!!! This is a SiteProxy proxied website, do not enter your personal information. Refer to: https://github.com/netptop/siteproxy for details !!!×
Skip to main content
Log in

Quantity discrimination in Tenebrio molitor: evidence of numerosity discrimination in an invertebrate?

  • Original Paper
  • Published:
Animal Cognition Aims and scope Submit manuscript

Abstract

Numerosity discrimination, the ability to distinguish between sets with more and less items, is recognised as the foundation for higher numerical abilities. Understanding numerosity discrimination from a comparative perspective is hence pivotal in tracing the evolution of numerical representation systems. However, numerosity discrimination has been well studied only in vertebrates, where two innate systems of number representation have been described: an ‘analog magnitude system’ used to discriminate among numerosities by representing them as cardinal magnitudes and a ‘parallel individualisation system’ that allows precise discrimination among small arrays of items (≤4) by representing objects individually. We investigated the existence of quantity discrimination in an insect species (Tenebrio molitor) by using a spontaneous two-choice procedure in which males were exposed to substrates bearing odours from different numbers of females (≤4) in increasing numerosity ratios (1:4, 1:3 and 1:2). We show that males can discriminate sources of odours reflecting 1 versus 4 and 1 versus 3 females, but not 2 versus 4 or 1 versus 2, indicating that T. molitor males exhibit a marked preference for sources reflecting more female donors only when numerosity ratios are below 1:2. We discuss the functional significance of this finding and whether our pattern of results could be best explained by summation of a non-numerical continuous variable or by the existence of a numerosity discrimination mechanism with an operational signature ratio of 1:2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Agrillo C, Dadda M (2007) Discrimination of the larger shoal in the poeciliid fish Girardinus falcatus. Ethol Ecol & Evol 19:145–157

    Google Scholar 

  • Agrillo C, Dadda M, Bisazza A (2007) Quantity discrimination in female mosquitofish. Anim Cogn 10:63–70

    Article  PubMed  Google Scholar 

  • Barner D, Wood J, Hauser M, Carey S (2008) Evidence for a non-linguistic distinction between singular and plural sets in rhesus monkeys. Cognition 107:603–622

    Article  PubMed  Google Scholar 

  • Beauchamp G (2003) Group-size effects on vigilance: a search for mechanisms. Behav Proc 63:111–121

    Article  Google Scholar 

  • Bekoff M, Allen C, Burghardt GM (2002) The cognitive animal: empirical and theoretical perspectives on animal cognition. The MIT Press, Cambridge

    Google Scholar 

  • Bhattacharya AK, Ameel JJ, Waldbauer GP (1970) A method for sexing living pupal and adult yellow mealworms. Ann Entomol Soc Am 63:1783

    Google Scholar 

  • Boisvert MJ, Sherry DF (2006) Interval timing by an invertebrate, the bumble bee Bombus impatiens. Curr Biol 16:1636–1640

    Article  PubMed  CAS  Google Scholar 

  • Brannon EM, Terrace HS (2002) The evolution and ontogeny of ordinal numerical ability. In: Bekoff M, Allen C, Burghardt GM (eds) The cognitive animal: empirical and theoretical perspectives on animal cognition. The MIT Press, Cambridge, pp 197–204

    Google Scholar 

  • Brown WD (1990) Size-assortative mating in the blister beetle Lytta magister (Coleoptera: meloidae) is due to male and female preference for larger mates. Anim Behav 40:901–909

    Article  Google Scholar 

  • Buckingham JN, Wong BBM, Rosenthal GG (2007) Shoaling decisions in female swordtails: how do fish gauge group size? Behaviour 144:1333–1346

    Article  Google Scholar 

  • Butterworth B (1999) The mathematical brain. Macmillan, London

    Google Scholar 

  • Carazo P, Sanchez E, Font E, Desfilis E (2004) Chemosensory cues allow male Tenebrio molitor beetles to asses the reproductive status of potential mates. Anim Behav 68:123–129

    Article  Google Scholar 

  • Carazo P, Font E, Alfthan B (2007) Chemical assessment of sperm competition levels and the evolution of internal spermatophore guarding. Proc R Soc B 274:261–267

    Article  PubMed  CAS  Google Scholar 

  • Chen L, Zhang S, Srinivasan MV (2003) Global perception in small brains: topological pattern recognition in honey bees. PNAS 100:6884–6889

    Article  PubMed  CAS  Google Scholar 

  • Chittka L, Brockmann A (2005) Perception space—the final frontier. PLoS Biol 3:0564–0568

    Article  CAS  Google Scholar 

  • Chittka L, Geiger K (1995) Can honey bees count landmarks? Anim Behav 49:159–164

    Article  Google Scholar 

  • Cleveland WS (1993) Visualizing data. Hobart Press, Summit

    Google Scholar 

  • D’Ettorre P, Heinze J (2005) Individual recognition in ant queens. Curr Biol 15:2170–2174

    Article  PubMed  Google Scholar 

  • Dacke M, Srinivasan MV (2008) Evidence for counting in insects. Anim Cogn 11:683–689

    Article  PubMed  Google Scholar 

  • Dehaene S (1997) The number sense: how the mind creates mathematics. Oxford University Press, Oxford

    Google Scholar 

  • Dehaene S, Dehaene-Lambertz G, Cohen L (1998) Abstract representations of numbers in the animal and human brain. TINS 21:355–361

    PubMed  CAS  Google Scholar 

  • Drnevich JM (2003) Number of mating males and mating interval affect last-male sperm precedence in Tenebrio molitor L. Anim Behav 66:349–357

    Article  Google Scholar 

  • Drnevich JM, Hayes EF, Rutowski RL (2000) Sperm precedence, mating interval and a novel mechanism of paternity bias in a beetle (Tenebrio molitor L.). Behav Ecol Sociobiol 48:447–451

    Article  Google Scholar 

  • Farnsworth GL, Smolinski JL (2006) Numerical discrimination by wild northern mockingbirds. Condor 108:953–957

    Article  Google Scholar 

  • Feigenson L, Dehaene S, Spelke E (2004) Core systems of number. TICS 8:307–314

    Google Scholar 

  • Ferkin MH, Pierce AA, Sealand RO, delBarco-Trillo J (2005) Meadow voles, Microtus pennsylvanicus, can distinguish more over-marks from fewer over-marks. Anim Cogn 8:182–189

    Article  PubMed  Google Scholar 

  • Franks NR, Dornhaus A, Metherell BG, Nelson TR, Lanfear SA, Symes WS (2006) Not everything that counts can be counted: ants use multiple metrics for a single nest trait. Proc R Soc B 273:165–169

    Article  PubMed  Google Scholar 

  • Gage MJG, Baker RR (1991) Ejaculate size varies with socio-sexual situation in an insect. Ecol Entomol 16:331–337

    Article  Google Scholar 

  • Gallistel CR, Gelman R (2000) Non-verbal numerical cognition: from the reals to the integers. TICS 4:59–65

    Google Scholar 

  • Griffith OL (2001) The effect of mating on the pheromone system of the yellow mealworm beetle, Tenebrio molitor. Honours Thesis, University of Winnipeg

  • Happ GM (1969) Multiple sex pheromones of the mealworm beetle, Tenebrio molitor L. Nature 222:180–181

    Article  PubMed  CAS  Google Scholar 

  • Happ GM, Wheeler J (1969) Bioassay, preliminary purification and effect of age, crowding and mating in the release of sex pheromone by female Tenebrio molitor. Ann Entomol Soc Am 62:846–851

    CAS  Google Scholar 

  • Hauser M (2000) What do animals think about numbers? Am Sci 88:76–83

    Google Scholar 

  • Hauser MD, Spelke E (2004) Evolutionary and developmental foundations of human knowledge: a case study of mathematics. In: Gazzaniga MS (ed) The cognitive neurosciences III. The MIT Press, Cambridge, pp 853–864

    Google Scholar 

  • Hauser MD, Carey S, Hauser LB (2000) Spontaneous number representation in semi-free-ranging rhesus monkeys. Proc R Soc Lond B 267:829–833

    Article  CAS  Google Scholar 

  • Hauser MD, Tsao F, Garcia P, Spelke E (2003) Evolutionary foundations of number: spontaneous representation of numerical magnitudes by cotton-top tamarins. Proc R Soc Lond B 270:1441–1446

    Article  Google Scholar 

  • Holm S (1979) A simple sequentially rejective multiple test procedure. Scand J Statist 6:65–70

    Google Scholar 

  • Honig WK, Stewart KE (1989) Discrimination of relative numerosity by pigeons. Anim Learn Behav 17:134–146

    Google Scholar 

  • Karban R, Black CA, Weinbaum SA (2000) How 17-year cicadas keep track of time. Ecol Let 3:253–256

    Article  Google Scholar 

  • Lipton JS, Spelke ES (2003) Origins of number sense: large-number discrimination in human infants. Psych Sci 14:396–401

    Article  Google Scholar 

  • Lyon BE (2003) Egg recognition and counting reduce costs of avian conspecific brood parasitism. Nature 422:495–499

    Article  PubMed  CAS  Google Scholar 

  • McComb K, Packer C, Pusey A (1994) Roaring and numerical assessment in contests between groups of female lions, Panthera leo. Anim Behav 47:379–387

    Article  Google Scholar 

  • Meck WH, Church RM (1983) A mode control model of counting and timing processes. J Exp Psychol Anim Behav Process 9:320–334

    Article  PubMed  CAS  Google Scholar 

  • Meck WH, Church RM, Gibbon J (1985) Temporal integration in duration and number discrimination. J Exp Psychol Anim Behav Process 11:591–597

    Article  PubMed  CAS  Google Scholar 

  • Menzel R, Brembs B, Giurfa M (2007) Cognition in invertebrates. In: Strausfeld NJ, Bullock TH (eds) Evolution of nervous systems in invertebrates, vol 11. Elsevier, Amsterdam, pp 403–442

    Google Scholar 

  • Moyer RS, Landauer TK (1967) Time required for judgements of numerical inequality. Nature 215:1519–1520

    Article  PubMed  CAS  Google Scholar 

  • Pepperberg IM (2006) Grey parrot numerical competence: a review. Anim Cogn 9:377–391

    Article  PubMed  Google Scholar 

  • Rantala MJ, Kortet R, Kotiaho JS, Vainikka A, Suhonen J (2003) Condition dependence of pheromones and immune function in the grain beetle Tenebrio molitor. Func Ecol 17:534–540

    Article  Google Scholar 

  • Roberts W (1997) Principles of animal cognition. McGraw-Hill, New York

    Google Scholar 

  • Rugani R, Regolin L, Vallortigara G (2007) Rudimental numerical competence in 5-day-old domestic chicks (Gallus gallus): identification of ordinal position. J Exp Psych 33:21–31

    Google Scholar 

  • Shettleworth SJ (1998) Cognition, evolution and behaviour. Oxford University Press, Oxford

    Google Scholar 

  • Siegel S, Castellan NJJ (1989) Nonparametric statistics for the behavioral sciences. McGraw-Hill, New York

    Google Scholar 

  • Skorupski P, Chittka L (2006) Animal cognition: an insect’s sense of time? Curr Biol 16:1636–1640

    Article  Google Scholar 

  • Tanaka Y, Honda H, Ohsawa K, Yamamoto I (1986) A sex attractant of the yellow mealworm, Tenebrio molitor L. and its role in the mating behavior. J Pesticide Sci 11:49–55

    CAS  Google Scholar 

  • Tegeder RW, Krause J (1995) Density dependence and numerosity in fright stimulated aggregation behaviour of shoaling fish. Phil Trans R Soc Lond B 350:381–390

    Article  Google Scholar 

  • Thom MD, Hurst JL (2004) Individual recognition by scent. Ann Zool Fennici 41:765–787

    Google Scholar 

  • Thomas ML, Simmons LW (2009) Male-derived cuticular hydrocarbons signal sperm competition intensity and affect ejaculate expenditure in crickets. Proc R Soc B 276:383–388

    Article  PubMed  Google Scholar 

  • Trick LM, Pylyshyn ZW (1994) Why are small and large numbers enumerated differently? A limited-capacity preattentive stage in vision. Psychol Rev 101:80–102

    Article  PubMed  CAS  Google Scholar 

  • Tschinkel W, Willson C, Bern HA (1967) Sex pheromone of the mealworm beetle (Tenebrio molitor). J Exp Zool 164:81–86

    Article  PubMed  CAS  Google Scholar 

  • Uller C, Jaeger R, Guidry G, Martin C (2003) Salamanders (Plethodon cinereus) go for more: rudiments of number in an amphibian. Anim Cogn 6:105–112

    PubMed  Google Scholar 

  • Wittlinger M, Wehner R, Wolf H (2006) The ant odometer: stepping on stilts and stumps. Science 312:1965–1967

    Article  PubMed  CAS  Google Scholar 

  • Worden BD, Parker PG, Pappas PW (2000) Parasites reduce attractiveness and reproductive success in male grain beetles. Anim Behav 59:543–550

    Article  PubMed  Google Scholar 

  • Wyatt TD (2003) Pheromones and animal behaviour. Cambridge University Press, Cambridge

    Google Scholar 

  • Wynn K (1998) Psychological foundations of number: numerical competence in human infants. TICS 2:296–302

    Google Scholar 

  • Xu F (2003) Numerosity discrimination in infants: evidence for two systems of representations. Cognition 89:B15–B25

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to M.D. Hauser, R. Menzel and three anonymous referees for their insightful criticisms and comments on a previous version of this manuscript. We also wish to thank Carlos Sampedro for his help in the maintenance of insect cultures. P.C. was supported by a research grant (FPU) from the Ministerio de Educación y Ciencia of Spain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Carazo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carazo, P., Font, E., Forteza-Behrendt, E. et al. Quantity discrimination in Tenebrio molitor: evidence of numerosity discrimination in an invertebrate?. Anim Cogn 12, 463–470 (2009). https://doi.org/10.1007/s10071-008-0207-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10071-008-0207-7

Keywords