

C H A P T E R 8

8

Trap M
anager

Trap Manager 8

This chapter describes how your application can use the Trap Manager to augment or
override an existing system software routine.

Although this chapter describes patching in some depth, you should rarely, if ever, find
a need to use patches in an application. The primary purposes of patches, as their name
suggests, are to fix problems and augment routines in ROM code.

To use this chapter, you should have some knowledge of assembly language. For
information about the instruction sets of microprocessors in the Motorola MC680x0
family, see the appropriate user’s manual, for example, the MC68020 32-Bit
Microprocessor User’s Manual.

This chapter describes how the Trap Manager works and then shows how you can use
the Trap Manger to

■ check for the availability of a system software routine

■ alter the behavior of a system software routine

About the Trap Manager 8

The Trap Manager is a collection of routines that lets you add extra capabilities to system
software routines.

In order to execute system software routines, system software takes advantage of the
unimplemented instruction feature of the MC680x0 family of microprocessors, which
are the central processing units (CPUs) used in the Macintosh family of computers.

The MC680x0, like other microprocessors, executes a stream of instructions. Information
encoded in an instruction indicates the operation to be performed by the microprocessor.
The MC680x0 family of microprocessors recognizes a defined set of instructions. When
the microprocessor encounters an instruction that it doesn’t recognize, an exception
is generated. An exception refers to bus errors, interrupts, and unimplemented
instructions. When an exception occurs, the microprocessor suspends normal execution
and transfers control to an appropriate exception handler.

In the MC680x0 family of microprocessors, all instructions starting with the hexadecimal
digit $A are unimplemented instructions. These unimplemented instructions are also
called A-line instructions . System software uses these unimplemented A-line
instructions to execute system software routines. When you call a system software
routine, the call to the system software routine is translated into an A-line instruction.
The MC680x0 microprocessor doesn’t recognize this A-line instruction, and transfers
control to an exception handler.

System software provides an exception handler, called a trap dispatcher, to handle
exceptions generated by A-line instructions. Whenever a MC680x0 microprocessor
encounters an A-line instruction, an exception is generated, and the microprocessor
transfers control to the trap dispatcher. An exception generated by an A-line instruction
is called a trap.
About the Trap Manager 8-3

C H A P T E R 8

Trap Manager

When the trap dispatcher receives the A-line instruction, it looks into a table, called a
trap dispatch table, to find the address of the called system software routine. After the
trap dispatcher retrieves the address, it transfers control to the specified system software
routine. Figure 8-1 illustrates the processing of instructions that include the A-line
instructions that the microprocessor does not recognize.

Figure 8-1 How the CPU processes A-line instructions

You can use the Trap Manager routines to read from and write to the two trap dispatch
tables maintained by system software.

Does

CPU

recognize

 instruction?

Machine

instruction

Yes

No

Exception (trap)

Trap dispatcher Trap dispatch

table

System

software

routine

Retrieves

address

Executes

CPU executes

instruction
8-4 About the Trap Manager

C H A P T E R 8

Trap Manager

8

Trap M
anager

Trap Dispatch Tables 8
System software uses trap dispatch tables to locate the address of system software
routines. System software maintains two trap dispatch tables: an Operating System
trap dispatch table and a Toolbox trap dispatch table. Figure 8-2 illustrates the two trap
dispatch tables.

Figure 8-2 Trap dispatch tables

At system startup time, system software builds the trap dispatch tables and places
them in RAM. The Operating System trap dispatch table contains 256 entries, and the
Toolbox trap dispatch table contains 1024 entries. Each entry in the Operating System
trap dispatch table contains a 32-bit address of an Operating System routine, and each
entry in the Toolbox trap dispatch table contains a 32-bit address of a Toolbox routine.
The system software routines can be located in either ROM or RAM.

Process for Accessing System Software Routines 8
As previously described, when your application calls a system software routine, an
A-line instruction is sent to the microprocessor. The microprocessor does not recognize
this instruction, and an exception is generated. This exception is then handled by the
trap dispatcher. When the trap dispatcher receives the A-line instruction, it looks into
one of the two trap dispatch tables to find the address of the called system software
routine. When the trap dispatcher retrieves the address, it transfers control to the
specified system software routine. For example, Figure 8-3 illustrates a call to the
Toolbox procedure, FillRect. When the application calls the FillRect procedure,
an exception is generated. The trap dispatcher looks into the Toolbox trap dispatch table
to find the address of the FillRect procedure. When the address is found, the trap
dispatcher transfers control to the FillRect procedure.

Address
1

1024

Toolbox trap dispatch table

Address
1

256

Operating System trap dispatch table
About the Trap Manager 8-5

C H A P T E R 8

Trap Manager

Figure 8-3 Accessing the FillRect procedure

Note
Not all A-line instructions are defined. When the trap dispatcher
receives an undefined A-line instruction, the trap dispatcher returns the
address of the Toolbox procedure Unimplemented. When called, the
Unimplemented procedure triggers a system error. ◆

Patches and System Software Routines 8
You can modify the trap dispatch table so that the address that gets returned to the trap
dispatcher points to a different routine instead of the intended system software routine;
this is useful if you want to augment or override an existing system software routine.
The routine that augment an existing system software routine is called a patch. The
method of augmenting or overriding a system software routine is called patching a trap.

For example, you can augment the FillRect procedure with your own procedure
MyPatchFillRect. Figure 8-4 illustrates another call to the Toolbox procedure
FillRect. When the application calls the FillRect procedure the application-defined
patch MyPatchFillRect is executed first. After the application-defined patch
MyPatchFillRect completes its primary action, it transfers control (through a JMP
instruction) to the original FillRect procedure.

Address

$XXXXXXXX

Application calls a Toolbox

routine

FillRect (r, pat);

1

1024

Toolbox trap dispatch table

Trap dispatcher

Gets the address from

the trap dispatch table

Transfers control to the

routine at the retrieved

address

PROCEDURE

FillRect(r: Rect;

 pat: Pattern);

System software routine
8-6 About the Trap Manager

C H A P T E R 8

Trap Manager

8

Trap M
anager

IMPORTANT

Although this chapter describes patching in some detail, you should
avoid any unnecessary patching of the system software. One very good
reason to avoid patching is that is causes a performance reduction. The
performance reduction is especially substantial when your patch is
executed on a PowerPC processor-based Macintosh computer, where it
is necessary to switch execution environments when entering and
exiting your patch code. For more information about patching PowerPC
system software, see Inside Macintosh: PowerPC System Software. ▲

Figure 8-4 Augmenting the FillRect procedure with a single patch

Note
To prevent dangling patch addresses, you must ensure that your patch
routine is in a locked memory block while its address is in the trap
dispatch table. ◆

Address

$YYYYYYYY

Trap dispatcher

Application calls a Toolbox

routine

FillRect (r, pat);

1

1024

Toolbox trap dispatch table

Gets the address from

the trap dispatch table

Transfers control to the

routine at the retrieved

address

System software routinePatch

PROCEDURE

MyPatchFillRect

(r: Rect; pat: Pattern);

Calls orginal routine ($XXXXXXXX)

PROCEDURE

FillRect (r: Rect;

 pat: Pattern);
About the Trap Manager 8-7

C H A P T E R 8

Trap Manager

Daisy Chain of Patches 8

It is possible to patch a system software routine with more than just one patch; this is
called a daisy chain of patches. Typically, you extract from the trap dispatch table the
address of the routine you wish to patch, save this address, and then install your own
patch routine. When your patch has completed its tasks, it should jump to the address
you previously extracted from the trap dispatch table. In this way, the patches take the
general form of a daisy chain. Each patch will execute in turn and jump to the next patch
until the last link in the chain, which returns control to the trap dispatcher.

IMPORTANT

Although this chapter describes patching in some depth, you should
rarely, if ever, find a need to use patches in an application. The primary
purposes of patches, as their name suggests, are to fix problems and
augment routines in ROM code. ▲

A patch can be implemented as either a head patch, tail patch, or come-from patch.
These are described in the next sections.

Head Patch (Normal Patch) 8

A head patch , also referred to as a normal patch, is a routine that gets executed before
the original system software routine. A head patch performs its primary action and then
uses a jump instruction (JMP) to jump to the system software routine. Thus the head
patch does not regain control after the execution of the system software routine. After
the execution of the system software routine, control is transferred back to the trap
dispatcher.

Tail Patch 8

A tail patch is a routine that gets executed before the original system software routine
and regains control after the execution of the system software routine. A tail patch uses
a jump-subroutine instruction (JSR) to transfer control to the system software routine.
After the system software routine returns control to the tail patch, the tail patch returns
control to the trap dispatcher.

▲ W A R N I N G

You should never install tail patches in system software versions earlier
than System 7. Tail patches may conflict with come-from patches,
installed by Apple. ▲

Come-From Patch (Used Only by Apple) 8

A come-from patch, also called a system patch, is a type of patch used only by Apple.
Come-from patches are used to replace erroneous code or to add capabilities not in ROM.

When a come-from patch is invoked, it examines the stack to determine where it was
called from. If the come-from patch was invoked from a particular place in ROM (a spot
where the code needs to be augmented or deleted), the come-from patch executes the
8-8 About the Trap Manager

C H A P T E R 8

Trap Manager

8

Trap M
anager

modifying code. Otherwise, if the come-from patch was called from a part of the system
that does not need to be augmented, it transfers control to the next routine in the daisy
chain. This routine could be another patch or the system software routine.

Beginning with System 7, the addresses of come-from patches are permanently placed in
the trap dispatch table at system startup time. The addresses of come-from patches are
hidden and cannot be manipulated by any of the Trap Manger routines.

For example, if a system software routine has a come-from patch and if you use the
Trap Manger function NGetTrapAddress to retrieve the address of the system software
routine, you will not get the address in the trap dispatch table (which is the address of
the come-from patch). NGetTrapAddress instead returns the address of the routine
that is executed immediately after the come-from patch. This address could be the
address of another patch or the system software routine.

If a system software routine has a come-from patch and if you use the Trap Manager
procedure NSetTrapAddress to install a patch to the system software routine,
the address of the patch is not written into the trap dispatch table. Instead, the
NSetTrapAddress procedure installs the address of the patch into the last come-from
patch. The patch is executed after the completion of the come-from patch.

▲ W A R N I N G

In system software before System 7, if a come-from patch is invoked by a
tail-patch, the come-from patch does not work correctly. The come-from
patch never sees the ROM address on the stack—only the return address
of the tail-patch. ▲

Patch for One Application 8

If you install a patch into your application heap, the patch applies only to your
application. When your application is switched out, your application’s heap
(and patch) is swapped out. For example, if you patch FillRect with the patch
MyPatchFillRect, the MyPatchFillRect patch is executed only when the
FillRect procedure is called from your application.

Note
When running in System 7 or under MultiFinder in System 6, each
application has its own copy of the trap dispatch tables. This ensures
that an application’s patches apply only when it is running and that
they’re discarded when the application quits. ◆

Patch for All Applications 8

If you install a patch from a system extension during system startup, your patch is
placed in the system heap and applies to all applications. For example, if you patch the
FillRect procedure with the patch MyPatchFillRect from a system extension, the
MyPatchFillRect patch is executed every time the FillRect procedure is called, no
matter which application calls it.
About the Trap Manager 8-9

C H A P T E R 8

Trap Manager

A-Line Instructions 8
When your application calls a Toolbox or an Operating System routine, an A-line
instruction is sent to the microprocessor. Each A-line instruction contains information
about the called system software routine. Figure 8-5 shows the layout of an A-line
instruction.

Figure 8-5 A-line instruction format

The high-order 4 bits of an A-line instruction have the hexadecimal value $A, hence
the name A-line instruction. Bit 11 of the A-line instruction indicates the type of system
software routine to be invoked: a value of 0 in bit 11 indicates an Operating System
routine, a value of 1 in bit 11 indicates a Toolbox routine. The trap number in an A-line
instruction is used as an index into the appropriate dispatch table. The meaning of the
flags vary accordingly to the type of A-line instruction.

When your application calls a system software routine (thereby generating an
exception), the microprocessor pushes an exception stack frame onto the stack. Figure
8-6 shows a typical exception stack frame. After pushing the exception stack frame on
the stack, the microprocessor transfers control to the trap dispatcher.

Figure 8-6 Exception stack frame (on Macintosh computers with a MC68020 microprocessor
or greater)

15 14 13 12 11 10 0

$A 0 = Operating System trap

1 = Toolbox trap

1 0 1 0 Flags and trap number

Stack

Pointer

Stack on entry to trap dispatcher

Program Counter

Status register

Vector offset
8-10 About the Trap Manager

C H A P T E R 8

Trap Manager

8
Trap M

anager
The trap dispatcher discards the status register and vector offset. Depending on whether
the A-line instruction is used to invoke an Operating System routine or a Toolbox
routine, the trap dispatcher deals with the stack and registers in two very different ways,
as described in the next section, “A-line Instructions for Operating System Routines,”
and in the section “A-Line Instructions for Toolbox Routines” beginning on page 8-14.

Note
The exception handler is located at address $28 on computers with an
MC68000 microprocessor and at address $28 offset from the address in
the microprocessor’s Vector Base Register (VBR) on computers with
other MC680x0 microprocessors. Consult the relevant microprocessor
handbook for the precise details of exception handling on the MC680x0
microprocessor of interest to you. ◆

A-Line Instructions for Operating System Routines 8
An Operating System trap is an exception that is caused by an A-line instruction that
executes an Operating System routine.

When dispatching an Operating System trap, the trap dispatcher extracts the trap
number from the A-line instruction and uses it as an index into the Operating System
trap dispatch table. The entry in the Operating System trap dispatch table contains the
address of the desired Operating System routine. Figure 8-7 illustrates an A-line
instruction for an Operating System routine.

Figure 8-7 An A-line instruction for an Operating System routine

Bit 11 tells the trap dispatcher that this A-line instruction invokes an Operating System
routine. Two flag bits, bit 10 and bit 9, are reserved for use by the Operating System
routine itself and are discussed in detail in “Flag Bits” on page 8-14. Bit 8 indicates
whether the value in register A0 is returned from the Operating System routine. If bit 8
is 0, the value in register A0 is returned from the Operating System routine. If bit 8 is 1,
the value in register A0 is not returned by the Operating System routine. As previously
described, the trap number is in bits 7–0 and is used to determine which of the
256 possible Operating System routines is executed.

For example, a call to the Operating System function GetPtrSize is translated to the
A-line instruction $A021. This A-line instruction causes the microprocessor to transfer

15 14 13 12 11 10 09

$A

Flags
Return/save A0 bit

8 7

1 0 1 0 0 Trap number

0 = Operating System trap
About the Trap Manager 8-11

C H A P T E R 8

Trap Manager
control to the trap dispatcher, which deals with any instruction of the form $Axxx. The
trap dispatcher first saves registers D0, D1, D2, A1, and, if bit 8 is 0, A0. The trap
dispatcher places the A-line instruction itself into the low-order word of register D1 so
that the Operating System routine can inspect the flag bits. Next, the trap dispatcher
examines the other bits in the A-line instruction. The value (0) of bit 11 indicates that
GetPtrSize is an Operating System routine, and that the value in bits 7–0 is the index
into the Operating System trap dispatch table. The trap dispatcher uses the index (which
is 33 in this example) to find the address of the GetPtrSize function in the Operating
System trap dispatch table. When the address is found, the trap dispatcher transfers
control to the GetPtrSize function.

Figure 8-8 illustrates the stack after the trap dispatcher has transferred control to an
Operating System routine.

Figure 8-8 The stack on entry to an Operating System routine

The Operating System routine may alter any of the registers D0–D2 and A0–A2, but it
must preserve registers D3–D7 and A3–A6. The Operating System routine may return
information in register D0 (and A0 if bit 8 is set). To return to the trap dispatcher, the
Operating System routine executes the RTS (return from subroutine) instruction.

When the trap dispatcher resumes control, first it restores the value of registers D1, D2,
A1, A2, and, if bit 8 is 0, A0. The values in registers D0 and, if bit 8 is 1, in A0 are not
restored.

Calling Conventions for Register-Based Routines 8

Register-based routines receive their parameters from microprocessor registers, and they
pass their results in microprocessor registers. Virtually all Operating System routines are
register-based routines.

Stack on entry to

Operating System routine

Program Counter

Saved registers A0, A1, D0–D2

 Program Counter

(in trap dispatcher)Stack

Pointer

Unspecified long word
8-12 About the Trap Manager

C H A P T E R 8

Trap Manager

8
Trap M

anager
An Operating System routine returns information only in registers D0 and, if bit 8 is 1,
A0. The stack and all other registers are unchanged.

Many Operating System routines return a result code in the low-memory word of
register D0 to report whether the requested operation was performed successfully.
A result code of 0 indicates that the routine completed successfully; any other value
typically indicates an error. Just before the trap dispatcher finishes execution, it tests
the low-order word of register D0 with a TST.W instruction to set the condition codes
of the microprocessor.

Note
Calling conventions for PowerPC microprocessor-based Macintosh
computers are different from the calling conventions described for in
this section. For information about calling conventions for PowerPC
processor-based Macintosh computers, see Inside Macintosh: PowerPC
System Software. ◆

Parameter-Passing Conventions for Operating System Routines 8

By convention, register-based routines normally use register A0 for passing addresses
(such as pointers to data objects) and register D0 for other data values (such as integers).

For routines that take more than two parameters, the parameters are normally collected
in a parameter block in memory and a pointer to the parameter block is passed in
register A0. See the description of an individual routine in the appropriate
Inside Macintosh book for exact details.

Function Results 8

Most Operating System functions return their function result (or result code) in register
D0. Parameters are returned through register A0, usually as a pointer to a parameter
block.

Whether the trap dispatcher preserves register A0 depends on the setting of bit 8 in the
A-line instruction. If bit 8 is 0, the trap dispatcher saves and restores register A0; if it’s 1,
the routine passes back register A0 unchanged. Thus, bit 8 of the A-line instruction
should be set to 1 only for those routines that use register A0 to return information.
The trap macros automatically set this bit correctly for each routine.

To see in which register the function passes the function result, see the description of
the individual function in the appropriate Inside Macintosh book.
About the Trap Manager 8-13

C H A P T E R 8

Trap Manager
Flag Bits 8

Many Operating System routines use the flag bits in an A-line instruction to encode
additional information used by the routine. For example, the A-line instructions that
invoke Memory Manager routines define the two flag bits like this:

These two bits are defined in assembly language as:

CLEAR EQU $200 ;initialize block to zero

SYS EQU $400 ;use the system heap

When used with a Memory Manager A-line instruction, these modifiers cause flag bits
9 and 10, respectively, to be set. They could be used in an assembly-language instruction
sequence like

MOVEQ #124,D0 ;need 124 bytes

_NewPtr SYS,CLEAR ;allocate requested memory in

; system heap and initialize to

; zeroes

The SYS modifier specifies allocation from the system heap, regardless of the value of
the global variable TheZone, and the CLEAR modifier specifies that the Memory
Manager should initialize the block contents to zero. For further details, consult Inside
Macintosh: Memory.

A-Line Instructions for Toolbox Routines 8
A Toolbox trap is an exception that is caused by an A-line instruction that executes a
Toolbox routine.

When dispatching a Toolbox trap, the trap dispatcher extracts the trap number from the
A-line instruction and uses it as an index into the Toolbox trap dispatch table. The index
points to the entry in the Toolbox trap dispatch table that contains the address of the
desired Toolbox routine. Figure 8-9 illustrates an A-line instruction that is used to access
a Toolbox routine.

Bit Explanation

9 If 1, initialize all bytes in the allocated memory to 0.
If 0, do not initialize all bytes in the allocated memory to 0.

8 If 1, allocate memory from the system heap.
If 0, allocate memory from the application heap.
8-14 About the Trap Manager

C H A P T E R 8

Trap Manager

8
Trap M

anager
Figure 8-9 An A-line instruction for a Toolbox routine

Bit 11 tells the trap dispatcher that this A-line instruction is used to access a Toolbox
routine. Bit 10 is the auto-pop bit. Bits 9–0 contain the trap number which, as previously
described, determine which of the 1024 possible Toolbox routines is executed. The
auto-pop bit is described in detail in “The Auto-Pop Bit” on page 8-20.

For example, a call to the Toolbox function WaitNextEvent is translated to the A-line
instruction $A860. This A-line instruction causes the microprocessor to transfer control
to the trap dispatcher, which deals with any instruction of the form $Axxx. The trap
dispatcher examines the other bits in the A-line instruction. The value (0) of bit 11
indicates that WaitNextEvent is a Toolbox routine and that the value in bits 9–0 is
the index into the Toolbox trap dispatch table. The trap dispatcher uses the index (which
is $60 in this example) to find the address of the WaitNextEvent function in the
Toolbox trap dispatch table. When the address is found, the trap dispatcher transfers
control to the WaitNextEvent function.

Figure 8-10 illustrates the stack after the trap dispatcher has transferred control to a
Toolbox routine.

Figure 8-10 Stack when entering a Toolbox routine

The value of the Program Counter that is left on the stack before entry to the Toolbox
routine points to the instruction that is executed after the completion of the
Toolbox routine.

$A 1=Toolbox trap

15 14 13 12 11 10 09

1 0 1 0 1 Trap number

Auto-pop bit

Stack

Pointer

Stack on entry to Toolbox routine

 Program Counter

 Additional parameters

and extra information
About the Trap Manager 8-15

C H A P T E R 8

Trap Manager
After the trap dispatcher completes execution, the internal status of the stack is restored,
and normal execution resumes from the point at which processing was suspended.

A Toolbox routine changes the Stack Pointer in register A7 and pops the return address
and any input parameters. A routine might also alter registers D0–D2, A0, and A1.

▲ W A R N I N G

Some Toolbox routines (for example the LongMul procedure described
in the chapter “Mathematical and Logical Utilities” in this book)
preserve more than the required set of registers. However, you should
assume all of registers D0–D2, A0, and A1 are altered by Toolbox
routines. ▲

Calling Conventions for Stack-Based Routines 8

Stack-based routines receive their parameters on the stack and return their results on the
stack. Virtually all Toolbox routines are stack-based routines.

Most Toolbox routines follow Pascal calling conventions; that is, Toolbox routine
parameters are evaluated from left to right and are pushed onto the stack in the order
in which they are evaluated. Function results are returned by value or by address on the
stack. Space for the function result is allocated by the caller before the parameters are
pushed on the stack. The caller is responsible for removing the result from the stack
after the call.

Note
Calling conventions for PowerPC microprocessor-based Macintosh
computers are different from the calling conventions described in this
section. For information about calling conventions for PowerPC
processor-based Macintosh computers, see Inside Macintosh: PowerPC
System Software. ◆

Figure 8-11 illustrates Pascal calling conventions. In this example, a routine calls the
application-defined function MyPascalFn. When the application calls the function
MyPascalFn, the application must first make room on the stack for the function result,
then push the parameters on the stack in left-to-right order.
8-16 About the Trap Manager

C H A P T E R 8

Trap Manager

8
Trap M

anager
Figure 8-11 Pascal calling convention

Figure 8-12 illustrates C calling conventions. In this example, a routine calls the
application-defined function MyCFn. When the application calls the function MyCFn, the
application pushes the parameters on the stack in right-to-left order. The function result
is returned in register D0, and not on the stack.

Figure 8-12 C calling convention

Stack

Pointer

Stack on entry to function

Reserved space for

function result

x

z

Return address

Stack

Pointer

Stack on return from function

Function result

FUNCTION MyPascalFn (x:Integer; y:Integer; z:LongInt): LongInt;

y

Stack

Pointer

Stack on entry to function

long MyCFn (short a, short b, long c);

c

b a

Return address
About the Trap Manager 8-17

C H A P T E R 8

Trap Manager
Parameter-Passing Conventions for Toolbox Routines 8

All variable parameters (parameters of type VAR) are passed as pointers to the actual
storage location. In the case of byte-sized types, parameters of type VAR may have odd
values.

Nonvariable parameters are passed in different ways, depending on the type of the
parameter. Values of type Boolean, elements of an enumerated type with fewer than
128 elements, and subranges within the range –128 to 127 are passed as signed byte
values. Values of type Integer and, Char and all other enumerations and subranges
are passed as signed word values. Pointers and values of type LongInt are passed as
signed 32-bit values. Table 8-1 summarizes the parameter-passing conventions.

A parameter of type SET is passed by rounding its size up to the next whole word, if
necessary, then pushing its value so that the lowest-order word is pushed last. In the case
of a byte-size SET, the called procedure accesses only the low-order half of the word that
is pushed.

Table 8-1 Toolbox parameter-passing conventions

Parameter type Data object pushed on stack

Boolean Byte: range 0 to 1

Char 16 bits: range 0 to 255

Integer 16 bits: range –32768 to 32767

LongInt 32 bits

Pointer 32 bits

Enumeration: range 0 to 127 Byte: range 0 to 127

Enumeration: range 0 to 32767 16 bits: range 0 to 32767

Subrange: range –128 to 127 16 bits: range –128 to 127

Subrange: range –32768 to 32767 Word: range –32768 to 32767

Real Address of Extended copy

Double Address of Extended copy

Comp Address of Extended copy

Extended Address of argument

ARRAY, RECORD, string ≤ 4 bytes Value (word or long word)

ARRAY, RECORD, string > 4 bytes Address of value

SET SET value rounded to whole number of words
8-18 About the Trap Manager

C H A P T E R 8

Trap Manager

8
Trap M

anager
Note
A byte pushed on the stack occupies the high-order byte of the word
allocated for it, according to conventions for the MC680x0
microprocessors. ◆

▲ W A R N I N G

A value of type Char is passed as a word value. The value occupies the
low-order half of the word. ▲

Function Results 8

Function results are returned by value or by address on the stack. Space for the function
result is allocated by the caller before the parameters are pushed. The caller is
responsible for removing the result from the stack after the call.

For types Boolean, Char, and Integer and for enumerated and subrange types, the
caller allocates a word on the stack to make space for the function result. Values of type
Boolean, enumerated types with fewer than 128 elements, and subranges within the
range –128 to 127 are returned as signed byte values. The value is placed in the
high-order byte of the word.

Values of type Integer and Char and all enumerated and subrange types not covered
above are returned as signed word values.

Pointers and values of type LongInt are returned as signed 32-bit values. Values of type
Real are returned as 32-bit real values. For types whose values are greater than 4 bytes
in size, the caller pushes a pointer to a temporary location into which the function places
the result; these types include Double (8 bytes), Comp (8 bytes), and Extended (10 or 12
bytes); types SET, ARRAY, RECORD; and strings greater than 4 bytes in size.

For a 1-byte SET, for types SET, ARRAY, and RECORD, and for strings whose size is one
word, the caller allocates a word on the stack. For types SET, ARRAY, and RECORD and
strings whose size is two words, the caller allocates a long word on the stack.

The conventions for returning results of functions are summarized in Table 8-2.

Table 8-2 Conventions for returning results from Toolbox functions

Function result type
Data object left on stack or returned
through pointer on stack

Boolean Byte: range 0 to 1

Char 16 bits: range 0 to 255

Integer 16 bits: range –32768 to 32767

LongInt 32 bits

Pointer 32 bits

Enumeration: range 0 to 127 Byte: range 0 to 127

Enumeration: range 0 to 32767 16 bits: range 0 to 32767

continued
About the Trap Manager 8-19

C H A P T E R 8

Trap Manager
Note
A 1 byte-size return value occupies the high-order byte of the word
allocated for it. ◆

The Auto-Pop Bit 8

The auto-pop bit is bit 10 in an A-line instruction for a Toolbox routine. Some language
systems prefer to generate jump-subroutine calls (JSR) to intermediate routines, called
glue routines, which then call Toolbox routines instead of executing the Toolbox routine
directly. This glue method would normally interfere with Toolbox traps because the
return address of the glue subroutine is placed on the stack between the Toolbox
routine's parameters and the address of the place where the glue routine was called
from (where control returns once the Toolbox routine has completed execution).

The auto-pop bit forces the trap dispatcher to remove the top 4 bytes from the stack
before dispatching to the Toolbox routine. After the Toolbox routine completes execution,
control is transferred back to the place where the glue routine was called from, not back
to the glue routine.

Most development environments, including MPW, do not use this feature.

About Trap Macros 8
A trap macro is an assembly-language macro that assembles into an A-line instruction,
used for calling a Toolbox or Operating System routine from assembly language. The
names of all trap macros begin with the underscore character (_), followed by the name

Subrange: range –128 to 127 Byte: range –128 to 127

Subrange: range –32768 to 32767 16 bits: range –32768 to 32767

Real Real

Double Double at address given by pointer

Comp Comp at address given by pointer

Extended Extended at address given by pointer

ARRAY, RECORD, string ≤ 4 bytes Value (word or long word)

ARRAY, RECORD, string > 4 bytes Value at address given by pointer

SET: one byte Byte value

SET: one word 16-bits value

SET: two words 32-bits value

SET > two words Value at address given by pointer

Table 8-2 Conventions for returning results from Toolbox functions (continued)

Function result type
Data object left on stack or returned
through pointer on stack
8-20 About the Trap Manager

C H A P T E R 8

Trap Manager

8
Trap M

anager
of the corresponding routine. As a rule, the macro name is the same as the name used
to call the routine from Pascal. For example, to call the Window Manager function
NewWindow, you should use an instruction with the macro name _NewWindow. There
are some exceptions, however, in which the spelling of the macro differs from the name
of the Pascal routine itself; these are noted in the documentation for the individual
routines.

Trap macros for Toolbox routines take no arguments; any parameters must be pushed
on the stack before invoking the routine. See “Calling Conventions for Stack-Based
Routines” on page 8-16 for more information. Trap macros for Operating System
routines may have as many as three optional arguments. The first argument, if present,
is used to load a register with a parameter value for the routine you’re calling. The
remaining arguments control the settings of the various flag bits in the A-line instruction.

About Routine Selectors 8
A routine selector is a value that is pushed on the stack to select a particular routine from
a group of routines to be executed. Many trap macros take routine selectors. For
example, the trap macro _HFSDispatch has the possibility of calling 42 different
system software routines. Hence, the trap macro has 42 different routine selectors. The
routine selector that is passed on the stack (for _HFSDispacth to access) selects which
of the 42 software routines _HFSDispatch executes.

Most system software routines that are accessed through a trap macro and a routine
selector also have a corresponding macro that expands to call the original trap macro
and automatically puts the correct routine selector on the stack. For example, the trap
macro _GetCatInfo expands to call _HFSDispatch and places the selector $0009 on
the stack after the parameters.

Using the Trap Manager 8

You can use the Trap Manger to read from and write to a trap dispatch table. To
read an address from a trap dispatch table, you can call the NGetTrapAddress,
GetOSTrapAddress, or GetToolboxTrapAddress functions. To write an address to
a trap dispatch table, you can use the NGetTrapAddress, GetOSTrapAddress, or
GetToolboxTrapAddress procedures.

This section shows how you can use the Trap Manager to

■ determine if a system software routine is available

■ patch a system software routine

Determining If a System Software Routine is Available 8
You can use the Trap Manager to determine the availability of system software routines.
Using the Trap Manager 8-21

C H A P T E R 8

Trap Manager
The Gestalt Manager, introduced in System 6.0.4 and discussed in the chapter “Gestalt
Manager” in this book, is the primary tool for querying the system about its features. But
if you expect your application to run on a system older than System 6.0.4, the Gestalt
Manager may not be available.

The example in this section shows how you can use the Trap Manager to check whether
a particular system software routine is available on the installed system.

At startup time, system software places the address of the Unimplemented procedure
into all entries of each trap dispatch table that do not contain an address of a Toolbox or
Operating System routine (or the address of a come-from patch). Listing 8-1 illustrates
how you can use these Unimplemented addresses to determine whether a particular
system software routine is available on the user’s system. If a system software routine
is available, its address differs from the address of the Unimplemented procedure.

Listing 8-1 Determining if a system software routine is available

FUNCTION MySWRoutineAvailable (trapWord: Integer): Boolean;

VAR

trType: TrapType;

BEGIN

{first determine whether it is an Operating System or Toolbox routine}

IF ORD(BAND(trapWord, $0800)) = 0 THEN

trType := OSTrap

ELSE

trType := ToolTrap;

{filter cases where older systems mask with $1FF rather than $3FF}

IF (trType = ToolTrap) AND (ORD(BAND(trapWord, $03FF)) >= $200) AND

(GetToolboxTrapAddress($A86E) = GetToolboxTrapAddress($AA6E)) THEN

MySWRoutineAvailable := FALSE

ELSE

MySWRoutineAvailable := (NGetTrapAddress(trapWord, trType) <>

GetToolboxTrapAddress(_Unimplemented));

END;

Note
Macintosh Plus and Macintosh SE computers with system software prior
to System 7 masked their trap numbers with $1FF in the
GetToolboxTrapAddress function so that the address of A-line
instruction $AA6E (whether implemented or not) would be the same as
A-line instruction $A86E, which invokes the InitGraf routine. ◆

You can use the application-defined procedure MySWRoutineAvailable to check for
system software routines not supported by the Gestalt Manager. A notable example is
the WaitNextEvent function, which has never had Gestalt selectors. Listing 8-2
shows two common uses of the application-defined MySWRoutineAvailable
procedure.
8-22 Using the Trap Manager

C H A P T E R 8

Trap Manager

8
Trap M

anager
Listing 8-2 Determining whether WaitNextEvent and Gestalt are available

VAR

gHasWNE, gHasGestalt: Boolean;

{check for the availability of WaitNextEvent}

gHasWNE := MySWRoutineAvailable(_WaitNextEvent);

{check for the availability of Getstalt}

gHasGestalt := MySWRoutineAvailable(_Gestalt);

Patching a System Software Routine 8
Although this chapter describes patching in some depth, you should rarely, if ever, find
a need to use patches in an application. The primary purposes of patches, as their name
suggests, are to fix problems and augment routines in ROM code. The examples in this
section are only included for the sake of completeness.

Listing 8-3 illustrates a patch for the SysBeep Operating System procedure. When
SysBeep is called, this application-defined patch MySysBeep is executed before
transferring control to the original SysBeep procedure.

Listing 8-3 Patching the SysBeep Operating System procedure

PROCEDURE MySysBeep (duration: Integer);

VAR

oldPort: GrafPtr;

wMgrPort: GrafPtr;

i: Integer;

BEGIN

GetPort(oldPort);

GetWMgrPort(wMgrPort);

SetPort(wMgrPort);

FOR := 3 DOWNTO 0 DO BEGIN

InvertRect(wMgrPort^.portBits.bounds);

END;

SetPort(oldPort);

END; {of MySysBeep}

To transfer control to the next routine in the daisy chain (in this example the
original SysBeep procedure), the application-defined MyInstallAPatch procedure
(Listing 8-5) uses the application-defined procedure MyFollowDaisyChain, shown in
Listing 8-4. The MyFollowDaisyChain duplicates the parameter for the SysBeep
procedure and then pushes the address of the SysBeep procedure on the stack.
Listing 8-4 shows the application-defined procedure MyFollowDaisyChain.
Using the Trap Manager 8-23

C H A P T E R 8

Trap Manager
Listing 8-4 Jumping to the next routine in the daisy chain

MyFollowDaisyChain PROC EXPORT

IMPORT MYSYSBEEP

BRA.S @2

@1 DC.L $50FFC001

@2 MOVE.W $4(A7),-(A7) ;duplicate the parameters

MOVE.L @1,-(A7) ; and push the chain link

BRA.S MYSYSBEEP

NOP

ENDPROC

END

The application-defined procedure MyInstallAPatch in Listing 8-5 installs a patch
into the daisy chain (in this example, the MySysBeep patch). First, the procedure calls
the NGetTrapAddress function to get the address of the next routine in the daisy chain.
This address could be the address of another patch or the system software routine. Next,
MyInstallAPatch calls the NSetTrapAddress procedure to put the address of the
new patch (in this example, the address of MySysBeep patch) into the trap dispatch
table.

Listing 8-5 Installing a patch

PROGRAM MyPatchInstaller;

USES Memory, ToolIntf, OSIntf, OSUtils,Windows,

ToolUtils, Traps, Resources, SamplePatch;

TYPE

PatchCodeHandle = ^PatchCodePtr;

PatchCodePtr = ^PatchCodeHeader;

PatchCodeHeader =

RECORD

branch: Integer;

oldTrapAddress: LongInt;

END;

PROCEDURE MyFollowDaisyChain (duration: Integer); EXTERNAL;

PROCEDURE MyInstallAPatch (trapNumber: Integer; tType: TrapType;

 pPatchCode: PatchCodePtr);

BEGIN

pPatchCode^.oldTrapAddress := NGetTrapAddress(trapNumber,

 tType);

NSetTrapAddress (ORD4(pPatchCode), trapNumber, tType);

END; {of MyInstallAPAtch}
8-24 Using the Trap Manager

C H A P T E R 8

Trap Manager

8
Trap M

anager
BEGIN

InitGraf (@qd.thePort);

InitFonts;

InitWindows;

MyInstallAPatch(_SysBeep, ToolTrap,

 PatchCodePtr(@MyFollowDaisyChain));

SysBeep(1);

END. {of MyPatchInstaller}

Note
The MyInstallAPatch procedure used in this example was designed
to install both Operating System and Toolbox patches; it uses the
NGetTrapAddress and NSetTrapAddress routines. The
NGetTrapAddress and NSetTrapAddress routines both need
a parameter that indicates which type of routine is being patched,
an Operating System or Toolbox routine. ◆

Trap Manager Reference 8

This section describes the routines provided by the Trap Manager. You can use these
routines to

■ access an address in a trap dispatch table

■ install a patch address into a trap dispatch table

This section also documents the Unimplemented procedure.

Routines 8
This section describes the routines provided by the Trap Manager.

Accessing Addresses From the Trap Dispatch Tables 8

You can access the address of a system software routine by using the
GetOSTrapAddress, GetToolboxTrapAddress or NGetTrapAddress function.
The GetOSTrapAddress function retrieves only an Operating System routine address,
and the GetToolboxTrapAddress retrieves only a Toolbox routine address. The
NGetTrapAddress function is the most general of these functions; you can use the
function to retrieve the address of an Operating System routine or a Toolbox routine.
Trap Manager Reference 8-25

C H A P T E R 8

Trap Manager
GetOSTrapAddress 8

You can use the GetOSTrapAddress function to access the address of an Operating
System routine, that is located in the Operating System trap dispatch table.

FUNCTION GetOSTrapAddress (trapNum: Integer): LongInt;

trapNum Operating System A-line instruction or a trap number. If you specify an
Operating System A-line instruction, the function extracts the trap
number for you.

DESCRIPTION

The GetOSTrapAddress function returns the address of the Operating System routine
specified by the trapNum parameter. If the desired Operating System routine is not
supported on the installed system software, the GetOSTrapAddress function returns
the address of the Unimplemented procedure. The trapNum parameter should contain
a trap number in bits 0–7. GetOSTrapAddress masks the irrelevant high-order bits.
A GetOSTrapAddress(trapNum) function call performs the same operation as a
NGetTrapAddress(trapNum, OSTrap) function call.

SEE ALSO

For more information about the Unimplemented procedure, see page 8-29. For
information about the NGetTrapAddress function, see page 8-27.

GetToolboxTrapAddress 8

You an use the GetToolboxTrapAddress function to access the address of a Toolbox
routine, which is located in the Toolbox trap dispatch table. The
GetToolboxTrapAddress function is also available as the GetToolTrapAddress
function.

FUNCTION GetToolboxTrapAddress (trapNum: Integer): LongInt;

trapNum Toolbox A-line instruction or a trap number. If you specify a Toolbox
A-line instruction, the function extracts the trap number for you.

DESCRIPTION

The GetToolboxTrapAddress function returns the address of the Toolbox routine
specified by the trapNum parameter. If the desired Toolbox routine is not supported
on the installed system software, the GetToolboxTrapAddress function returns the
address of the Unimplemented procedure. The trapNum parameter should contain a
trap number in bits 0–9. GetToolboxTrapAddress masks the irrelevant high-order
8-26 Trap Manager Reference

C H A P T E R 8

Trap Manager

8
Trap M

anager
bits. A GetToolboxTrapAddress(trapNum) function call performs the same
operation as a NGetTrapAddress(trapNum, ToolTrap) function call.

SEE ALSO

For more information about the Unimplemented procedure, see page 8-29. The
NGetTrapAddress function is described next. For an example of how to use the
GetToolboxTrapAddress function, see Listing 8-1 on page 8-22.

NGetTrapAddress 8

You can use the NGetTrapAddress function to retrieve the address of either an
Operating System routine or a Toolbox routine.

FUNCTION NGetTrapAddress (trapNum: Integer; tTyp: TrapType)

:LongInt;

trapNum A-line instruction or a trap number. If you specify an A-line instruction,
the function extracts the trap number for you.

tTyp The trap type. If you supply the tTyp parameter with the constant
OSTrap, the NGetTrapAddress function retrieves the address from the
Operating System trap dispatch table. If you supply tTyp parameter with
the constant ToolTrap, the NGetTrapAddress function retrieves the
address from the Toolbox trap dispatch table.

DESCRIPTION

The NGetTrapAddress function returns the address of the system software routine
specified by the tTyp and trapNum parameters. If tTyp is OSTrap, the
NGetTrapAddress function retrieves the address from the Operating System trap
dispatch table. If tTyp is ToolTrap, the NGetTrapAddress function retrieves the
address from the Toolbox trap dispatch table. If the desired system software routine is
not supported on the installed system software, NGetTrapAddress returns the address
of the Unimplemented procedure. The trapNum parameter should contain a trap
number in bits 0–7 if tTyp is OSTrap, and in bits 0–9 if tTyp is ToolTrap.
The trapNum parameter may have any word value; its irrelevant high-order bits are
masked according to the value of the tTyp parameter.

Note
If the system software routine has a come-from patch, the
NGetTrapAddress function returns the address of the routine
immediately following the come-from patch. ◆
Trap Manager Reference 8-27

C H A P T E R 8

Trap Manager
ASSEMBLY-LANGUAGE INFORMATION

The registers on entry and exit for the _GetTrapAddress macro are

When calling the _GetTrapAddress macro, you set bit 9 of the A-line instruction to
indicate a “new” system; that is, any version since the Macintosh Plus or Macintosh
512K. You use bit 10 to indicate whether the trap in question is a Toolbox routine (by
setting bit 10 to 1) or an Operating System routine (by setting bit 10 to 0). Macintosh
development environments provide the modifier words newTool and newOS to be used
as arguments in the _GetTrapAddress macro.

To obtain the address of a Toolbox trap whose number is in register D0, you use
the macro

_GetTrapAddress newTool

This is equivalent to calling NGetTrapAddress (trapNum, newTool). The trapNum
parameter is the A-line trap word placed in register D0 for the assembly-language call.
Similarly, to obtain the address of an Operating System routine whose A-line trap word
is in register D0, you use the macro

_GetTrapAddress newOS

This is equivalent to calling NGetTrapAddress(trapNum, newOS).

SEE ALSO

For information about the Unimplemented procedure, see page 8-29. For information
about the NSetTrapAddress function, see page 8-30.

Installing Patch Addresses Into the Trap Dispatch Tables 8

You can install the address of a patch into a trap dispatch table by using the
SetOSTrapAddress, SetToolboxTrapAddress, or NSetTrapAddress procedure.
The SetOSTrapAddress procedure installs a patch address into the Operating System
trap dispatch table, and the SetToolboxTrapAddress installs a patch address into the
Toolbox trap dispatch table. The NSetTrapAddress procedure is the most general of
these procedures. You can use the NSetTrapAddress procedure to install a patch
address into the Operating System trap dispatch table or into the Toolbox trap
dispatch table.

Registers on entry

D0 An A-line trap word

Registers on exit

A0 Address of next routine in the daisy chain (a system software routine or a patch)
8-28 Trap Manager Reference

C H A P T E R 8

Trap Manager

8
Trap M

anager
SetOSTrapAddress 8

You can use the SetOSTrapAddress procedure to install an Operating System patch
address into an Operating System trap dispatch table.

PROCEDURE SetOSTrapAddress (trapAddr: LongInt; trapNum: Integer);

trapAddr The Operating System patch address.

trapNum Operating System A-line instruction or a trap number. If you specify
an Operating System A-line instruction, the function extracts the trap
number (located in bits 0–7) for you.

DESCRIPTION

The SetOSTrapAddress procedure places the Operating System patch address
specified by the trapAddr parameter into the Operating System trap dispatch
table. The trapNum parameter specifies the location of the Operating System
patch address in the Operating System trap dispatch table. The procedure call
SetOSTrapAddress(trapAddr, trapNum) performs the same operation as
a NSetTrapAddress(trapAddr, trapNum, OSTrap) procedure call.

Note
If the system software routine that is being patched has any come-from
patches, the SetOSTrapAddress procedure installs the address of the
patch into the exit JMP instruction of the last come-from patch in the
chain rather than into the trap dispatch table. ◆

SEE ALSO

For information about the Unimplemented procedure, see page 8-29. For more
information about the NSetTrapAddress function, see page 8-30.

SetToolboxTrapAddress 8

You can use the SetToolboxTrapAddress procedure to install a Toolbox patch
address into the Toolbox trap dispatch table. The SetToolboxTrapAddress procedure
is also available as the SetToolTrapAddress procedure.

PROCEDURE SetToolboxTrapAddress (trapAddr: LongInt;

 trapNum: Integer);

trapAddr The Toolbox patch address.

trapNum Toolbox A-line instruction or a trap number. If you specify a Toolbox
A-line instruction, the function extracts the trap number (located in
bits 0–9) for you.
Trap Manager Reference 8-29

C H A P T E R 8

Trap Manager
DESCRIPTION

The SetToolboxTrapAddress procedure places the Toolbox patch address specified
by the trapAddr parameter into the Toolbox trap dispatch table. The trapNum
parameter specifies the location of the Toolbox patch address in the Toolbox trap
dispatch table. The SetToolboxTrapAddress(trapAddr, trapNum) procedure
performs the same operation as a NSetTrapAddress(trapAddr, trapNum,
ToolTrap) procedure call.

Note
If the system software routine that is being patched has any come-from
patches, the SetToolboxTrapAddress procedure installs the address
of the patch into the exit JMP instruction of the last come-from patch in
the chain rather than into the trap dispatch table. ◆

SEE ALSO

For information about the Unimplemented procedure, see page 8-29. The
NSetTrapAddress function is described next.

NSetTrapAddress 8

You can use the NSetTrapAddress procedure to install a patch address into either an
Operating System trap dispatch table or a Toolbox trap dispatch table.

PROCEDURE NSetTrapAddress (trapAddr: LongInt; trapNum: Integer;

tTyp: TrapType);

trapAddr The patch address.

trapNum A-line instruction or a trap number. If you specify a A-line instruction, the
function extracts the trap number you.

tTyp The trap type. If you supply the tTyp parameter with the constant
OSTrap, the NSetTrapAddress procedure installs the address into the
Operating System trap dispatch table. If you supply the tTyp parameter
with the constant ToolTrap, the NGetTrapAddress function installs
the address into the Toolbox trap dispatch table.

DESCRIPTION

The NSetTrapAddress procedure places the patch address specified by the trapAddr
parameter into a trap dispatch table. Use the tTyp parameter to specify whether the
patch address belongs in the Operating System trap dispatch table or the Toolbox trap
dispatch table. If tTyp is OSTrap, the NSetTrapAddress procedure installs the
address into the Operating System trap dispatch table. If tTyp is ToolTrap, the
NGetTrapAddress function installs the address into the Toolbox trap dispatch table.
Use the trapNum parameter to specify the location of the patch address in the dispatch
8-30 Trap Manager Reference

C H A P T E R 8

Trap Manager

8
Trap M

anager
table. The trap number may be any word value; its irrelevant high-order bits are masked
according to the value of the tTyp parameter.

Note
If the system software routine that is being patched has a come-from
patch, the NSetTrapAddress procedure installs the address of the
patch into the exit JMP instruction of the come-from patch (rather than
into the trap dispatch table). ◆

▲ W A R N I N G

If the first 4 bytes of the trapAddr parameter is $60064EF9 (indicating a
come-from patch), NSetTrapAddress triggers a system error. ▲

ASSEMBLY-LANGUAGE INFORMATION

The registers on entry for the _SetTrapAddress macro are

When calling the _SetTrapAddress macro, you set bit 9 of the A-line trap word to
indicate a “new” system; that is, any version since the Macintosh Plus or Macintosh
512K. You use bit 10 to indicate whether the system software routine that is being
patched is a Toolbox routine (by setting bit 10 to 1) or an Operating System routine
(by setting bit 10 to 0).

Macintosh development environments provide the modifier words newTool and newOS
to be used as arguments in the _SetTrapAddress macro.

Given an A-line instruction in register D0 and a system software address in register A0,
you set the Toolbox routine with the trap number in register D0 to have the address in
A0, you use the macro

_SetTrapAddress newTool

This is equivalent to calling NSetTrapAddress(trapAddr, trapNum, newTool).
The trapAddr parameter is the address placed in register A0. The trapNum parameter
is the A-line instruction placed in D0 for the assembly-language call. Similarly, to set the
address of an Operating System trap whose A-line instruction is in register D0 to the
address in register A0 you use the macro

_SetTrapAddress newOS

This is equivalent to calling NSetTrapAddress(trapAddr, trapNum, newOS).

Registers on entry

D0 An A-line trap word

A0 Address of next routine in the daisy chain (a system software routine or a patch)
Trap Manager Reference 8-31

C H A P T E R 8

Trap Manager
SEE ALSO

The Unimplemented procedure is described next. For information about the
NGetTrapAddress function, see page 8-27. For an example of how to use the
NSetTrapAddress function, see Listing 8-5 on page 8-24.

Detecting Unimplemented System Software Routines 8

This section describes the Unimplemented procedure. The address of this procedure
is placed in all undefined entries of a trap dispatch table. When invoked, the
Unimplemented procedure triggers a system error.

Unimplemented 8

The Unimplemented procedure triggers a system error when called.

PROCEDURE Unimplemented;

DESCRIPTION

The address of the Unimplemented procedure is at system startup time placed into all
entries of each trap dispatch table that do not contain an address of a system software
routine. When called, the Unimplemented procedure triggers the system error 12,
dsCoreErr, which crashes the currently running application.

▲ W A R N I N G

Your application should never use this procedure. ▲

Manipulating One Trap Dispatch Table (Obsolete Routines) 8

This section describes two obsolete Trap Manager routines: GetTrapAddress and
SetTrapAddress. Though a description of the routines are included here, any use
of these routines is discouraged.

GetTrapAddress 8

The GetTrapAddress function is obsolete and is documented here only for the sake
of completeness.

FUNCTION GetTrapAddress (trapNum: Integer): LongInt;

trapNum Toolbox A-line instruction or a trap number. If you specify an A-line
instruction, the function extracts the trap number for you.
8-32 Trap Manager Reference

C H A P T E R 8

Trap Manager

8
Trap M

anager
DESCRIPTION

The GetTrapAddress function was used when both the Operating System trap
addresses and Toolbox trap addresses were located in the same trap dispatch table.
Today, any system software routine with the trap number $00 to $4F, $54, or $57 is
drawn from the Operating System dispatch table; any other software routine is taken
from the Toolbox dispatch table.

▲ W A R N I N G

The GetTrapAddress function is not supported under Power PC. ▲

▲ W A R N I N G

The GetTrapAddress procedure ignores the high-order bits in
the trapNum parameter; the procedure is not able to differentiate
between Operating System routines and Toolbox routines. The
GetTrapAddress procedure is not reliable on any computer today. ▲

SetTrapAddress 8

The SetTrapAddress procedure is obsolete, and is documented here only for the sake
of completeness.

PROCEDURE SetTrapAddress (trapAddr: LongInt; trapNum: Integer);

trapAddr The address of the system software routine.

trapNum A-line instruction or a trap number. If you specify an A-line instruction,
the function extracts the trap number you.

DESCRIPTION

The SetTrapAddress procedure was used when both the Operating System routine
addresses and Toolbox routine adddresses were located in the same trap dispatch table.
Today, any routine address with the trap number $00 to $4F, $54, or $57 is installed
into the Operating System dispatch table; any other system software routine is installed
into the Toolbox dispatch table.

▲ W A R N I N G

The SetTrapAddress procedure is not supported under Power PC. ▲

▲ W A R N I N G

The SetTrapAddress procedure ignores the high-order bits in
the trapNum parameter; the procedure is not able to differentiate
between Operating System routines and Toolbox routines. The
SetTrapAddress procedure is not reliable on any computer today. ▲
Trap Manager Reference 8-33

C H A P T E R 8

Trap Manager
Summary of the Trap Manager 8

Pascal Summary 8

Constants 8

CONST

{Gestalt selectors}

gestaltOSTable = 'ostt'; {base of Operating System dispatch }

{ table}

gestaltToolboxTable = 'tbtt'; {base of Toolbox dispatch table}

gestaltExtToolboxTable = 'xttt'; {0, unless Toolbox dispatch table }

{ is disjoint, in which case base }

{ of upper half}

{system errors triggered by the Trap Manager}

dsCoreErr = 12; {unimplemented trap error}

dsBadPatchHeader = 83; {attempt to install a come-from patch}

Data Types 8

TYPE TrapType = (OSTrap, ToolTrap);

Routines 8

Accessing Addresses From the Trap Dispatch Tables
FUNCTION GetOSTrapAddress (trapNum: Integer): LongInt;

{GetToolboxTrapAddress is also spelled as GetToolTrapAddress}

FUNCTION GetToolboxTrapAddress
(trapNum: Integer): LongInt;

FUNCTION NGetTrapAddress (trapNum: Integer; tTyp: TrapType): LongInt;

Installing Patch Addresses Into the Trap Dispatch Tables
PROCEDURE SetOSTrapAddress (trapAddr: LongInt; trapNum: Integer);

{SetToolboxTrapAddress is also spelled as SetToolTrapAddress}
8-34 Summary of the Trap Manager

C H A P T E R 8

Trap Manager

8
Trap M

anager
PROCEDURE SetToolboxTrapAddress
(trapAddr: LongInt; trapNum: Integer);

PROCEDURE NSetTrapAddress (trapAddr: LongInt; trapNum: Integer;
 tTyp: TrapType);

Detecting Unimplemented System Software Routines

PROCEDURE Unimplemented;

Manipulating One Trap Dispatch Table (Obsolete Routines)

FUNCTION GetTrapAddress (trapNum: Integer): LongInt;

PROCEDURE SetTrapAddress (trapAddr: LongInt; trapNum: Integer);

C Summary 8

Constants 8

/*Gestalt selectors*/

#define gestaltOSTable 'ostt' /*base of Operating System dispatch */

/* table*/

#define gestaltToolboxTable 'tbtt' /*base of Toolbox dispatch table*/

#define gestaltExtToolboxTable'xttt' /*0, unless Toolbox dispatch table */

/* is disjoint, in which case base */

/* of upper half*/

/*values of TrapType*/

enum {OSTrap, ToolTrap};

/*system errors triggered by Trap Manager*/

enum {

dsCoreErr = 12, /*unimplemented trap error*/

dsBadPatchHeader = 83 /*attempt to install come-from patch*/

};

Data Types 8

typedef unsigned char TrapType;
Summary of the Trap Manager 8-35

C H A P T E R 8

Trap Manager
Routines 8

Accessing Addresses From the Trap Dispatch Tables

pascal long NGetTrapAddress
(short trapNum, TrapType tTyp);

pascal long GetOSTrapAddress
(short trapNum);

/*GetToolboxTrapAddress is also spelled as GetToolTrapAddress*/

pascal long GetToolboxTrapAddress
(short trapNum);

Installing Patch Addresses Into the Trap Dispatch Tables
pascal void NSetTrapAddress

(long trapAddr, short trapNum,
 TrapType tTyp);

pascal void SetOSTrapAddress
(long trapAddr, short trapNum);

/*SetToolboxTrapAddress is also spelled as SetToolTrapAddress*/

pascal void SetToolboxTrapAddress
(long trapAddr, short trapNum);

pascal void SetToolTrapAddress
(long trapAddr, short trapNum);

Detecting Unimplemented System Software Routines

pascal void Unimplemented (void);

Manipulating One Trap Dispatch Table (Obsolete Routines)

pascal long GetTrapAddress (short trapNum);

pascal void SetTrapAddress (long trapAddr, short trapNum);

Assembly-Language Summary 8

Constants 8

newOS EQU $200 ;access Operating System trap dispatch table;

newTool EQU $600 ;access Toolbox trap dispatch table
8-36 Summary of the Trap Manager

C H A P T E R 8

Trap Manager

8
Trap M

anager
Trap Macros 8

Trap Macros Requiring Register Setup

Trap macro name Registers on entry Registers on exit

_GetTrapAddress D0: trap number A0: address of patch

_SetTrapAddress D0: trap number
A0: address of patch

_Unimplemented
Summary of the Trap Manager 8-37

	 Title
	 Copyright
	 Table of Contents
	 Figures, Tables, and Listings
	 Preface
	 Gestalt Manager TOC
	 Gestalt Manager
	 System Error Handler TOC
	 System ErrorHandler
	 Mathematical and Logical Utilities TOC
	 Mathematical and Logical Utilities
	 Date, Time, and Measurement Utilities TOC
	 Date, Time, and Measurement Utilities
	 Control Panels Extensions TOC
	 Control Panels Extensions
	 Queue Utilities TOC
	 Queue Utilities
	 Parameter RAM Utilities TOC
	 Parameter RAM Utilities
	 Trap Manager TOC
	Trap Manager
	About the Trap Manager
	Trap Dispatch Tables
	Process for Accessing System Software Routines
	Patches and System Software Routines
	Daisy Chain of Patches
	Head Patch (Normal Patch)
	Tail Patch
	Come-From Patch (Used Only by Apple)
	Patch for One Application
	Patch for All Applications

	A-Line Instructions
	A-Line Instructions for Operating System Routines
	Calling Conventions for Register-Based Routines
	Parameter-Passing Conventions for Operating System...
	Function Results
	Flag Bits

	A-Line Instructions for Toolbox Routines
	Calling Conventions for Stack-Based Routines
	Parameter-Passing Conventions for Toolbox Routines...
	Function Results
	The Auto-Pop Bit

	About Trap Macros
	About Routine Selectors

	Using the Trap Manager
	Determining If a System Software Routine is Availa...
	Patching a System Software Routine

	Trap Manager Reference
	Routines
	Accessing Addresses From the Trap Dispatch Tables
	Installing Patch Addresses Into the Trap Dispatch ...
	Detecting Unimplemented System Software Routines
	Manipulating One Trap Dispatch Table (Obsolete Rou...

	Summary of the Trap Manager
	Pascal Summary
	Constants
	Data Types
	Routines

	C Summary
	Constants
	Data Types
	Routines

	Assembly-Language Summary
	Constants
	Trap Macros

	 Start Manager TOC
	 Start Manager
	 Package Manager TOC
	 Package Manager
	 Glossary
	 Index
	 Colophon

