Summary
The commonly accepted interpretations ofFermat's method of extreme values tell us that this is a curious method, based on an approximate equality and burdened with several contradictions withinFermat's writings. In this article, both a philological approach taking into account that there is only one manuscript written inFermat's own handwriting and a mathematical approach taking into account that brilliant mathematicians usually are not so very confused when talking about their own central mathematical ideas are combined. A new hypothesis is put forward which renders the mathematics clear and coherent and which does not need the assumption thatFermat was confused. Probably a number of words have been added byCarcavy in two ofFermat's papers.
Similar content being viewed by others
References
Andersen, K. 1980. Techniques of the Calculus 1630–1660. InFrom the Calculus to Set Theory 1630–1910. I.Grattan-Guinness, Ed., pp. 10–48. London: Duckworth.
Andersen, K. 1983. The Mathematical Technique in Fermat's Deduction of the Law of Refraction.Historia Mathematica 10, 48–62.
Baillet, A. 1691.La Vie de Monsieur Des-Cartes. Paris: Horthemels.
Baron, M. 1968.The Origins of the Infinitesimal Calculus. Oxford, Londonetc.: Pergamon Press.
Barrow, I. 1860.The Mathematical Works, second volume. Cambridge: Cambridge University Press.
Belaval, Y. 1978. Note sur l'emploi par Leibniz de l'expression spinoziste d' “Idée adéquate”.Archivio di Filosofia 121–132.
Cajori, F. 1928.A History of Mathematical Notations, vol. 1. La Salle/Illinois: The Open Court Publishing Company.
Cavalieri, B. 1635.Geometria indivisibilibus continuorum Nova quadam ratione promota, liber secundus. Bologna: Ferronius.
Cavalieri, B. 1647.Exercitationes Geometricae Sex. Bologna: Jacobus Montius.
Cifoletti, G. 1991.La méthode de Fermat: son statut et sa diffusion. Paris: Belin.
Debeaune, F. 1661. De Aequationum Natura, Constitutione, et Limitibus Opuscula Duo. E.Bartholin, Ed., in R. Descartes:Geometria, pars secunda. F. vanSchooten, Ed., Amsterdam: Ludwig & Daniel Elsevir.
Descartes, R. 1897.Oeuvres, vol. 1. Ch.Adam & P.Tannery, Ed., Paris: Léopold Cerf.
Descartes, R. 1898.Oeuvres, vol. 2. Ch.Adam & P.Tannery, Ed., Paris: Léopold Cerf.
Diophantus 1575.Rerum Arithmeticarum Libri sex. G.Xylander, Ed., Basel: Eusebius Episcopius & Nicolai Fr. haeredes.
Diophantus 1621.Arithmeticorum libri sex. C. G.Bachet, Ed., Paris: Sebastien Cramoisy.
Diophantus 1890.Die Arithmetik und die Schrift über Polygonalzahlen. G.Wertheim, Ed., Leipzig: Teubner.
Diophantus 1893.Opera omnia cum graecis commentariis, vol. 1. P.Tannery, Ed., Leipzig: Teubner.
Fermat, P. de 1660a.De linearum curvarum cum lineis rectis comparatione dissertatio geometrica. Toulouse: Arnaldus Colomerius.
Fermat, P. de 1660b. Appendix secunda, in A. Lalouvère:Veterum geometria promota in septem de cycloide libris, et in duabus adiectis appendicibus. Toulouse: Arnaldus Colomerius, pp. 390–395.
Fermat, P. de 1679.Varia opera mathematica. Toulouse: Joannes Pech.
Fermat, P. de 1891.Oeuvres, vol. 1. P.Tannery & Ch.Henry, Ed., Paris: Gauthier-Vilars.
Fermat, P. de 1894.Oeuvres, vol. 2. P.Tannery & Ch.Henry, Ed., Paris: Gauthier-Vilars.
Fermat, P. de 1896.Oeuvres, vol. 3. P.Tannery & Ch.Henry, Ed., Paris: Gauthier-Vilars.
Fermat, P. de 1922.Supplément aux Tomes I–IV. C. deWaard, Ed., Paris: Gauthier-Vilars.
Gosselin, G. 1583.De Ratione discendae docendaeque mathematices repetita praelectio. No place given (Paris ?).
Heath, T. L. 1885.Diophantus of Alexandria. Cambridge: Cambridge University Press.
Heath, T. L. 1910.Diophantus of Alexandria. Second edition. Cambridge: Cambridge University Press.
Henry, Ch. 1880. Recherches sur les manuscrits de Pierre de Fermat. Extrait duBollettino di Bibliografia e di Storia delle Scienze Matematiche e Fisiche 12, 1879. Rome: Imprimerie des Sciences Mathématiques et Physiques.
Henry, Ch. 1884. Pierre de Carcavy. Extrait duBollettino di Bibliografia e di Storia delle Scienze Mathematiche e Fisiche 17, 1884. Rome: Imprimerie des Sciences Mathématiques et Physiques.
Hérigone, P. 1644.Cursus Mathematici Tomus Sextus Ac Ultimus sive Supplementum. Paris: Simeon Piget.
Hoffmeister, J. 1955.Wörterbuch der philosophischen Begriffe. Second edition. Hamburg: Meiner.
Huygens, Ch. 1693. Demonstratio regulae de maximis et minimis. InDivers Ouvrages de Mathématique et de Physique Par Messieurs de l'Académie des Sciences, pp. 326–335. Paris: Imprimerie Royale.
Huygens, Ch. 1888.Oeuvres complètes, vol. 1. Den Haag: Martinus Nijhoff.
Huygens, Ch. 1889.Oeuvres complètes, vol. 2. Den Haag: Martinus Nijhoff.
Huygens, Ch. 1890.Oeuvres complètes, vol. 3. Den Haag: Martinus Nijhoff.
Huygens, Ch. 1901.Oeuvres complètes, vol. 9. Den Haag: Martinus Nijhoff.
Huygens, Ch. 1908.Oeuvres complètes, vol. 11. Den Haag: Martinus Nijhoff.
Huygens, Ch. 1910.Oeuvres complètes, vol. 12. Den Haag: Martinus Nijhoff.
Huygens, Ch. 1940.Oeuvres complètes, vol. 20. Den Haag: Martinus Nijhoff.
Itard, J. 1948. Fermat, précurseur du Calcul différentiel.Archives Internationales d'Histoire des Sciences 27, 589–610.
Itard, J. 1975. La lettre de Torricelli à Roberval d'octobre 1643.Revue d'Histoire des Sciences 28, 113–124.
Leibniz, G. W. 1880.Die philosophischen Schriften, vol. 4. C. I.Gerhardt, Ed., Berlin: Weidmann.
Leibniz, G. W. 1890.Die philosophischen Schriften, vol. 7. C. I.Gerhardt, Ed., Berlin: Weidmann.
Mahoney, M. S. 1973.The Mathematical Career of Pierre de Fermat. Princeton: Princeton University Press.
Mersenne, M. 1955.La Correspondance, vol. 4. C. deWaard, Ed., Paris: Presses Universitaire de France.
Oxford Latin Dictionary 1982. Oxford: Clarendon Press.
Pascal, B. 1658.Lettre de A. Dettonville à Monsieur A.D.D.S. en Luy envoyant La Demonstration à la manière des Anciens de l'Egalité des Lignes Spirale et Parabolique. Paris: Desprez.
Schooten, F. van 1659. In Geometriam Renati des Cartes Commentarii. In R. Descartes:Geometria. F. vanSchooten, Ed., Amsterdam: Ludwig & Daniel Elsevir.
Spinoza, B. de 1925.Opera. 4 volumes. C.Gebhardt, Ed., Heidelberg: Carl Winter.
Strømholm, P. 1968/69. Fermat's Methods of Maxima and Minima and of Tangents.Archive for History of Exact Sciences 5, 47–69.
Thesaurus Linguae Latinae 1900, vol. 1. Leipzig: Teubner.
Thesaurus Graecae Linguae 1842–1847, vol 6. Paris: Firmin Didot.
Toulouse Bibliothèque Municipale. Manuscript 1531: Fermat: Miscellanea di cose mathematiche. Copies du XVIIe siècle d'oeuvres de divers savants dont Fermat, Descartes, Michel Angelo Ricci auteur de ces copies.
Viète, F. 1646.Opera Mathematica. F. vanSchooten, Ed., Leiden: Bonaventura & Abraham Elzevir.
Wallis, J. 1658.Commercium epistolicum de Quaestionibus quibusdam Mathematicis nuper habitum. Oxford: Robinson.
Wieleitner, H. 1929. Bemerkungen zu Fermats Methode der Aufsuchung von Extremwerten und der Bestimmung von Kurventangenten.Jahresbericht der Deutschen Mathematiker-Vereinigung 38, 24–35.
Zeuthen, H. G. 1903.Geschichte der Mathematik im 16. und 17. Jahrhundert. Leipzig: Teubner.
Author information
Authors and Affiliations
Additional information
Communicated by M.Folkerts
Rights and permissions
About this article
Cite this article
Breger, H. The mysteries of adaequare: A vindication of fermat. Arch. Hist. Exact Sci. 46, 193–219 (1994). https://doi.org/10.1007/BF01686277
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF01686277