Abstract
This paper reports on a six-year collaborative effort that culminated in a complete formalization of a proof of the Feit-Thompson Odd Order Theorem in the Coq proof assistant. The formalized proof is constructive, and relies on nothing but the axioms and rules of the foundational framework implemented by Coq. To support the formalization, we developed a comprehensive set of reusable libraries of formalized mathematics, including results in finite group theory, linear algebra, Galois theory, and the theories of the real and complex algebraic numbers.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Appel, K., Haken, W.: Every map is four colourable. Bulletin of the American Mathematial Society 82, 711–712 (1976)
Armand, M., Faure, G., Grégoire, B., Keller, C., Théry, L., Werner, B.: A Modular Integration of SAT/SMT Solvers to Coq through Proof Witnesses. In: Jouannaud, J.-P., Shao, Z. (eds.) CPP 2011. LNCS, vol. 7086, pp. 135–150. Springer, Heidelberg (2011)
Aschbacher, M.: Finite Group Theory. Cambridge Studies in Advanced Mathematics. Cambridge University Press (2000)
Avigad, J.: Type inference in mathematics. Bulletin of the European Association for Theoretical Computer Science, EATCS (106), 78–98 (2012)
Avigad, J., Harrison, J.: Formally verified mathematics. To appear in the Communications of the ACM
Bender, H., Glauberman, G.: Local analysis for the Odd Order Theorem. Number 188 in London Mathematical Society, LNS. Cambridge University Press (1994)
Bertot, Y., Castéran, P.: Interactive theorem proving and program development: Coq’Art: The calculus of inductive constructions. Springer, Berlin (2004)
Bertot, Y., Gonthier, G., Ould Biha, S., Pasca, I.: Canonical big operators. In: Mohamed, O.A., Muñoz, C., Tahar, S. (eds.) TPHOLs 2008. LNCS, vol. 5170, pp. 86–101. Springer, Heidelberg (2008)
Cohen, C.: Construction of real algebraic numbers in coq. In: Beringer, L., Felty, A. (eds.) ITP 2012. LNCS, vol. 7406, pp. 67–82. Springer, Heidelberg (2012)
Cohen, C., Mahboubi, A.: A formal quantifier elimination for algebraically closed fields. In: Autexier, S., Calmet, J., Delahaye, D., Ion, P.D.F., Rideau, L., Rioboo, R., Sexton, A.P. (eds.) AISC 2010. LNCS, vol. 6167, pp. 189–203. Springer, Heidelberg (2010)
Coquand, T., Huet, G.: The calculus of constructions. Information and Computation 76(2-3), 95–120 (1988)
Coquand, T., Paulin-Mohring, C.: Inductively defined types. In: Martin-Löf, P., Mints, G. (eds.) COLOG 1988. LNCS, vol. 417, pp. 50–66. Springer, Heidelberg (1990)
Derksen, H.: The fundamental theorem of algebra and linear algebra. American Mathematical Monthly 100(7), 620–623 (2003)
Feit, W., Thompson, J.G.: Solvability of groups of odd order. Pacific Journal of Mathematics 13(3), 775–1029 (1963)
Garillot, F., Gonthier, G., Mahboubi, A., Rideau, L.: Packaging mathematical structures. In: Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp. 327–342. Springer, Heidelberg (2009)
Gonthier, G.: Formal proof—the Four Color Theorem. Notices of the AMS 55(11), 1382–1393 (2008)
Gonthier, G.: Point-free, set-free concrete linear algebra. In: van Eekelen, M., Geuvers, H., Schmaltz, J., Wiedijk, F. (eds.) ITP 2011. LNCS, vol. 6898, pp. 103–118. Springer, Heidelberg (2011)
Gonthier, G., Mahboubi, A.: An introduction to small scale reflection in Coq. Journal of Formalized Reasoning 3(2), 95–152 (2010)
Gonthier, G., Mahboubi, A., Rideau, L., Tassi, E., Théry, L.: A Modular Formalisation of Finite Group Theory. In: Schneider, K., Brandt, J. (eds.) TPHOLs 2007. LNCS, vol. 4732, pp. 86–101. Springer, Heidelberg (2007)
Gonthier, G., Mahboubi, A., Tassi, E.: A Small Scale Reflection Extension for the Coq system. Rapport de recherche RR-6455, INRIA (2012)
Gonthier, G., Ziliani, B., Nanevski, A., Dreyer, D.: How to make ad hoc proof automation less ad hoc. In: ICFP, pp. 163–175 (2011)
Gorenstein, D.: Finite Groups. AMS Chelsea Publishing Series (2007)
Hales, T.: Formal proof. Notices of the AMS 55(11), 1370–1380 (2008)
Harrison, J.: Without Loss of Generality. In: Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp. 43–59. Springer, Heidelberg (2009)
Hedberg, M.: A coherence theorem for Martin-Löf’s type theory. Journal of Functional Programming 8(4), 413–436 (1998)
Hinze, R.: Fun with phantom types. In: Gibbons, J., de Moor, O. (eds.) The Fun of Programming, Cornerstones of Computing, pp. 245–262 (2003)
Huppert, B., Blackburn, N.: Finite Groups II. Grundlehren Der Mathematischen Wissenschaften. Springer London, Limited (1982)
Isaacs, I.: Character Theory of Finite Groups. AMS Chelsea Pub. Series (1976)
Klein, G., et al.: sel4: Formal verification of an os kernel. In: SOPS ACM SIGOPS, pp. 207–220 (2009)
Konrad, K.: Separability II, http://www.math.uconn.edu/~kconrad/blurbs/galoistheory/separable2.pdf
Kurzweil, H., Stellmacher, B.: The Theory of Finite Groups: An Introduction. Universitext Series. Springer (2010)
Leroy, X.: Formal certification of a compiler back-end, or: programming a compiler with a proof assistant. In: POPL, pp. 42–54. ACM Press (2006)
Mines, R., Richman, F., Ruitenburg, W.: A course in constructive algebra. Universitext (1979). Springer (1988)
Neumann, P.M., Mann, A.J.S., Tompson, J.C.: The collected papers of William Burnside, vol. I. Oxford University Press (2004)
O’Connor, R.: Classical mathematics for a constructive world. Mathematical Structures in Computer Science 21, 861–882 (2011)
Peterfalvi, T.: Character Theory for the Odd Order Theorem. London Mathematical Society, LNS, vol. 272. Cambridge University Press (2000)
Rotman, J.: Galois Theory. Universitext (1979). Springer (1998)
Tarski, A.: A Decision Method for Elementary Algebra and Geometry (1948); 2nd edn. University of California Press, Berkeley (1951)
The Mathematical Component Team. A Formalization of the Odd Order Theorem using the Coq proof assistant (September 2012), http://www.msr-inria.inria.fr/Projects/math-components/feit-thompson
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Gonthier, G. et al. (2013). A Machine-Checked Proof of the Odd Order Theorem. In: Blazy, S., Paulin-Mohring, C., Pichardie, D. (eds) Interactive Theorem Proving. ITP 2013. Lecture Notes in Computer Science, vol 7998. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39634-2_14
Download citation
DOI: https://doi.org/10.1007/978-3-642-39634-2_14
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-39633-5
Online ISBN: 978-3-642-39634-2
eBook Packages: Computer ScienceComputer Science (R0)