
Porting the HAMMER File System to Linux

Daniel Lorch

June 10, 2009

Abstract
Hammer [10] is a file system developed by Matt Dillon for DragonFly BSD.
Hammer features large file systems up to 4096 TB, fine grained history retention
(without requiring explicit checkpoints) and instant crash recovery.

Hammer is only available for DragonFly BSD. My contribution consists in
providing a port of this filesystem for Linux. This port is restricted to read
operations only.

1 Introduction
File systems in DragonFly BSD and Linux essentially interact with two inter-
faces in the kernel. Firstly, there is the VFS (Virtual Filesystem Switch [3]
[20]) which provides an abstract interface for system calls like ‘open’ or ‘read’
to concrete file systems like Hammer or UFS.

Secondly, there is the block device (typically a hard disk). The block device
is tightly interacting with the buffer cache. In Linux, the buffer cache is unified
with the page cache [1].

This assignment consisted in learning about the necessary interfaces in both
operating systems and providing a mapping between the two, while trying to
leave most of Hammer’s original code unmodified.

Along with VFS and the buffer cache, the kernel’s thread primitives and
locking primitives had to be considered. Since only read support was required,
most of the locking code has been turned into no-ops. Background threads
for flushing operations and other tasks have been deactivated due to the same
reason.

The remainder of this document is organized as follows: section 2 illustrates
the motivation of porting Hammer to Linux, followed by a brief presentation of
its main features in section 3. A lot of the work has gone into reading source code
and documents, as well as evaluating the required tool set, which is detailled in
section 4. The actual porting effort is then described in section 5. Finally, a
conclusion is presented in section 6 and acknowledgements are given in section 7.

2 Motivation
The number of people using Hammer is limited by the number of users running
DragonFly BSD. But how many users are there?

1

Some methods have recently been suggested to measure the active user base
of an open source project [2], but to date, they have neither been applied to
DragonFly BSD nor to Hammer.

While exact numbers are not known, DragonFly BSD has an active and very
dedicated user base. This can be observed by looking at DragonFly’s mailing list
archive, as well as the commit history of DragonFly’s main git repository, show-
ing constant activity. Furthermore, DragonFly had been accepted into Google’s
Summer of Code programme in 2008 and 2009 [13], showing its importance as
an open source project.

For Linux, different estimation methods have been applied to measure its
installed base. The Linux Counter project [7] conjectures that there must be 29
million Linux users (desktop and servers) by march 2005, basing their approx-
imation on studies by Gartner and Netcraft. IDC [12] thinks that there must
be 2.8 million Linux servers (considering paid as well as free distributions).

Without comparing numbers, it is safe to say that the number of Linux
installations is by orders of magnitude larger than the number of DragonFly
BSD installations.

This provided my main motivation to engage in the porting effort. Since
Hammer is only available in DragonFly BSD, very few people have the oppor-
tunity to actually try it out. Exposing the file system to a wider audience
will also increase the number of peer reviewers, providing valuable input to the
development of Hammer on DragonFly.

3 A Hammer File System Walkthrough

3.1 Fine Grained History Retention
One of Hammer’s most intriguing features is its ability to keep a history of all
modifications made to its files and directories, in a similar fashion to version
control software. Each modification creates a new ‘transaction id’, which is a
64-bit long identifier and looks like 0x00000001061a8ba6.

A given file at a given time can then be retrieved by appending ‘@@’ and its
transaction id to it. This also works for directories and is the main mechanism
to provide access to consistent ‘snapshots’ of entire directory trees.

The following example shows how a file is created and subsequently modified.
The ‘hammer history’ command lists all available versions of the file along with
the date and time when the transaction occurred.

echo Hello > test
echo World >> test
hammer history test
test 000000010061aac0 clean {
00000001007a1520 23-Mar -2009 20:04:11
00000001007a1580 23-Mar -2009 20:04:43
}
cat test@@0x00000001007a1520
Hello
cat test@@0x00000001007a1580
Hello
World

2

cat test
Hello
World

Snapshot creation is done using the ‘hammer snapshot’ command. Note that
this will simply create a softlink to the given directory along with its current
snapshot id, as the following example illustrates:

hammer snapshot /mnt /mnt/snap
/mnt/snap
ls -l snap
lrwxr -xr-x 1 root wheel 25 Mar 23 20:07 snap -> /mnt/

@@0x00000001007a15c0
ls snap/
test

3.2 Pruning
Since all of the file system’s history is kept permanently (unless the the ‘nohis-
tory’ option was provided on mount), deleting files will not actually free any
space and file system usage will continue to grow until the disk is full.

Pruning allows old generations of files to be deleted permanently. The ‘ham-
mer prune’ command is clever in that it will not delete a file if it is pointed to
by any snapshot softlink.

3.3 Pseudo File Systems
‘Pseudo File Systems’ are a feature of Hammer to create the equivalent of a disk
partition, but inside the file system.

Typically, pseudo file systems are used to devise different policies for backup,
pruning and mirroring (see subsection 3.4 for the latter) to a given subdirectory.
While the user can specify that a given directory should not generate any his-
tory records by applying ‘chflags nohistory’ to it, pseudo file systems have the
advantage of having their independent i-node number space, making it suitable
as a target for replication.

3.4 Master-Slave Replication
Hammer supports a single-master, multiple-slave replication scheme. For this
to work, one has to create a pseudo file system (subsection 3.3), designate it
as master and may then define multiple slaves. Masters and slaves are paired
using an unique ‘uuid’.

Mirroring is initiated manually with the ‘hammer mirror-copy’ command.
Since transaction id’s are strictly incremental, the master and slave must only
negotiate on the range of transactions that need to be transferred.

Mirroring can span multiple computers and be performed remotely, e.g. the
‘hammer mirror-copy’ command conveniently opens an SSH connection to a
remote host and performs the mirroring through a secure connection. This is
different from a simple ‘rsync’ in that the entire file system history is replicated
along with it.

3

4 Tool Evaluation and Interfaces Study

4.1 Virtualization Software
Developing in the kernel on a live machine is very unpleasant, especially when
programming errors occur. For Linux kernel development, several sources on
the Internet suggest to use two physical machines interconnected with a serial
cable and a specialized debugging software. Since the work I am doing is neither
performance-critical, nor depending on specific hardware features, a virtualiza-
tion software can be used for development.

VMWare provides a solution to simulate [18] the aforementioned setup on
a single machine. While I managed to initate a remote connection with gdb,
I was unable to load the debug symbols, probably since my host machine was
running a different operating system (OS X) than the guest.

I have then decided to try User-Mode-Linux [21]. UML runs the Linux kernel
as a userspace process, analogous to DragonFly BSD’s virtual kernels [5]. These
are the two virtualization solutions I finally ended up using, as they allow for a
quick recompile-restart cycle and can be debugged easily with standard gdb.

4.2 Standalone Hammer File System
After installing DragonFly BSD, I created a partition for Hammer, put some
test files and directories on it and finally dumped the result to a file using
‘dd’. Having such a dump allowed me to experiment with hammerread.c [4],
which is a read-only implementation of the Hammer filesystem for DragonFly’s
bootloader. When compiled with -DTESTING, the result will be a standalone
binary.

The output of this program is as follows:

cd /usr/src/lib/libstand
cc -DTESTING -std=c99 hammerread.c -o hammerread
./hammerread
usage: hammerread
./hammerread /dev/ad1s0e
signature: valid
name: HAMMER
./hammerread /dev/ad1s0e /test
signature: valid
name: HAMMER
/test 0/0 100644 12
Hello
World

I subsequently ported this file to Linux [17], giving me a first working Ham-
mer implementation on the destination platform.

4.3 Porting to FUSE
It seemed natural to wrap hammerread.c into a File Systems in Userspace
module. Looking at the hello world example for FUSE [15], the functions
that are required corresponded more or less directly to the functions defined
in hammerread.c, e.g. hstat(), hread() and hreaddir().

4

I added some glue code and released the result [16] to the Hammer news-
group. The work inspired others and shortly after, Jeremy C. Reed released a
port to NetBSD [19].

4.4 B+Trees
Trying to educate myself on the inner workings of the file system, I read Matt
Dillon’s design documents [8] [9] and about B+Trees [6] [11].

Hammer’s B+Tree is a modified B-Tree, where nodes have additional bound-
ary information. This boundary information allow searches to terminate early
and speeds up lookups. Furthermore, searches must not begin at the root, but at
any intermediary node (starting at a given location, e.g. the current directory).

The B+Tree nodes have a very high fanout degree (63) to reduce the number
of disk accesses involved locating an element.

4.5 Linux Kernel Modules
The next logical step was to develop a Linux kernel module. This is described in
detail in a tutorial [14]. The interface for modules that are built into the kernel
and those that are loaded on demand is the same, so for a developer there is
very little left to do.

Several simple file systems provided examples on how Linux VFS works,
among them Ravi Kiran’s [22] proved to be a very illustrative example.

5 Porting Work

5.1 VFS Interface
Linux and DragonFly BSD provide an analogous API for the VFS. The actual
code behind these APIs is unfortunately very different (different function names,
different function arguments).

Rather than providing a generic adapter for VFS, I decided to rewrite the
VFS part from scratch and make calls to the Hammer backend where appro-
priate. Luckily, the Hammer source code is very well abstracted and had been
written with porting in mind.

5.1.1 Vocabulary

There are some differences when it comes to the vocabulary used between the
two operating systems.

In DragonFly BSD, the on-disk data structure representing a file is called an
i-node. The data structure in-memory representing a file’s contents is called a
v-node. When interfacing with the VFS, one therefore has to deal with v-nodes.

In Linux, the term ‘i-node’ is used interchangeably for data structures on
disk and those in memory. When interfacing with the VFS, one therefore has
to deal with i-nodes.

5

5.1.2 Superblock Operations

For super block operations (mounting, unmounting, etc..), DragonFly defines a
struct vfsops, having a vfs_mount function.

In Linux, the anologous function in struct file_system_type is called
get_sb. This function fills the struct super_block data structure with infor-
mation about the file system.

The first difference, which will become more apparent in subsubsection 5.1.5,
is that access to the underlying block device is done via the struct super_block
(which contains a pointer to the related block device) in Linux, but via the root
v-node (the v-node representing the block device) in DragonFly BSD.

There is also a subtle difference when it comes to parsing optional arguments
to the ‘mount’ command (those specified with ‘-o’). In DragonFly BSD, a call
to ‘mount -t hammer’ will actually execute the program ‘mount_hammer’ in
place. This programm will do the parsing of optional parameters, allocate a
‘struct’ and pass a memory pointer to VFS.

In Linux, the ‘-o’ string is copied verbatim to the mount command and
parsing is done in the kernel.

5.1.3 Address Space Operations

In Linux, the mapping of a file to page cache can be manipulated with the
struct address_space_operations [20], providing functions for reading pages
from disk and writing them back. Implementing these functions is necessary to
support ’mmap’, as well as making use of the page cache.

In DragonFly BSD, the corresponding functions getpages and putpages are
available in the struct vop_ops.

5.1.4 I-node, File and Directory Operations

In DragonFly BSD, the convention is to put i-node, file and directory operations
in a file called ‘foo_vnops.c’. The struct vop_ops specifies all the vnode
operations on a given file system. Typically, only a single such structure is
defined and the corresponding function, e.g. the read function, checks whether
the target i-node is a file or directory and raises an error if a wrong entry type
is encountered.

In Linux, the convention is to split this functionality into seperate files
’dir.c’, ’file.c’ and ’inode.c’. The struct file_operations applies to open
files, whereas the struct inode_operations to i-nodes. Typically, multiple
struct inode_operations are defined, one for each type (e.g. one for directo-
ries, one for all types of files).

5.1.5 Buffer Cache Interface

In DragonFly BSD, access to an underlying block device is done via the bread()
(short for ‘block read’) call. bread() takes as argument the v-node of the given
device (the root v-node), a byte-granular offset and the number of bytes that
should be read.

In Linux, the analogous call is sb_bread(). This function takes the file
system’s super block as an argument, where a block size (typically 1024 Bytes
and must be smaller than the page size) had been defined beforehand using

6

sb_set_blocksize. Reads can only occur in granularity and size of this block
size.

For the given port, the bread() function was emulated in Linux by allo-
cating a sufficiently large block of memory using kmalloc(), iteratively calling
sb_bread() and copying the data with memcpy to that large block.

5.2 Wash, Lather, Rinse, Repeat
When porting the file system to Linux, a rather crude approach was taken.
After defining a basic skeleton module for Linux [14], the two wrapper files
dfly_wrap.h and dfly_wrap.c were created. Then, the source files were copied
verbatim from DragonFly BSD to dfly/.

For each of the given .c files in dfly/, I created a new file including the wrap-
per, then the original source file. Following is an example for hammer_prune.c:

#include "dfly_wrap.h"
#include "dfly/vfs/hammer/hammer_prune.c"

Then, I compiled the project and observed the errors:

daniel@daniel:~/linux -2.6.29.1$ make ARCH=um 2>&1 |
grep ’error: ’ | sed -e ’s/.*error: //g’ | sort |
uniq

’EFTYPE ’ undeclared (first use in this function)
’FREAD ’ undeclared (first use in this function)
’FSCRED ’ undeclared (first use in this function)
’FWRITE ’ undeclared (first use in this function)
’LK_EXCLUSIVE ’ undeclared (first use in this function)
’LK_RETRY ’ undeclared (first use in this function)
...

This is the screen I have been looking at for several weeks. For each of the
given compile time errors (like missing structs), I searched for the appropriate
definition in DragonFly’s source code and added it to dfly_wrap.h.

Analogously, for each of the link time errors, I added a stub method to
dfly_wrap.c raising a kernel panic when called, for example:

int nlookup(struct nlookupdata *nd) {
panic("nlookup");

}

Certain files, like hammer_vnops.c, could be omitted, as a corresponding
implementation in Linux VFS was created. Other files, which required to be
rewritten entirely (e.g. hammer_io.c), were copied and the modifications were
made in-place.

Interestingly, out of the 18 source files ported, 14 files could be included
directly using the wrapper trick mentioned above, and only 4 files had to be
modified in-place.

After the file system compiled and linked, the final step consisted in actually
running the code and following each of the kernel panics, providing a compatible
wrapper implementation where necessary or turning it into a no-op function.

7

6 Conclusion
Porting a file system was a study of interfaces of two different operating systems,
and not the study of the file system itself, as one might expect. In most parts
of the porting effort, the file system could be treated as a black box. Not
surprisingly, it was not long into development cycle as I began to explore many
of Hammer’s features. All of the functionality is well abstracted – from access
to I/O to locking, almost all functions are wrapped around functions that made
the porting effort less painful.

In the current code, the functions ‘getattr’, ‘read’, ‘readdir’ are implemented.
This is enough to mount a Hammer device, list its contents and read from
a file. More effort is required to support writing and to port the userland
utilities. Since the source code is released to the community I hope to find more
contributors to help with the porting effort.

7 Acknowledgements
I would like to thank Simon Schubert, my assistant, and Matt Dillon, the Ham-
mer author, for having taken their time to help me with the porting effort. I
have always immediately received a response to all my questions – either on
IRC, on the newsgroup, on the phone or from Simon in his office.

References
[1] Tigran Aivazian. Linux kernel 2.4 internals: Linux page cache. http:

//tldp.org/LDP/lki/lki-4.html, 2002. [Online; accessed 7-June-2009].

[2] Kevin Crowston Andrea Wiggins, James Howison. Heart-
beat: Measuring active user base and potential user
interest. http://www.slideshare.net/AniKarenina/
heartbeat-measuring-active-user-base-and-potential-user-interest,
2009. [Online; accessed 9-June-2009].

[3] DragonFly BSD. The new vfs model. http://www.dragonflybsd.org/
goals/index.html#vfsmodel, 2009. [Online; accessed 7-June-2009].

[4] DragonFly BSD. Standalone hammer filesystem implementation.
http://gitweb.dragonflybsd.org/dragonfly.git/blob_plain?f=
lib/libstand/hammerread.c, 2009. [Online; accessed 7-June-2009].

[5] DragonFly BSD. Vkernel. http://leaf.dragonflybsd.org/cgi/
web-man?command=vkernel, 2009. [Online; accessed 7-June-2009].

[6] Douglas Comer. Ubiquitous b-tree. ACM Comput. Surv., 11(2):121–137,
1979.

[7] Linux Counter. Linux counter: Estimates of the number of linux users.
http://counter.li.org/estimates.php, 2009. [Online; accessed 9-June-
2009].

[8] Matt Dillon. The hammer filesystem. http://www.dragonflybsd.org/
hammer/hammer.pdf, 2008. [Online; accessed 7-June-2009].

8

http://tldp.org/LDP/lki/lki-4.html
http://tldp.org/LDP/lki/lki-4.html
http://www.slideshare.net/AniKarenina/heartbeat-measuring-active-user-base-and-potential-user-interest
http://www.slideshare.net/AniKarenina/heartbeat-measuring-active-user-base-and-potential-user-interest
http://www.dragonflybsd.org/goals/index.html#vfsmodel
http://www.dragonflybsd.org/goals/index.html#vfsmodel
http://gitweb.dragonflybsd.org/dragonfly.git/blob_plain?f=lib/libstand/hammerread.c
http://gitweb.dragonflybsd.org/dragonfly.git/blob_plain?f=lib/libstand/hammerread.c
http://leaf.dragonflybsd.org/cgi/web-man?command=vkernel
http://leaf.dragonflybsd.org/cgi/web-man?command=vkernel
http://counter.li.org/estimates.php
http://www.dragonflybsd.org/hammer/hammer.pdf
http://www.dragonflybsd.org/hammer/hammer.pdf

[9] Matt Dillon. The hammer filesystem at nycbsdcon 2008. http://www.
dragonflybsd.org/presentations/nycbsdcon08/, 2008. [Online; ac-
cessed 7-June-2009].

[10] Matt Dillon. The hammer filesystem website. http://www.dragonflybsd.
org/hammer/, 2009.

[11] Matt Dillon. Hammer’s b+tree implementation. http:
//gitweb.dragonflybsd.org/dragonfly.git/blob_plain/HEAD:
/sys/vfs/hammer/hammer_btree.h, 2009. [Online; accessed 7-June-
2009].

[12] Al Gillen. The opportunity for linux in a new economy.
http://www.linuxfoundation.org/sites/main/files/publications/
Linux_in_New_Economy.pdf, 2009. [Online; accessed 9-June-2009].

[13] Google. Dragonfly soc 2009. http://socghop.appspot.com/org/home/
google/gsoc2009/dragonflybsd, 2009. [Online; accessed 9-June-2009].

[14] The Linux Kernel Module Programming Guide. Hammer’s b+tree imple-
mentation. http://www.tldp.org/LDP/lkmpg/2.6/html/, 2007. [Online;
accessed 7-June-2009].

[15] FUSE: Filesystem in Userspace. Hello world example. http://fuse.
sourceforge.net/helloworld.html, 2005. [Online; accessed 7-June-
2009].

[16] Daniel Lorch. hammerread.c + fuse = read hammer filesys-
tem on linux. http://hammerfs-ftw.blogspot.com/2009/04/
hammerreadc-fuse-read-hammer-filesystem.html, 2009. [Online;
accessed 7-June-2009].

[17] Daniel Lorch. hammerread.c ported to linux. http://hammerfs-ftw.
blogspot.com/2009/04/hammerreadc-ported-to-linux.html, 2009.
[Online; accessed 7-June-2009].

[18] Vyacheslav Malyugin. Debugging linux kernels with work-
station 6.0. http://stackframe.blogspot.com/2007/04/
debugging-linux-kernels-with.html, 2007. [Online; accessed 7-
June-2009].

[19] Jeremy C. Reed. Netbsd hammer with fuse and hammerread.
http://leaf.dragonflybsd.org/mailarchive/hammer/2009-04/
msg00002.html, 2009. [Online; accessed 7-June-2009].

[20] Pekka Enberg Richard Gooch. Overview of the linux virtual
file system. http://lxr.linux.no/linux+v2.6.29/Documentation/
filesystems/vfs.txt, 2005. [Online; accessed 7-June-2009].

[21] User-Mode-Linux. Kernel hacking with uml. http://user-mode-linux.
sourceforge.net/hacking.html, 2008. [Online; accessed 7-June-2009].

[22] Ravi Kiran UVS. Writing a simple file system. http://www.geocities.
com/ravikiran_uvs/articles/rkfs.html, 2007. [Online; accessed 7-
June-2009].

9

http://www.dragonflybsd.org/presentations/nycbsdcon08/
http://www.dragonflybsd.org/presentations/nycbsdcon08/
http://www.dragonflybsd.org/hammer/
http://www.dragonflybsd.org/hammer/
http://gitweb.dragonflybsd.org/dragonfly.git/blob_plain/HEAD:/sys/vfs/hammer/hammer_btree.h
http://gitweb.dragonflybsd.org/dragonfly.git/blob_plain/HEAD:/sys/vfs/hammer/hammer_btree.h
http://gitweb.dragonflybsd.org/dragonfly.git/blob_plain/HEAD:/sys/vfs/hammer/hammer_btree.h
http://www.linuxfoundation.org/sites/main/files/publications/Linux_in_New_Economy.pdf
http://www.linuxfoundation.org/sites/main/files/publications/Linux_in_New_Economy.pdf
http://socghop.appspot.com/org/home/google/gsoc2009/dragonflybsd
http://socghop.appspot.com/org/home/google/gsoc2009/dragonflybsd
http://www.tldp.org/LDP/lkmpg/2.6/html/
http://fuse.sourceforge.net/helloworld.html
http://fuse.sourceforge.net/helloworld.html
http://hammerfs-ftw.blogspot.com/2009/04/hammerreadc-fuse-read-hammer-filesystem.html
http://hammerfs-ftw.blogspot.com/2009/04/hammerreadc-fuse-read-hammer-filesystem.html
http://hammerfs-ftw.blogspot.com/2009/04/hammerreadc-ported-to-linux.html
http://hammerfs-ftw.blogspot.com/2009/04/hammerreadc-ported-to-linux.html
http://stackframe.blogspot.com/2007/04/debugging-linux-kernels-with.html
http://stackframe.blogspot.com/2007/04/debugging-linux-kernels-with.html
http://leaf.dragonflybsd.org/mailarchive/hammer/2009-04/msg00002.html
http://leaf.dragonflybsd.org/mailarchive/hammer/2009-04/msg00002.html
http://lxr.linux.no/linux+v2.6.29/Documentation/filesystems/vfs.txt
http://lxr.linux.no/linux+v2.6.29/Documentation/filesystems/vfs.txt
http://user-mode-linux.sourceforge.net/hacking.html
http://user-mode-linux.sourceforge.net/hacking.html
http://www.geocities.com/ravikiran_uvs/articles/rkfs.html
http://www.geocities.com/ravikiran_uvs/articles/rkfs.html

Appendix

Source Code
The source code can be retrieved with ‘git clone git@plan.nine.ch:hammerfs.git’
via anonymous git and is released under the DragonFly BSD license. No re-
strictions are imposed on the code and contributors are more than welcome.

10

	Introduction
	Motivation
	A Hammer File System Walkthrough
	Fine Grained History Retention
	Pruning
	Pseudo File Systems
	Master-Slave Replication

	Tool Evaluation and Interfaces Study
	Virtualization Software
	Standalone Hammer File System
	Porting to FUSE
	B+Trees
	Linux Kernel Modules

	Porting Work
	VFS Interface
	Vocabulary
	Superblock Operations
	Address Space Operations
	I-node, File and Directory Operations
	Buffer Cache Interface

	Wash, Lather, Rinse, Repeat

	Conclusion
	Acknowledgements

