CHAPTER 6

Audio Components

This chapter describes audio components, which are code modules used by the Sound
Manager to adjust volumes or other settings of a sound output device. In general, you
need to write an audio component only if you are developing a sound output device
with multiple output ports that can be independently controlled by software. If your
sound output device has only one software-controllable output port, the sound output
device component for that device manages the volume levels of the port.

IMPORTANT

The Sound Manager loads and manages audio components, which
operate transparently to applications. The routines described in this
chapter are intended for use exclusively by audio components. a

To use this chapter, you should already be familiar with writing sound output device
components, as described in the chapter “Sound Components” in this book. Because
audio components are components, you also need to be familiar with the Component
Manager, described in Inside Macintosh: More Macintosh Toolbox.

This chapter begins by describing what audio components are and the Sound Manager
uses them. Then it provides instructions on how to write an audio component. The
section “Audio Components Reference” beginning on page 6-8 describes the routines
that your audio component might need to define.

Note

Pascal interfaces for audio components are not currently available. As
a result, this chapter provides all source code examples and reference
materials in C. O

About Audio Components

An audio component is a component that works with the Sound Manager to adjust
volumes or other settings of a sound output device. The Sound Manager uses audio
components, however, only when a particular sound output device has more than one
audio port that can be controlled through software. If a sound output device has only
one audio port, the sound component that communicates with the output device
controls the volume settings of that port.

IMPORTANT

Because audio components are currently used to manage only volume
and mute settings, they might have been called volume components. The
more general term anticipates future capabilities of audio components.
For example, audio components might in the future be used to modify
bass or treble settings of an audio port. a

swauodwop opny [T

An audio port is any independently controllable sound-producing hardware connected
or attached to a sound output device. For example, the Apple AudioVision 14 Display
(shown in Figure 6-1) contains two audio ports: a set of speakers and a jack for
headphones.

About Audio Components 6-3



CHAPTER 6

Audio Components

Figure 6-1 The Apple AudioVision 14 Display

— Integrated
microphone
i 0 Sound out
¥ sound in Stereo
Controls speaker
Stereo
speaker

As the Volumes subpanel of the Sound control panel shows (Figure 6-2), the two audio
ports are independently controllable by software.

Figure 6-2 The Volumes control panel for the Apple AudioVision 14 Display

E=————— Sound gl

----- " volumes |

=
2y Ep

Euilt-in BEuilt-in Audiohision Audichision
Headphones Speakers Headphones

About Audio Components



CHAPTER 6

Audio Components

The control panel shown in Figure 6-2 contains volume sliders both for the set of
speakers and for the headphones. The volume of the speakers is controlled by the sound
component that drives the sound output device. The volume of the headphones is
controlled by an audio component.

In short, audio components are used to allow a single sound output device to have more
than one audio port. The sound component that communicates with that device can
control the volume setting of one audio port; audio components control the volume
settings of all other audio ports.

Writing an Audio Component

Because an audio component is a component, it must be able to respond to standard
selectors sent by the Component Manager. In addition, an audio component must handle
other selectors specific to audio components. This section briefly describes how to write
an audio component.

Creating an Audio Component

An audio component is a component. It contains a number of resources, including icons,
strings, and the standard component resource (a resource of type ' t hng' ) required of
any Component Manager component. In addition, an audio component must contain
code to handle required selectors passed to it by the Component Manager as well as
selectors specific to the audio component.

Note

For complete details on components and their structure, see the chapter
“Component Manager” in Inside Macintosh: More Macintosh Toolbox. This

section provides specific information about audio components. O

The component resource binds together all the relevant resources contained in a
component; its structure is defined by the Conponent Resour ce data type.

struct Conponent Resource {
Conponent Descri ption cd;

Resour ceSpec component ;

Resour ceSpec conponent Nane
Resour ceSpec conponent | nf o;
Resour ceSpec component | con

b

swauodwop opny [T

The conponent field specifies the resource type and resource ID of the component’s
executable code. By convention, this field should be set to the value kAudi oCodeType.

#def i ne kAudi oCodeType "adi o' /*audi o conponent code type*/

Writing an Audio Component 6-5



CHAPTER 6

Audio Components

(You can, however, specify some other resource type if you wish.) The resource ID can be
any integer greater than or equal to 128. See the following section for further information
about this code resource.

The conponent Nane field specifies the resource type and resource ID of the resource
that contains the component’s name. Usually the name is contained in a resource of type
" STR ' . This string should be as short as possible.

The conponent | nf o field specifies the resource type and resource ID of the resource
that contains a description of the component. Usually the description is contained in a
resource of type' STR ' .

The conponent | con field specifies the resource type and resource ID of the resource
that contains an icon for the component. Usually the icon is contained in a resource of
type' | CON .

The cd field of the Conponent Resour ce structure is a component description record,
which contains additional information about the component. A component description
record is defined by the Conponent Descr i pti on data type.

typedef struct {

OSType conponent Type;

OSType conponent SubType;
OSType conponent Manuf act ur er;
unsi gned | ong conponent Fl ags;

unsi gned | ong conponent Fl agsMask;

} Conponent Descri pti on;

For audio components, the conponent Type field must be set to a value recognized by
the Sound Manager.

#def i ne kAudi oConponent Type "adi o' /*audi o conponent */

In addition, the component SubType field must be set to a value that indicates the type
of audio services your component provides. For example, the Apple-supplied audio
components have these subtypes:

#defi ne kAwacsPhoneSubType " hphn' / * AWACS phone*/
#def i ne kAudi oVi si onSpeaker SubType "telc' /* Audi oVi si on speaker*/
#def i ne kAudi oVi si onHeadphoneSubType "tel h / * Audi oVi si on headphones*/

6-6

If you write an audio component, you should define some other subtype.

Note
Apple Computer, Inc., reserves for its own use all types and subtypes
composed solely of lowercase letters. O

You can assign any value you like to the conponent Manuf act ur er field; typically you
put the signature of your audio component in this field.

Writing an Audio Component



CHAPTER 6

Audio Components

The conponent Fl ags field of the component description for an audio component
contains bit flags that encode information about the component. You can use this field to
specify that the Component Manager should send your component the

kConponent Regi st er Sel ect selector.

enum {
cnpWant sRegi st er Message = 1lL<<31 /*send regi ster request*/

}s

This bit is useful for audio components, which might need to test for the presence of the
appropriate hardware to determine whether to register with the Component Manager.
When your component gets the kConponent Regi st er Sel ect selector at system
startup time, it should make sure that all the necessary hardware is available. If it isn’t
available, your component shouldn’t register.

You should set the conponent Fl agsMask field to 0.

Your audio component is contained in a resource file. You can assign any type you wish
to be the file creator, but the type of the file must be' t hng' . If the audio component
contains a' BNDL' resource, then the file’s bundle bit must be set.

Dispatching to Audio Component-Defined Routines

As explained in the previous section, the code stored in the audio component should be
contained in a resource of type kAudi oCodeType. The Component Manager expects the
entry point in this resource to be a function with this format:

pascal Component Result MAudi oDi spatch (Conponent Paramet ers *par ans,
Audi od obal sPtr gl obal s);

The Component Manager calls your sound component by passing MyAudi oDi spat ch a
selector in the par ams- >what field; MyAudi oDi spat ch must interpret the selector and
possibly dispatch to some other routine in the resource. Your audio component must be
able to handle the required selectors, defined by these constants:

#def i ne kConponent OpenSel ect -1

#def i ne kConponent C oseSel ect -2

#def i ne kConponent CanDoSel ect -3 H

#def i ne kConponent Ver si onSel ect -4

#def i ne kConponent Regi st er Sel ect -5 g_

#defi ne kConponent Tar get Sel ect -6 (67

#def i ne kConponent Unr egi st er Sel ect -7 S
g

Note @
=
[}

For complete details on required component selectors, see the chapter
“Component Manager” in Inside Macintosh: More Macintosh Toolbox. O

In addition, your audio component must be able to respond to component-specific
selectors. The Sound Manager can pass these selectors to your audio component:

Writing an Audio Component 6-7



CHAPTER 6

Audio Components

enum {
kAudi oGet Vol uneSel ect = 0,
kAudi oSet Vol uneSel ect
kAudi oGet Mut eSel ect
kAudi oSet Mut eSel ect
kAudi oSet ToDef aul t sSel ect
kAudi oCGet | nf 0Sel ect

b

You can respond to these selectors by calling the Component Manager routine
Cal | Component Funct i onW t hSt or age. See the section “Audio Component-Defined
Routines” beginning on page 6-9 for information on how to handle these selectors.

In all likelihood, your component is loaded into the system heap, although it might be
loaded into an application heap if memory is low in the system heap. You can call the
Component Manager function Get Conponent | nst anceA5 to determine the A5 value
of the current application. If this function returns 0, your component is in the system
heap; otherwise, your component is in an application’s heap. Its location might affect
how you allocate memory. For example, calling the MoveHHi routine on handles in the
system heap has no result. Thus, you should either call the Reser veMenBys routine
before calling NewHand| eSys (so that the handle is allocated as low in the system heap
as possible) or else just allocate a nonrelocatable block by calling the NewPt r Sys routine.

If you need to access resources that are stored in your audio component, you can use
OpenConponent ResFi | e and Cl oseConponent ResFi | e. OpenConponent ResFi | e
requires the Conponent | nst ance parameter supplied to your routine. You should not
call Resource Manager routines such as OpenResFi | e or Cl oseResFi | e.

A WARNING
Do not leave any resource files open when your audio component is
closed. Their maps will be left in the subheap when the subheap is freed,
causing the Resource Manager to crash. a

Audio Components Reference

This section describes the data structures you can use to write an audio component. It
also describes the routines that your audio component should call in response to an
audio component selector. See “Writing an Audio Component” beginning on page 6-5

for information on creating a component that contains these component-defined routines.

Data Structures

This section describes the data structure you need to use when writing an audio
component.

6-8 Audio Components Reference



CHAPTER 6

Audio Components

Audio Information Records

You return information about the capabilities of your audio component in the i nf o
parameter passed to your Audi oGet | nf o function. The i nf 0 parameter contains a
pointer to an audio information record. An audio information record is defined by the
Audi ol nf o data type.

t ypedef struct {

| ong capabi liti esFl ags; /*device capabilities*/
| ong reserved; /*reserved*/
unsi gned short numvol uneSt eps; /*nunber of vol une steps*/

} Audi ol nfo, *AudiolnfoPtr;

Field descriptions

capabi litiesFl ags
A set of bit flags specifying the capabilities of the audio component.
You can use constants to set some of these bits:

#def i ne audi oDoesMono (1L<<0Q) /[*supports nono out put*/

#def i ne audi oDoesSt er eo (1L<<l) /*supports stereo output*/

#def i ne audi oDoesl ndependent Channel s (1L<<2) [/*supports independent
software control of each channel */

reserved Reserved for use by Apple Computer, Inc.

numvol uneSt eps
The number of volume steps your audio component supports.

Audio Component-Defined Routines

This section describes the routines you must define in order to write an audio
component. You need to write routines to

= get and set volume levels of a sound output device
= manage mute states
= reset device settings

s get information about the audio component

All routines return result codes. If they succeed, they should return noEr r. To simplify
dispatching, the Component Manager requires these routines to return a value of type
Conponent Resul t .

See “Writing an Audio Component” beginning on page 6-5 for a description of how you
call these routines from within an audio component.

Audio Components Reference 6-9

swauodwop opny [T



CHAPTER 6

Audio Components

Getting and Setting Volumes

To write an audio component, you might need to define two routines that manage the
volume level of the associated audio port:

= Audi 0Get Vol une

= Audi 0Set Vol une

AudioGetVolume

An audio component can implement the Audi 0Get Vol une function. The Sound
Manager calls this function to determine the current volume of an audio port.

pascal Component Result Audi 0Get Vol une ( Conponent | nstance ac,
short whi chChannel,
Short Fi xed *vol une) ;

ac A component instance that identifies your audio component.

whi chChannel
The channel or channels whose volume you should return.

vol ume
On output, the current volume level of the specified channel.

DESCRIPTION
Your Audi 0Cet Vol urre function is called by the Sound Manager to determine the
current volume levels of one or more channels of an audio port. The vol une parameter
can have any value between 0 and 1, where 0 indicates minimum volume and 1 indicates
maximum volume. The whi chChannel parameter indicates the channels or channels
whose volumes you should return. The following constants are defined for the
whi chChannel parameter:
#def i ne audi oAl | Channel s 0 /*all channel s*/
#defi ne audi oLef t Channel 1 /*1 eft channel */
#def i ne audi oRi ght Channel 2 /*right channel */
RESULT CODES

Your Audi 0Cet Vol urre function should return noEr r if successful or an appropriate
result code otherwise. In particular, if your audio component doesn’t support software
control of volume levels, Audi 0Get Vol une should return unl npErr.

6-10 Audio Components Reference



CHAPTER 6

Audio Components

AudioSetVolume

DESCRIPTION

RESULT CODES

An audio component can implement the Audi 0Set Vol urre function. The Sound
Manager calls this function to set the current volume of an audio port.

pascal Component Result Audi oSet Vol ume ( Conponent | nstance ac,
short whi chChannel ,
Short Fi xed vol une);

ac A component instance that identifies your audio component.

whi chChannel
The channel or channels whose volume you should set.

vol une
The desired volume level of the specified channel.

Your Audi 0Set Vol une function is called by the Sound Manager to set the volume
levels of one or more channels of an audio port. See the description of the

Audi 0Get Vol umre function for the values of the whi chChannel and vol une
parameters.

Your Audi 0Set Vol une function should return noEr r if successful or an appropriate
result code otherwise. In particular, if your audio component doesn’t support software
control of volume levels, Audi 0Set Vol une should return unl npErr.

Managing the Mute State

To write an audio component, you might need to define two routines that manage the
mute state of the associated audio port:

= Audi 0Get Mut e
= Audi 0Set Mut e

AudioGetMute

An audio component can implement the Audi 0Get Mut e function. The Sound Manager
calls this function to determine the current mute state of an audio port.

pascal Conponent Result Audi oGet Mute (Conponentl nstance ac,
short whi chChannel,
short *mute);

Audio Components Reference 6-11

swauodwop opny [T



DESCRIPTION

RESULT CODES

CHAPTER 6

Audio Components

ac A component instance that identifies your audio component.

whi chChannel
The channel or channels whose mute state you should return.

nmut e
On output, the current mute state of the specified channel.

Your Audi 0Get Mut e function is called by the Sound Manager to determine the current
mute state of one or more channels of an audio port. The following constants define the
mute states you can return in the nut e parameter:

#def i ne audi oUnnut ed 0 /*device is not nuted*/
#def i ne audi oMut ed 1 / *device is nuted*/

The whi chChannel parameter indicates the channels or channels whose mute state you
should return. The following constants are defined for the whi chChannel parameter:

#def i ne audi oAl | Channel s 0 /*all channel s*/
#def i ne audi oLeft Channel 1 /*l eft channel */
#def i ne audi oRi ght Channel 2 /*right channel */

Your Audi 0Get Mut e function should return noEr r if successful or an appropriate
result code otherwise. In particular, if your audio component doesn’t support software
control of mute states, Audi 0Get Mut e should return unl npErr.

AudioSetMute

6-12

An audio component can implement the Audi 0Set Mut e function. The Sound Manager
calls this function to set the current mute state of an audio port.

pascal Component Result Audi oSet Mute (Conponentl nstance ac,
short whi chChannel ,
short nute);

ac A component instance that identifies your audio component.

whi chChannel
The channel or channels whose mute state you should set.

mut e
The desired mute state of the specified channel.

Audio Components Reference



CHAPTER 6

Audio Components

DESCRIPTION
Your Audi 0Set Mut e function is called by the Sound Manager to set the mute state of
one or more channels of an audio port. See the description of the Audi 0Get Mut e
function for the values of the whi chChannel and nmut e parameters.

RESULT CODES
Your Audi 0Set Mut e function should return noEr r if successful or an appropriate
result code otherwise. In particular, if your audio component doesn’t support software
control of mute states, Audi 0Set Miut e should return unl npErr.

Resetting Audio Components

To write an audio component, you need to define the Audi oSet ToDef aul t s routine,
which resets the associated audio port to its default settings.

AudioSetToDefaults

The Sound Manager might call your Audi oSet ToDef aul t s function to reset an
audio port.

pascal Component Result Audi oSet ToDef aul ts (Conponentl nstance ac);

ac A component instance that identifies your audio component.

DESCRIPTION
Your Audi oSet ToDef aul t s function should reset its volume and mute levels to some
reasonable default value. It should also reset to reasonable values any other settings it
might be maintaining privately.

RESULT CODES
Your Audi 0Set ToDef aul t s function should return noEr r if successful or an
appropriate result code otherwise.

Getting Audio Component Information

To write an audio component, you need to define the Audi oGet | nf 0 routine, which
returns information about the capabilities of your component.

swauodwop opny [T

Audio Components Reference 6-13



CHAPTER 6

Audio Components

AudioGetinfo

DESCRIPTION

RESULT CODES

6-14

An audio component must implement the Audi oGet | nf o function. The Sound
Manager calls this function to get information about the capabilities of your component.

pascal Component Result Audi oGetlnfo (Conponentl nstance ac,
Audi ol nfoPtr info);

ac A component instance that identifies your sound component.

info A pointer to an audio information record.

Your Audi oGet | nf o function returns information about your audio component. You
should fill out the audio information record pointed to by the i nf 0 parameter. See
“Audio Information Records” beginning on page 6-9 for a description of the audio
information record.

Your Audi 0Get | nf o function should return noEr r if successful or an appropriate
result code otherwise.

Audio Components Reference



CHAPTER 6

Audio Components

Summary of Audio Components

This section provides a C summary for the constants, data types, and routines you can
use to write an audio component. There are currently no Pascal interfaces available for
writing audio components.

C Summary

Constants

/ *conponent types*/
#def i ne kAudi oConponent Type "adi o' /*audi o conponent */

/*subtypes for kAudi oConmponent Type conponent type*/

#defi ne kAwacsPhoneSubType " hphn' / * AWACS phone*/

#def i ne kAudi oVi si onSpeaker SubType "telc' / * Audi oVi si on speaker*/
#def i ne kAudi oVi si onHeadphoneSubType "telh' / * Audi oVi si on headphones*/

#def i ne kAudi oCodeType "adi o' /*audi o conponent code type*/

/ *Conmponent Manager sel ectors for routines*/
enum {

kAudi oGet Vol uneSel ect = 0,

kAudi oSet Vol uneSel ect,

kAudi oGet Mut eSel ect ,

kAudi oSet Mut eSel ect

kAudi oSet ToDef aul t sSel ect,

kAudi oGet | nf 0Sel ect

b

/*val ues for whi chChannel paraneter*/

#def i ne audi oAl | Channel s 0 /*all channel s*/

#def i ne audi oLeft Channel 1 /*l eft channel */

#def i ne audi oRi ght Channel 2 /*right channel */

/*val ues for nute paraneter*/
#def i ne audi oUnnut ed 0 /*device is not nuted*/
#def i ne audi oMut ed 1 / *device is nmuted*/

Summary of Audio Components 6-15

swauodwop opny [T



CHAPTER 6

Audio Components

/*audi o conmponent features flags*/
#def i ne audi oDoesMono

#def i ne audi oDoesSt er eo

#def i ne audi oDoesl ndependent Channel s

Data Types

(1L<<0Q) /*supports nono out put*/

(1L<<l1l) [/*supports stereo output*/

(1L<<2) [/*supports independent
software control of each channel */

Short Fixed-Point Numbers

t ypedef short ShortFi xed;

Audio Information Record

typedef struct {
| ong capabi litiesFl ags;
| ong reserved;
unsi gned short nunVol unmeSt eps;

} Audi ol nfo, *AudiolnfoPtr;

Audio Component-Defined Routines

/*device capabilities*/

/ *reserved*/

/*nunber of vol une steps*/

Getting and Setting Volumes

pascal Component Result Audi oGet Vol une

(Conponent | nst ance ac, short
Short Fi xed *vol une) ;

pascal Component Result Audi oSet Vol une

(Conponent | nst ance ac, short
Short Fi xed vol une);

Managing the Mute State
pascal Conponent Result Audi oGet Mute

(Component | nst ance ac, short
short *mute);

pascal Conponent Result Audi oSet Mute

(Component | nst ance ac, short
short mute);

Resetting Audio Components

pascal Conponent Result Audi oSet ToDefaults
(Conponent | nst ance ac);

6-16 Summary of Audio Components

whi chChannel

whi chChannel

whi chChannel

whi chChannel



CHAPTER 6

Audio Components

Getting Audio Component Information

pascal Component Result Audi oGetlnfo
(Component | nst ance ac, AudiolnfoPtr info);

Assembly-Language Summary

Data Structures

Audio Information Record

0 capabi liti esFl ags long device capabilities
4 reserved long reserved
8 nunvol umeSt eps word number of volume steps

swauodwop opny [T

Summary of Audio Components 6-17






	 Title
	 Copyright
	 Table of Contents
	 Figures, Tables, and Listings
	 Preface
	 Introduction to Sound TOC
	 Introduction to Sound
	 Sound Manager TOC
	 Sound Manager
	 Sound Input Manager TOC
	 Sound Input Manager
	 Speech Manager TOC
	 Speech Manager
	 Sound Components TOC
	 Sound Components
	 Audio Components TOC
	Audio Components
	About Audio Components
	Writing an Audio Component
	Creating an Audio Component
	Dispatching to Audio Component-Defined Routines

	Audio Components Reference
	Data Structures
	Audio Information Records

	Audio Component-Defined Routines
	Getting and Setting Volumes
	Managing the Mute State
	Resetting Audio Components
	Getting Audio Component Information


	Summary of Audio Components
	C Summary
	Constants
	Data Types
	Audio Component-Defined Routines

	Assembly-Language Summary
	Data Structures



	 Glossary
	 Index
	 Colophon

