary of the Queue Utilities

CHAPTE

R 6

Queue Utilities

Assembly-Language Summary

QHdr Data Structure
0 gFl ags

2 gHead

6 gTai |

QElem Data Structure

0 gLi nk
4 qType
6 gDat a

Result Codes

word information on queue

long pointer to first queue entry

long pointer to last queue entry
long pointer to the next queue element
word type of queue element

word variable array of data; type of data and length depend on
the queue type, specified in the qType field

noErr 0
qErr -1

No error
Entry is not in specified queue

Summary of the Queue Utilities

6-21

samnn anand n

	 Title
	 Copyright
	 Table of Contents
	 Figures, Tables, and Listings
	 Preface
	 Gestalt Manager TOC
	 Gestalt Manager
	 System Error Handler TOC
	 System ErrorHandler
	 Mathematical and Logical Utilities TOC
	 Mathematical and Logical Utilities
	 Date, Time, and Measurement Utilities TOC
	 Date, Time, and Measurement Utilities
	 Control Panels Extensions TOC
	 Control Panels Extensions
	 Queue Utilities TOC
	Queue Utilities
	About Queues
	The Queue Header
	The Queue Element

	Using the Queue Utilities
	Searching for an Element in an Operating-System Qu...
	Adding Elements to an Operating-System Queue
	Removing Elements From an Operating-System Queue

	Queue Utilities Reference
	Data Structures
	Queue Headers
	Queue Elements

	Routines

	Summary of the Queue Utilities
	Pascal Summary
	Constants
	Data Types
	Routines

	C Summary
	Constants
	Data Types
	Routines

	Assembly-Language Summary
	Result Codes

	 Parameter RAM Utilities TOC
	 Parameter RAM Utilities
	 Trap Manager TOC
	 Trap Manager
	 Start Manager TOC
	 Start Manager
	 Package Manager TOC
	 Package Manager
	 Glossary
	 Index
	 Colophon

