

C H A P T E R 7

7

P
aram

eter R
A

M
 U

tilities

Parameter RAM Utilities 7

This chapter describes how your application can access and modify the information used
by the system software at system startup time. Various user settings, such as the volume
setting for the built-in speaker, need to be present at the next system startup. This startup
information is stored in battery-powered parameter RAM, located in the computer’s
real-time clock chip. The Parameter RAM Utilities available in the Macintosh Operating
System allow you to manipulate startup information stored in parameter RAM.

Because you can use Toolbox routines to indirectly access most of the useful information
stored in parameter RAM, you should not need to use the utility routines described in
this chapter. However, if you should discover some important need to directly
manipulate the startup information in parameter RAM, you can use the Parameter RAM
Utilities routines.

To use this chapter, you should already understand how to read and change the values
of low-memory global variables. See the chapter “Memory Manager” in Inside Macintosh:
Memory for a discussion on how to read and write system global variables.

This chapter

■ introduces the kinds of information stored in parameter RAM

■ describes some of the values stored in parameter RAM

About Parameter RAM 7

Most user settings that need to be present at system startup are stored in parameter
RAM . Parameter RAM takes up 256 bytes of battery-powered RAM: 20 bytes are
documented in this chapter, and 236 bytes are reserved by the system software. The 236
bytes of parameter RAM are also known as extended parameter RAM . The parameter
RAM is located in the computer’s real-time clock chip, together with the date and time
setting. No matter what system disk is used at system startup, parameter RAM ensures
that certain settings remain the same on a given computer from one session to another.

Much of the information stored in parameter RAM is used exclusively by the system
software. For example, system software uses 2 bits of parameter RAM to keep track of
how many times menu items should blink after being selected. Other values stored in
parameter RAM are useful to applications. For example, parameter RAM stores the
suggested time interval that your application should use when determining whether two
mouse clicks constitute a double-click. You can access this double-click time indirectly by
using the Toolbox Event Manager’s GetDblTime function. Whenever possible, you
should use Toolbox routines to access parameter RAM values.

▲ W A R N I N G

The operating-system routines described in this chapter let you
directly manipulate values in parameter RAM; however, because the
organization of parameter RAM is subject to change, you should rarely
use them. Instead, use the appropriate Toolbox routines to indirectly
manipulate values in parameter RAM. ▲
About Parameter RAM 7-25

C H A P T E R 7

Parameter RAM Utilities

The 20 bytes of parameter RAM that are commonly accessible by applications are copied
into low memory at system startup. Figure 7-1 illustrates the interaction between
parameter RAM and low memory. Parameter RAM is read into low memory at system
startup, and any modifications to this low-memory copy of parameter RAM are written
back to the clock chip.

Figure 7-1 Interaction between parameter RAM and low memory

The 20 accessible bytes of parameter RAM are described by the system parameters
record , which is defined by a data structure of type SysParmType.

Figure 7-2 shows the general structure of the system parameters record, which
contains 11 fields.

Clock IC

Parameter RAM

CPU

Real-time clock

20-byte section of low memory
7-26 About Parameter RAM

C H A P T E R 7

Parameter RAM Utilities

7

P
aram

eter R
A

M
 U

tilities

Figure 7-2 The format of the system parameter record

A system parameters record contains 11 fields. See page 7-31 for the exact structure of
each field.

The first field of the system parameters record contains information about the validity
status of the clock chip. Whenever a write to the clock chip is successful, the value $A8 is
stored in this field. The status is examined when the clock chip is read at system startup.

The second and third fields contain information about the node ID for the modem port
and printer port.

The fourth field tells which device or devices may use each of the serial ports.

The fifth field contains the baud rate, data bits, stop bits, and parity for the modem port.
Bits 0–9 define the baud rate; bits 10 and 11 define the number of data bits; bits 12 and 13
define the parity; and bits 14 and 15 define the number of stop bits.

The sixth field contains the baud rate, data bits, stop bits, and parity for the printer port.
As with the modem port, bits 0–9 define the baud rate; bits 10 and 11 define the number
of data bits; bits 12 and 13 define the parity; and bits 14 and 15 define the number of
stop bits.

The seventh field contains the time at which the alarm clock should sound. The time is
defined in terms of seconds since midnight, January 1, 1904.

The eighth field contains the default application font number minus 1.

The ninth field contains the settings for the printer and for the keyboard. Bit 0 designates
whether the currently chosen printer (if any) is connected to the printer port (0) or the

System parameters record Bytes

1
1

1
1

2

2

4

4

2

2

2

Validity status
Node ID hint for modem port
Node ID hint for printer port

Serial port setting

Setting for modem port

Setting for printer port

Alarm setting

Font setting

Setting for printer and keyboards

Setting for caret-blink time,
double-click time, and speaker volume

Setting for menu-blink time,
startup disk, and mouse scaling
About Parameter RAM 7-27

C H A P T E R 7

Parameter RAM Utilities

modem port (1). Bits 1–7 are reserved for future use. Bits 8–11 of this field contain the
auto-key rate, the rate at which a character key repeats when it’s held down; this value is
stored in 2-tick units. Bits 12–15 contain the auto-key threshold , the length of time a key
must be held down before it begins to repeat; this value is stored in 4-tick units.

The tenth field contains miscellaneous user settings. Bits 0–3 contain the caret-blink time,
and bits 4–7 contain the double-click time; both values are stored in four-tick units. The
caret-blink time is the interval between blinks of a caret that marks the insertion point
in text. The double-click time is the greatest interval between a mouse-up and
mouse-down event that would qualify two mouse clicks as a double click. Bits 8–10
contain the speaker volume setting, which ranges from silent (0) to loud (7).

The last field contains more miscellaneous user settings. Bits 2 and 3 contain a value
from 0 to 3 designating the menu-blink time , which is how many times a menu item
blinks when the user chooses it. Because system software automatically calls both
standard and nonstandard menu definition procedures the appropriate number of
times, you should not need to worry about that value in parameter RAM. Bit 4 indicates
whether the preferred system startup disk is in an internal (0) or external (1) drive. If
there is any problem using the disk in the specified drive, the other drive is used. Bit 6
designates whether mouse scaling is on (1) or off (0). If mouse scaling is on, cursor
movement doubles if the user moves the mouse more than a certain number of pixels
between vertical retrace interrupts.

The global variable SysParam contains the address of the start of the system parameters
record. Other global variables allow you to access individual fields of the system
parameters record directly. These global variables all begin with the letters SP and point
directly into the system parameters record stored in low memory. Other global variables
referencing memory locations outside of the system parameters record are used to store
copies of individual fields of the system parameters record.

▲ W A R N I N G

The default values for parameter RAM vary depending on the version of
the system software. Therefore, do not rely on any one default value
being the same for all machines. ▲

Though default values can vary, most of the U.S. system software “shares” default
values. The default values for parameter RAM, for U.S. system software, are shown
in Table 7-1.
7-28 About Parameter RAM

C H A P T E R 7

Parameter RAM Utilities

7

P
aram

eter R
A

M
 U

tilities

In System 7, a user can clear the current settings in the parameter RAM and restore the
default values by holding down the x-Option-P-R keys at system startup. When system
software detects this key combination, it resets parameter RAM to the default values and
then restarts the computer again. Clearing the current settings in the parameter RAM
also causes system software to change other settings not stored in parameter RAM to
default values. These settings include the desktop pattern and the color depth of the
default monitor.

Using the Parameter RAM Utilities 7

The Parameter RAM Utilities provide two functions—GetSysPPtr and WriteParam—
that allow you to directly manipulate parameter RAM. The GetSysPPtr function lets
you access the low-memory copy of the parameter RAM, and the WriteParam function
lets you write the modified low-memory copy back to parameter RAM. A third function,
InitUtil, is used by the system software only. At system startup, this function reads
the values from parameter RAM into low memory.

You may find it necessary to read the values in parameter RAM or even change them.
You read from and write to parameter RAM using the GetSysPPtr and WriteParam
functions.

Table 7-1 Default values for parameter RAM (for U.S. system software)

Description Default value

Validity status $A8

Node ID hint for modem port 0

Node ID hint for printer port 0

Serial port use 0 (both ports)

Modem port configuration 9600 baud, 8 data bits, no parity, 2 stop bits

Printer port configuration 9600 baud, 8 data bits, no parity, 2 stop bits

Alarm setting 0 (midnight, January 1, 1904)

Application font minus 1 2 (indicating Geneva)

Auto-key threshold 6 (24 ticks)

Auto-key rate 3 (6 ticks)

Printer connection 0 (printer port)

Caret-blink time 8 (32 ticks)

Double-click time 8 (32 ticks)

Speaker volume 3 (medium)

Menu-blink time 3

Preferred system start-up disk 0 (internal drive)

Mouse scaling 1 (on)
Using the Parameter RAM Utilities 7-29

C H A P T E R 7

Parameter RAM Utilities

Many of the values held in parameter RAM are also copied at system startup into other
low-memory locations. Therefore, to change a value in parameter RAM, you must
change all low-memory copies representing the value before you call WriteParam to
write the values back to the clock chip. For example, the global variable SPVolCtl
points to the location within the system parameters record that stores the speaker
volume, and the global variable SdVolume references a copy of this information stored
elsewhere in low memory. You could change one without changing the other, although
ordinarily you change both simultaneously.

▲ W A R N I N G

It is not recommended that you directly manipulate parameter RAM.
Your application should, if at all possible, use the routines provided by
the Toolbox to read the information stored in parameter RAM. ▲

The global variable SysParam points to the beginning of the system parameters record
stored in low memory. You can access the system parameters record directly by using
this global variable, or you can use the GetSysPPtr routine to return a pointer to the
system parameters record. Thus, you can access the low-memory system parameters
record like this:

WITH GetSysPPtr^ DO

BEGIN

... {access the system parameters record directly here}

END;

IMPORTANT

Though system software automatically copies parameter RAM into low
memory at startup, it does not automatically do the reverse. Therefore,
after you make a change to the information in the low-memory system
parameters record, you must use the WriteParam function to copy
values from that record back to the clock chip to make the change
permanent. ▲

At startup, system software calls the InitUtil function (which you should never need
to call yourself) to copy the values stored in parameter RAM into low memory. (It then
copies those values into other appropriate global variables.) When you make changes to
the low-memory copy of parameter RAM, you must call the WriteParam function to
record your changes in the clock chip.

Parameter RAM Utilities Reference 7

This section describes the data structure and routines that are specific to the Parameter
RAM Utilities. The section “Data Structures” shows the Pascal data structure for the
system parameters record. The section “Routines” describes the routines that are used
to access and manipulate the startup information stored in parameter RAM.
7-30 Parameter RAM Utilities Reference

C H A P T E R 7

Parameter RAM Utilities

7

P
aram

eter R
A

M
 U

tilities

Data Structures 7
This section describes the systems parameter record, which contains the current settings
for startup information stored in parameter RAM. For information about parameter
RAM default values, see Table 7-1 on page 7-29.

The System Parameters Record 7

The SysParmType data type describes a system parameters record.

TYPE SysParmType =

PACKED RECORD

valid: Byte; {validity status}

aTalkA: Byte; {node ID hint for modem port}

aTalkB: Byte; {node ID hint for printer port}

config: Byte; {use types for serial ports}

portA: Integer; {modem port configuration}

portB: Integer; {printer port configuration}

alarm: LongInt; {alarm setting}

font: Integer; {application font number minus 1}

kbdPrint: Integer; {printer connection, auto-key settings}

volClik: Integer; {caret blink, double click, speaker vol.}

misc: Integer; {menu blink, startup disk, mouse scaling }

END;

SysPPtr = ^SysParmType;

Field descriptions

valid Contains information about the validity status of the clock chip.
Whenever a write to the clock chip is successful, the value $A8 is
stored in this field. The status is examined when the clock chip
is read at system startup.

aTalkA Contains the node ID hint for the modem port.
aTalkB Contains the node ID hint for the printer port.
config Indicates which device or devices may use each of the serial ports.
portA Contains the baud rate, data bits, parity, and stop bits for the

modem port. Bits 0–9 define the baud rate; bits 10 and 11 define the
number of data bits; bits 12 and 13 define the parity; and bits 14 and
15 define the number of stop bits.

portB Contains the baud rate, data bits, parity, and stop bits for the printer
port. Bits 0–9 define the baud rate; bits 10 and 11 define the number
of data bits; bits 12 and 13 define the parity; and bits 14 and 15
define the number of stop bits.

alarm Contains the time at which the alarm clock should sound. The time
is defined in terms of seconds since midnight, January 1, 1904.

font Adding 1 to this field produces the font number of the default
application font.
Parameter RAM Utilities Reference 7-31

C H A P T E R 7

Parameter RAM Utilities

kbdPrint Contains the settings for the printer and for the keyboard. Bit 0
designates whether the currently chosen printer (if any) is
connected to the printer port (0) or the modem port (1). Bits 1–7 are
reserved for future use. Bits 8–11 of this field contain the auto-key
rate, whose value is stored in 2-tick units. Bits 12–15 contain the
auto-key threshold, whose value is stored in 4-tick units.

volClik Contains miscellaneous user settings, including the caret-blink time,
double-click time, and the speaker volume setting.

misc Contains more miscellaneous user settings. Bits 2 and 3 contain a
value from 0 to 3 designating the menu-blink time. Because system
software automatically calls both standard and nonstandard menu
definition procedures many times, you should not need to worry
about that value in parameter RAM. Bit 4 indicates whether the
preferred startup disk is in an internal (0) or external (1) drive. If
there is any problem with using the disk in the specified drive, the
other drive is used. Bit 6 designates whether mouse scaling is on (1)
or off (0).

Routines 7
The Parameter RAM Utilities provide two functions for use by your application and
one function for use by system software. At startup, system software uses the InitUtil
function to read parameter RAM values into low memory. You can access the values
through a system parameters record of type SysParmType described in the previous
section. To obtain a pointer to the low-memory system parameters record, call the
GetSysPPtr function. To copy the values in the system parameters record back into
the clock chip, call the WriteParam function.

▲ W A R N I N G

The organization of parameter RAM is subject to change. Therefore, you
should not manipulate parameter RAM values directly using the
operating-system routines described in this chapter; instead, use the
appropriate Toolbox routines. ▲

InitUtil 7

System software uses the InitUtil function at startup time to copy values from
parameter RAM and date and time information into low memory. Your application
should never need to use this function.

FUNCTION InitUtil: OSErr;
7-32 Parameter RAM Utilities Reference

C H A P T E R 7

Parameter RAM Utilities

7
P

aram
eter R

A
M

 U
tilities
DESCRIPTION

The InitUtil function copies the contents of parameter RAM into 20 bytes of low
memory and calls the Date, Time, and Measurement Utilities’ ReadDateTime function
to copy the date and time from the clock chip into a separate low-memory location.

If the validity status in parameter RAM is not $A8 when InitUtil is called, InitUtil
returns a non-zero result code. In this case, the default values are read into the
low-memory copy of parameter RAM; these values are then written to the clock chip.

ASSEMBLY-LANGUAGE INFORMATION

The registers on exit for the InitUtil function are

RESULT CODES

SEE ALSO

For more information about the ReadDateTime function, see the chapter “Date, Time,
and Measurement Utilities” in this book.

GetSysPPtr 7

You can use the GetSysPPtr function to obtain a pointer to the low-memory copy of
parameter RAM.

FUNCTION GetSysPPtr: SysPPtr;

DESCRIPTION

The GetSysPPtr function returns a pointer to the low-memory copy of parameter
RAM. The copied parameter RAM values are accessible through the system parameters
record.

You can examine the values stored in the various fields of this record, or you can change
them and call the WriteParam function to copy your changes back into parameter RAM.

Registers on exit

D0 Result code

noErr 0 No error
prInitErr –88 Validity status not $A8
Parameter RAM Utilities Reference 7-33

C H A P T E R 7

Parameter RAM Utilities
SPECIAL CONSIDERATIONS

Because of the organization of parameter RAM is subject to change, you should not use
the GetSysPPtr function to change the values in parameter RAM. Instead use the
appropriate Toolbox routines to modify values in parameter RAM.

ASSEMBLY-LANGUAGE INFORMATION

The global variable SysParam contains the address of the start of the system parameters
record. Other global variables allow you to access individual fields of the system
parameters record directly. These global variables all begin with the letters SP and point
directly into the system parameters record stored in low memory. Other global variables
referencing memory locations outside of the system parameters record are used to store
copies of individual fields of the system parameters record.

SEE ALSO

For information about the system parameters record, see page 7-31. For a list of global
variables associated with the system parameters record, see “Global Variables” on
page 7-38. The WriteParam function is described next.

WriteParam 7

You can use the WriteParam function to write the modified values in the system
parameters record to parameter RAM.

FUNCTION WriteParam: OSErr;

DESCRIPTION

The WriteParam function writes the modified values in the system parameters record
to parameter RAM. Your application should call this function only after making changes
to the system parameters record (returned by the GetSysPPtr function described in the
previous section).

The WriteParam function also attempts to verify the values written by reading them
back in and comparing them to the values in the low-memory copy.

SPECIAL CONSIDERATIONS

Because the organization of parameter RAM is subject to change, you should not use
the WriteParam function to change the values in parameter RAM. Instead use the
appropriate Toolbox routines to modify values in parameter RAM.
7-34 Parameter RAM Utilities Reference

C H A P T E R 7

Parameter RAM Utilities

7
P

aram
eter R

A
M

 U
tilities
Note
If you accidentally use WriteParam to write incorrect values into
parameter RAM, the user can clear the current settings in the parameter
RAM and restore the default values by holding down the x-Option-P-R
keys at system startup. ◆

ASSEMBLY-LANGUAGE INFORMATION

The registers on entry and exit for the WriteParam functions are

For historical reasons, you must set up register A0 with the global variable SysParam
and register D0 with the global variable MinusOne. When WriteParam returns, register
D0 contains the result code.

RESULT CODES

SEE ALSO

For a description of the system parameters record, see page 7-31.

Registers on entry

A
0

SysParam

D0 MinusOne

Registers on exit

D0 Result code

noErr 0 No error
prWrErr –87 Parameter RAM written did not verify
Parameter RAM Utilities Reference 7-35

C H A P T E R 7

Parameter RAM Utilities
Summary of the Parameter RAM Utilities 7

Pascal Summary 7

Data Types 7

TYPE SysParmType =

PACKED RECORD

valid: Byte; {validity status}

aTalkA: Byte; {node ID hint for modem port}

aTalkB: Byte; {node ID hint for printer port}

config: Byte; {use types for serial ports}

portA: Integer; {modem port configuration}

portB: Integer; {printer port configuration}

alarm: LongInt; {alarm setting}

font: Integer; {application font number minus 1}

kbdPrint: Integer; {printer connection, auto-key settings}

volClik: Integer; {caret blink, double click, speaker volume}

misc: Integer; {menu blink, startup disk, mouse scaling}

END;

SysPPtr = ^SysParmType;

Routines 7

FUNCTION InitUtil : OSErr;

FUNCTION GetSysPPtr : SysPPtr;

FUNCTION WriteParam : OSErr;
7-36 Summary of the Parameter RAM Utilities

C H A P T E R 7

Parameter RAM Utilities

7
P

aram
eter R

A
M

 U
tilities
C Summary 7

Data Types 7

struct SysParmType {

char valid; /*validity status*/

char aTalkA; /*node ID hint for modem port*/

char aTalkB; /*node ID hint for printer port*/

char config; /*use types for serial ports*/

short portA; /*modem port configuration*/

short portB; /*printer port configuration*/

long alarm; /*alarm setting*/

short font; /*application font number minus 1*/

short kbdPrint; /*printer connection, auto-key settings*/

short volClik; /*caret blink, double click, speaker volume*/

short misc; /*menu blink, startup disk, mouse scaling*/

};

typedef struct SysParmType SysParmType;

typedef SysParmType *SysPPtr;

Routines 7

pascal OSErr InitUtil (void);

SysPPtr GetSysPPtr (void);

pascal OSErr WriteParam (void);
Summary of the Parameter RAM Utilities 7-37

C H A P T E R 7

Parameter RAM Utilities
Assembly-Language Summary 7

Data Structures 7

SysParmType Data Structure

Global Variables 7

Result Codes 7

0 valid 1 byte validity status

1 aTalkA 1 byte node ID hint for modem port

2 aTalkB 1 byte node ID hint for printer port

3 config 1 byte use types for serial ports

4 portA word modem port configuration

6 portB word printer port configuration

8 alarm long alarm setting

12 font word application font number minus 1

14 kbdPrint word printer connection, auto-key settings

16 volClik word caret blink, double click, speaker volume

18 misc word menu blink, system startup disk, mouse scaling

GetParam System parameter scratch
SPAlarm The alarm setting
SPATalkA The node ID hint for modem port
SPATalkB The node ID hint for printer port
SPClikCaret The double-click and caret-blink times
SPConfig The use types for serial ports
SPFont The application font number minus 1
SPKbd The auto-key threshold and rate
SPMisc1 Miscellaneous
SPMisc2 The setting for mouse scaling, the system startup disk, and menu-blink time
SPPortA The modem port configuration
SPPortB The printer port configuration
SPPrint The printer connection
SPValid The validity status of parameter RAM
SPVolCtl The speaker volume
SysParam The low-memory copy of parameter RAM

noErr 0 No error
prWrErr –87 Parameter RAM written did not verify
prInitErr –88 Validity status is not $A8
7-38 Summary of the Parameter RAM Utilities

	 Title
	 Copyright
	 Table of Contents
	 Figures, Tables, and Listings
	 Preface
	 Gestalt Manager TOC
	 Gestalt Manager
	 System Error Handler TOC
	 System Error Handler
	 Mathematical and Logical Utilities TOC
	 Mathematical and Logical Utilities
	 Date, Time, and Measurement Utilities TOC
	 Date, Time, and Measurement Utilities
	 Control Panels Extensions TOC
	 Control Panels Extensions
	 Queue Utilities TOC
	 Queue Utilities
	 Parameter RAM Utilities TOC
	Parameter RAM Utilities
	About Parameter RAM
	Using the Parameter RAM Utilities
	Parameter RAM Utilities Reference
	Data Structures
	The System Parameters Record

	Routines

	Summary of the Parameter RAM Utilities
	Pascal Summary
	Data Types
	Routines

	C Summary
	Data Types
	Routines

	Assembly-Language Summary
	Data Structures
	Global Variables

	Result Codes

	 Trap Manager TOC
	 Trap Manager
	 Start Manager TOC
	 Start Manager
	 Package Manager TOC
	 Package Manager
	 Glossary
	 Index
	 Colophon

