Abstract
One of the crucial requirements before consuming datasets for any application is to understand the dataset at hand and its metadata. The process of metadata discovery is known as data profiling. Profiling activities range from ad-hoc approaches, such as eye-balling random subsets of the data or formulating aggregation queries, to systematic inference of metadata via profiling algorithms. In this course, we will discuss the importance of data profiling as part of any data-related use-case, and shed light on the area of data profiling by classifying data profiling tasks and reviewing the state-of-the-art data profiling systems and techniques. In particular, we discuss hard problems in data profiling, such as algorithms for dependency discovery and their application in data management and data analytics. We conclude with directions for future research in the area of data profiling.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abedjan, Z., Golab, L., Naumann, F.: Profiling relational data: a survey. VLDB J. 24(4), 557–581 (2015)
Abedjan, Z., Naumann, F.: Advancing the discovery of unique column combinations. In: Proceedings of the International Conference on Information and Knowledge Management (CIKM), pp. 1565–1570 (2011)
Abedjan, Z., Schulze, P., Naumann, F.: DFD: efficient functional dependency discovery. In: Proceedings of the International Conference on Information and Knowledge Management (CIKM), pp. 949–958 (2014)
Agrawal, D., Bernstein, P., Bertino, E., Davidson, S., Dayal, U., Franklin, M., Gehrke, J., Haas, L., Halevy, A., Han, J., Jagadish, H.V., Labrinidis, A., Madden, S., Papakonstantinou, Y., Patel, J.M., Ramakrishnan, R., Ross, K., Shahabi, C., Suciu, D., Vaithyanathan, S., Widom, J.: Challenges and opportunities with Big Data. Technical report, Computing Community Consortium (2012). http://cra.org/ccc/docs/init/bigdatawhitepaper.pdf
Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large databases. In: Proceedings of the International Conference on Very Large Databases (VLDB), pp. 487–499 (1994)
Astrahan, M.M., Schkolnick, M., Kyu-Young, W.: Approximating the number of unique values of an attribute without sorting. Inf. Syst. 12(1), 11–15 (1987)
Bauckmann, J., Leser, U., Naumann, F., Tietz, V.: Efficiently detecting inclusion dependencies. In: Proceedings of the International Conference on Data Engineering (ICDE), pp. 1448–1450 (2007)
Benford, F.: The law of anomalous numbers. Proc. Am. Philos. Soc. 78(4), 551–572 (1938)
Berti-Equille, L., Dasu, T., Srivastava, D.: Discovery of complex glitch patterns: a novel approach to quantitative data cleaning. In: Proceedings of the International Conference on Data Engineering (ICDE), pp. 733–744 (2011)
Bravo, L., Fan, W., Ma, S.: Extending dependencies with conditions. In: Proceedings of the International Conference on Very Large Databases (VLDB), pp. 243–254 (2007)
Brin, S., Motwani, R., Silverstein, C.: Beyond market baskets: generalizing association rules to correlations. SIGMOD Rec. 26(2), 265–276 (1997)
Caruccio, L., Deufemia, V., Polese, G.: Relaxed functional dependencies - a survey of approaches. IEEE Trans. Knowl. Data Eng. (TKDE) 28(1), 147–165 (2016)
Chandola, V., Kumar, V.: Summarization - compressing data into an informative representation. Knowl. Inf. Syst. 12(3), 355–378 (2007)
Chu, X., Ilyas, I., Papotti, P., Ye, Y.: RuleMiner: data quality rules discovery. In: Proceedings of the International Conference on Data Engineering (ICDE), pp. 1222–1225 (2014)
Cormode, G., Garofalakis, M., Haas, P.J., Jermaine, C.: Synopses for massive data: samples, histograms, wavelets, sketches. Found. Trends Databases 4(1–3), 1–294 (2011)
Dallachiesa, M., Ebaid, A., Eldawy, A., Elmagarmid, A., Ilyas, I.F., Ouzzani, M., Tang, N.: NADEEF: a commodity data cleaning system. In: Proceedings of the International Conference on Management of Data (SIGMOD), pp. 541–552 (2013)
Dasu, T., Johnson, T.: Hunting of the snark: finding data glitches using data mining methods. In: Proceedings of the International Conference on Information Quality (IQ), pp. 89–98 (1999)
Dasu, T., Johnson, T., Marathe, A.: Database exploration using database dynamics. IEEE Data Eng. Bull. 29(2), 43–59 (2006)
Dasu, T., Johnson, T., Muthukrishnan, S., Shkapenyuk, V.: Mining database structure; or, how to build a data quality browser. In: Proceedings of the International Conference on Management of Data (SIGMOD), pp. 240–251 (2002)
Dasu, T., Loh, J.M.: Statistical distortion: consequences of data cleaning. Proc. VLDB Endowment (PVLDB) 5(11), 1674–1683 (2012)
Fan, W., Geerts, F., Jia, X., Kementsietsidis, A.: Conditional functional dependencies for capturing data inconsistencies. ACM Trans. Database Syst. (TODS) 33(2), 1–48 (2008)
Flach, P.A., Savnik, I.: Database dependency discovery: a machine learning approach. AI Commun. 12(3), 139–160 (1999)
Garofalakis, M., Keren, D., Samoladas, V.: Sketch-based geometric monitoring of distributed stream queries. Proc. VLDB Endowment (PVLDB) 6(10) (2013)
Giannella, C., Wyss, C.: Finding minimal keys in a relation instance (1999). http://citeseerx.ist.psu.edu/viewdoc/summary?doi=?doi=10.1.1.41.7086
Golab, L., Karloff, H., Korn, F., Srivastava, D.: Data auditor: exploring data quality and semantics using pattern tableaux. Proc. VLDB Endowment (PVLDB) 3(1–2), 1641–1644 (2010)
Gunopulos, D., Khardon, R., Mannila, H., Sharma, R.S.: Discovering all most specific sentences. ACM Trans. Database Syst. (TODS) 28, 140–174 (2003)
Haas, P.J., Naughton, J.F., Seshadri, S., Stokes, L.: Sampling-based estimation of the number of distinct values of an attribute. In: Proceedings of the International Conference on Very Large Databases (VLDB), pp. 311–322 (1995)
Han, J., Pei, J., Yin, Y.: Mining frequent patterns without candidate generation. SIGMOD Rec. 29(2), 1–12 (2000)
Heise, A., Quiané-Ruiz, J.-A., Abedjan, Z., Jentzsch, A., Naumann, F.: Scalable discovery of unique column combinations. Proc. VLDB Endowment (PVLDB) 7(4), 301–312 (2013)
Hellerstein, J.M., Ré, C., Schoppmann, F., Wang, D.Z., Fratkin, E., Gorajek, A., Ng, K.S., Welton, C., Feng, X., Li, K., Kumar, A.: The MADlib analytics library or MAD skills, the SQL. Proc. VLDB Endowment (PVLDB) 5(12), 1700–1711 (2012)
Hipp, J., Güntzer, U., Nakhaeizadeh, G.: Algorithms for association rule mining - a general survey and comparison. SIGKDD Explor. 2(1), 58–64 (2000)
Huhtala, Y., Kärkkäinen, J., Porkka, P., Toivonen, H.: TANE: an efficient algorithm for discovering functional and approximate dependencies. Comput. J. 42(2), 100–111 (1999)
Ilyas, I.F., Markl, V., Haas, P.J., Brown, P., Aboulnaga, A.: CORDS: automatic discovery of correlations and soft functional dependencies. In: Proceedings of the International Conference on Management of Data (SIGMOD), pp. 647–658 (2004)
Kache, H., Han, W.-S., Markl, V., Raman, V., Ewen, S.: POP/FED: progressive query optimization for federated queries in DB2. In: Proceedings of the International Conference on Very Large Databases (VLDB), pp. 1175–1178 (2006)
Kandel, S., Parikh, R., Paepcke, A., Hellerstein, J., Heer, J.: Profiler: integrated statistical analysis and visualization for data quality assessment. In: Proceedings of Advanced Visual Interfaces (AVI), pp. 547–554 (2012)
Khoussainova, N., Balazinska, M., Suciu, D.: Towards correcting input data errors probabilistically using integrity constraints. In: Proceedings of the ACM International Workshop on Data Engineering for Wireless and Mobile Access (MobiDE), pp. 43–50 (2006)
Koehler, H., Leck, U., Link, S., Prade, H.: Logical foundations of possibilistic keys. In: Fermé, E., Leite, J. (eds.) JELIA 2014. LNCS (LNAI), vol. 8761, pp. 181–195. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11558-0_13
Koeller, A., Rundensteiner, E.A.: Heuristic strategies for the discovery of inclusion dependencies and other patterns. In: Spaccapietra, S., Atzeni, P., Chu, W.W., Catarci, T., Sycara, K.P. (eds.) Journal on Data Semantics V. LNCS, vol. 3870, pp. 185–210. Springer, Heidelberg (2006). https://doi.org/10.1007/11617808_7
Lopes, S., Petit, J.-M., Lakhal, L.: Efficient discovery of functional dependencies and armstrong relations. In: Zaniolo, C., Lockemann, P.C., Scholl, M.H., Grust, T. (eds.) EDBT 2000. LNCS, vol. 1777, pp. 350–364. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-46439-5_24
Lopes, S., Petit, J.-M., Toumani, F.: Discovering interesting inclusion dependencies: application to logical database tuning. Inf. Syst. 27(1), 1–19 (2002)
Mannino, M.V., Chu, P., Sager, T.: Statistical profile estimation in database systems. ACM Comput. Surv. 20(3), 191–221 (1988)
De Marchi, F., Lopes, S., Petit, J.-M.: Efficient algorithms for mining inclusion dependencies. In: Jensen, C.S., et al. (eds.) EDBT 2002. LNCS, vol. 2287, pp. 464–476. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45876-X_30
De Marchi, F., Lopes, S., Petit, J.-M.: Unary and n-ary inclusion dependency discovery in relational databases. J. Intell. Inf. Syst. 32, 53–73 (2009)
De Marchi, F., Petit, J.-M.: Zigzag: a new algorithm for mining large inclusion dependencies in databases. In: Proceedings of the IEEE International Conference on Data Mining (ICDM), pp. 27–34 (2003)
Morton, K., Balazinska, M., Grossman, D., Mackinlay, J.: Support the data enthusiast: challenges for next-generation data-analysis systems. Proc. VLDB Endowment (PVLDB) 7(6), 453–456 (2014)
Naumann, F.: Data profiling revisited. SIGMOD Rec. 42(4), 40–49 (2013)
Novelli, N., Cicchetti, R.: FUN: an efficient algorithm for mining functional and embedded dependencies. In: Van den Bussche, J., Vianu, V. (eds.) ICDT 2001. LNCS, vol. 1973, pp. 189–203. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44503-X_13
Papenbrock, T., Bergmann, T., Finke, M., Zwiener, J., Naumann, F.: Data profiling with metanome. Proc. VLDB Endowment (PVLDB) 8(12), 1860–1871 (2015)
Papenbrock, T., Ehrlich, J., Marten, J., Neubert, T., Rudolph, J.-P., Schönberg, M., Zwiener, J., Naumann, F.: Functional dependency discovery: an experimental evaluation of seven algorithms. Proc. VLDB Endowment (PVLDB) 8(10) (2015)
Papenbrock, T., Kruse, S., Quiané-Ruiz, J.-A., Naumann, F.: Divide & conquer-based inclusion dependency discovery. Proc. VLDB Endowment (PVLDB) 8(7) (2015)
Papenbrock, T., Naumann, F.: A hybrid approach to functional dependency discovery. In: Proceedings of the International Conference on Management of Data (SIGMOD), pp. 821–833 (2016)
Poosala, V., Haas, P.J., Ioannidis, Y.E., Shekita, E.J.: Improved histograms for selectivity estimation of range predicates. In: Proceedings of the International Conference on Management of Data (SIGMOD), pp. 294–305 (1996)
Rahm, E., Do, H.-H.: Data cleaning: problems and current approaches. IEEE Data Eng. Bull. 23(4), 3–13 (2000)
Raman, V., Hellerstein, J.M.: Potters Wheel: an interactive data cleaning system. In: Proceedings of the International Conference on Very Large Databases (VLDB), pp. 381–390 (2001)
Rostin, A., Albrecht, O., Bauckmann, J., Naumann, F., Leser, U.: A machine learning approach to foreign key discovery. In: Proceedings of the ACM SIGMOD Workshop on the Web and Databases (WebDB) (2009)
Sismanis, Y., Brown, P., Haas, P.J., Reinwald, B.: GORDIAN: efficient and scalable discovery of composite keys. In: Proceedings of the International Conference on Very Large Databases (VLDB), pp. 691–702 (2006)
Stonebraker, M., Bruckner, D., Ilyas, I.F., Beskales, G., Cherniack, M., Zdonik, S., Pagan, A., Xu, S.: Data curation at scale: the Data Tamer system. In: Proceedings of the Conference on Innovative Data Systems Research (CIDR) (2013)
Chen, M.S., Hun, J., Yu, P.S.: Data mining: an overview from a database perspective. IEEE Trans. Knowl. Data Eng. (TKDE) 8, 866–883 (1996)
Wyss, C., Giannella, C., Robertson, E.: FastFDs: a heuristic-driven, depth-first algorithm for mining functional dependencies from relation instances extended abstract. In: Kambayashi, Y., Winiwarter, W., Arikawa, M. (eds.) DaWaK 2001. LNCS, vol. 2114, pp. 101–110. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44801-2_11
Yakout, M., Elmagarmid, A.K., Neville, J., Ouzzani, M.: GDR: a system for guided data repair. In: Proceedings of the International Conference on Management of Data (SIGMOD), pp. 1223–1226 (2010)
Yao, H., Hamilton, H.J.: Mining functional dependencies from data. Data Min. Knowl. Disc. 16(2), 197–219 (2008)
Zaki, M.J.: Scalable algorithms for association mining. IEEE Trans. Knowl. Data Eng. (TKDE) 12(3), 372–390 (2000)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
Abedjan, Z. (2018). An Introduction to Data Profiling. In: Zimányi, E. (eds) Business Intelligence and Big Data. eBISS 2017. Lecture Notes in Business Information Processing, vol 324. Springer, Cham. https://doi.org/10.1007/978-3-319-96655-7_1
Download citation
DOI: https://doi.org/10.1007/978-3-319-96655-7_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-96654-0
Online ISBN: 978-3-319-96655-7
eBook Packages: Computer ScienceComputer Science (R0)