Abstract
The statistical bootstrap model (SBM) is a statistical model of strong interactions based on the observation that hadrons not only form bound and resonance states but also decay statistically into such states if they are heavy enough. This leads to the concept of a possibly unlimited sequence of heavier and heavier bound and resonance states, each being a possible constituent of a still heavier resonance, while at the same time being itself composed of lighter ones. We call these states clusters (in the older literature heavier clusters are called fireballs; the pion is the lightest “one-particle-cluster”) and label them by their masses. Let ρ(m)dm be the number of such states in the mass interval {m, dm}; we call ρ(m) the “SBM mass spectrum”. Bound and resonance states are due to strong interactions; if introduced as new, independent particles in a statistical model, they also simulate the strong interactions to which they owe their existence. To simulate all attractive strong interactions we need all of them (including the not yet discovered ones), that is: we need the complete mass spectrum ρ(m). To simulate repulsive forces we may use proper cluster volumes à la Van der Waals. In order to obtain the full mass spectrum, we require that the above picture, namely that a cluster is composed of clusters, be self-consistent. This leads to the “bootstrap condition and/or bootstrap equation” for the mass spectrum ρ(m). The bootstrap equation (BE) is an integral equation embracing all hadrons of all masses. It can be solved analytically with the result that the mass spectrum ρ(m) has to grow exponentially. Consequently any thermodynamics employing this mass spectrum has a singular temperature T 0 generated by the asymptotic mass spectrum: ρ(m) ∼ exp(m/T 0). Today this singular temperature is interpreted as the temperature where (for baryon chemical potential zero) the phase transition (hadron gas) ⇔ (quark-gluon plasma) occurs.
“It is the nature of a hypothesis when once a man has conceived it, that it assimilates everything to itself, as proper nourishment; and, from the first moment of your begetting it, it generally grows the stronger by everything you see, hear, read or understand. This is of great use.”1
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Laurence Sterne, “The life and Opinions of Tristram Shandy Gentleman” (London, 1760), Book II, Ch. 19.
R. Hagedorn, in “Quark Matter ’84”, Helsinki Symposium, ed. K. Kajantie, published in “Lecture Notes in Physics” 221 (Springer, Heidelberg, 1985).
E.L. Feinberg, Physics Reports 5 (1972) 237.
H. Yukawa, Proc.Phys.Math.Soc.Japan 17 (1935) 48.
W. Heitler, Proc.Cambr.Phil.Soc. 37 (1941) 291.
W. Heitler and H.W. Peng, Proc.Cambr.Phil.Soc. 38 (1942) 296.
L. Janossy, Phys.Rev. 64 (1943) 345.
W. Heisenberg, Z.Phys. 101 (1936) 533.
N.M. Dulles and W.D. Walker, Phys.Rev. 93 (1954) 215.
J. Nishimura, Soryushiron Kenkyu 12 (1956) 24.
G. Cocconi, Phys.Rev. 111 (1958) 1699.
F.W. Büsser et al. (CERN-Columbia-Rockefeller Coll.), Phys.Lett. 46B (1973) 471, and a wealth of further papers in conference reports and review articles.
S. Takagi, Progr.Theor.Phys. 7 (1952) 123.
P. Ciok, T. Coghen, J. Gierula, R. Holyński, A. Jurak, M. Miesowicz, T. Saniewska, O. Stanisz and J. Pernegr, Nuovo Cimento 8 (1958) 166 and 10 (1958) 741 [the second without O. Stanisz].
J. Gierula, Fortschr.d.Physik 11 (1963) 109.
N. Bohr, Nature 137 (1936) 344.
V.F. Weisskopf, Phys.Rev. 52 (1937) 295.
I. Frenkel, Soviet Phys. 9 (1936) 533.
H. Koppe, Phys.Rev. 76 (1949) 688.
H. Koppe, Zs.f.Naturforschung 3a (1948) 251.
E. Fermi, Progr.Theor.Phys. 5 (1950) 570.
E. Fermi, Phys.Rev. 81 (1951) 683.
W. Heisenberg, Naturwissenschaften 39 (1952) 69.
E. Beth and C.E. Uhlenbeck, Physica 4 (1937) 915.
L. Landau and E. Lifshitz, “Statistical Physics” (MIR, Moscow, 1967).
R. Hagedorn, in Cargèse Lectures, Vol. 6 (1973), p. 643, ed. E. Schatzmann (Gordon and Breach, New York, 1973).
K. Huang, “Statistical Mechanics” (John Wiley and Sons, New York, 1963).
J. Bernstein, R. Dashen and S. Ma, Phys.Rev. 187 (1969) 1.
S.Z. Belenkij, Nucl.Phys. 2 (1956) 259.
L. Sertorio, Rivista del Nuovo Cimento 2 (1979) No 2.
E Cerulus and R. Hagedorn, Suppl.Nuovo Cimento 9 (1958) 646, 659.
F. Cerulus, Nuovo Cimento 19 (1961) 528.
F. Cerulus, Nuovo Cimento 22 (1961) 958.
R. Hagedorn, Nuovo Cimento 15 (1960) 434.
S.Z. Belenkij, V.M. Maksimenko, A.I. Nikisov and I.L. Rozental, Usp.Fiz.Nauk 62 (1957) 1, in Russian.
S.Z. Belenkij, V.M. Maksimenko, A.I. Nikisov and I.L. Rozental Fortschr.d.Physik 6 (1958) 524, same in German.
G. Cocconi, Nuovo Cimento 33 (1964) 643.
J. Orear, Phys.Lett. 13 (1964) 190.
G. Fast, R. Hagedorn and L.W. Jones, Nuovo Cimento 27 (1963) 856.
G. Fast and R. Hagedorn, Nuovo Cimento 27 (1963) 208.
T.E.O. Ericson, Phys.Lett. 4 (1963) 258.
A. Bialas and V.F. Weisskopf, Nuovo Cimento 35 (1965) 1211.
G. Auberson and B. Escoubès, Nuovo Cimento 36 (1965) 628.
H. Satz, Nuovo Cimento 37 (1965) 1407.
J. Vandermeulen, Bull.Soc.Roy.Sci.Liège (Belgium) 34 (1965) Nos 1–2.
I. Pomeranchuk, Dokl.Akad.Nauk SSSR 78 (1951) 889.
R. Hagedorn, Suppl. Nuovo Cimento 3 (1965) 147.
R. Carreras, “Picked up for you this week”, No 26 (CERN, Geneva, 1993).
Particle Data Group, Phys.Rev. D50 (1994) No 3, Part I.
W. Nahm, Nucl.Phys. B45 (1972) 525.
S. Frautschi, Phys.Rev. D3 (1971) 2821.
R. Hagedorn and J. Ranft, Suppl. Nuovo Cimento 6 (1968) 169.
H. Grote, R. Hagedorn and J. Ranft, “Particle Spectra” (CERN, Geneva, 1970).
J. Yellin, Nucl.Phys. B52 (1973) 583.
E. Schröder, Z.Math.Phys. 15 (1870) 361.
G.J.H. Burgers, C. Fuglesang, R. Hagedorn and V. Kuvshinov, ZPhys. C46 (1990) 465.
H. Satz, Phys.Rev. D20 (1979) 582.
K. Redlich and L. Turko, Z.Phys. C5 (1980) 201.
R. Hagedorn, I. Montvay and J. Rafelski, Proc. Workshop on Hadronic Matter at Extreme Energy Density, Erice, 1978, p. 49 eds. N. Cabibbo and L. Sertorio (Springer Science+Business Media New York, 1980).
R. Hagedorn and J. Rafelski, Phys.Lett. 97B (1980) 136.
B. Touschek, Nuovo Cimento B58 (1968) 295.
A. Chodos, R.L. Jaffe, K. Johnson, C.B. Thorn and V.F. Weisskopf, Phys.Rev. D19 (1974) 3471.
J.I. Kapusta, Nucl.Phys. B196 (1982) 1.
K. Redlich, Z.Phys. C21 (1983) 69.
N. Cabibbo and G. Parisi, Phys.Lett. 59B (1975) 67.
R. Hagedorn and J. Rafelski, Bielefeld Symposium on “Statistical Mechanics of Quarks and Hadrons”, p. 237, ed. H. Satz (North Holland, Amsterdam, 1981).
J. Rafelski and R. Hagedorn, as in Ref. (63), p. 253.
M.I. Gorenstein, Yad.Fiz. 31 (1980) 1630.
M.I. Gorenstein, V.K. Petrov and G.M. Zinovjev, Phys.Lett. 106B (1981) 327.
M.I. Gorenstein, G.M. Zinovjev, V.K. Petrov and V.P. Shelest, Teor.Mat.Fiz. 52 (1982) 346.
R. Hagedorn, Z.Phys. C17 (1983) 265.
M.I. Gorenstein, S.I. Lipskikh and G.M. Zinovjev, Z.Phys. C22 (1984) 189.
E.A. Guggenheim, J.Chem.Phys. 7 (1939) 103.
J. Baacke, Acta Phys.Pol. B8 (1977) 625.
J. Letessier and A. Tounsi, Nuovo Cimento 99A (1988) 521.
J. Letessier and A. Tounsi, Phys.Rev. D40 (1989) 2914.
J. Letessier and A. Tounsi, Preprint PAR/LPTHE 90-17, Univ. Paris VII (1990) presented at IInd Internat. Bodrum Physics School, 1989, University of Istanbul, Turkey.
K. Fabricius and U. Wambach, Nucl.Phys. B62 (1973) 212.
M. Chaichian, R. Hagedorn and M. Hayashi, Nucl.Phys. B92 (1975) 445.
J. Engels, K. Fabricius and K. Schilling, Phys.Lett. 59B (1975) 477.
J. Kripfganz, Nucl.Phys. B100 (1975) 302.
M. Chaichian and M. Hayashi, Phys.Rev. D15 (1977) 402.
M. Levinson, Kgl.Danske Vid.Selsk.Mat.Fys.Med. 25 (1949) No 9.
R. Hagedorn and I. Montvay, Nucl.Phys. B59 (1973) 45.
GJ. Hamer and S. Frautschi, Phys.Rev. D4 (1971) 2125.
F. Karsch, in “QCD 20 Years Later”, Aachen Symposium, 1992, Vol. 2, p. 717, eds. P.M. Zerwas and H.A. Kastrup, (World Scientific, Singapore, 1993).
J. Fingberg, U. Heller and F. Karsch, Nucl.Phys. B392 (1993) 493.
R. Hagedorn and J. Ranft, Nucl.Phys. B48 (1972) 157.
J. Letessier and A. Tounsi, Nuovo Cimento 13A (1973) 557.
R. Hagedorn, Rivista del Nuovo Cimento 6 (1983) No 10.
A.T. Laasanen, C. Ezell, L.J. Gutay, W.N. Schreiner, P. Schublin, L. von Lindern and F. Tlirkot, Phys.Rev.Lett. 38 (1977) 1.
A. Bussière et al., Nucl.Phys. B174 (1980) 1.
J. Letessier and A. Tounsi, Nuovo Cimento 99A (1988) 521.
R. Hagedorn and J. Rafelski, Phys.Lett. 97B (1980) 136.
L.D. Landau, “Collected Papers”, ed. D. Ter Haar (Gordon and Breach, New York, 1965).
Yu.B. Rumer, Soviet Phys. (JETP) 11 (1960) 1365 [Translation from original: JETP 38 (1960) 1899].
G.F. Chew, Science 161 (1968) 762.
G.F. Chew, Physics Today 23 (1970) 23.
G.F. Chew and S. Mandelstam, Nuovo Cimento 19 (1961) 752.
F. Zachariasen, Phys.Rev.Lett. 7 (1961) 112.
Laurence Sterne, “The Life and Opinions of Tristram Shandy Gentleman” (London, 1761), Book IV, Ch. 27.
E.L. Feinberg, Sov. Phys. Usp 18 (1976) 624 [Translation from original: Usp. Fiz. Nauk 116 (1975) 709].
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 1995 Springer Science+Business Media New York
About this chapter
Cite this chapter
Hagedorn, R. (1995). The Long Way to the Statistical Bootstrap Model. In: Letessier, J., Gutbrod, H.H., Rafelski, J. (eds) Hot Hadronic Matter. NATO ASI Series, vol 346. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1945-4_2
Download citation
DOI: https://doi.org/10.1007/978-1-4615-1945-4_2
Publisher Name: Springer, Boston, MA
Print ISBN: 978-1-4613-5798-8
Online ISBN: 978-1-4615-1945-4
eBook Packages: Springer Book Archive