Skip to main content

Advertisement

Log in

Lovelock tensor as generalized Einstein tensor

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

We show that the splitting feature of the Einstein tensor, as the first term of the Lovelock tensor, into two parts, namely the Ricci tensor and the term proportional to the curvature scalar, with the trace relation between them is a common feature of any other homogeneous terms in the Lovelock tensor. Motivated by the principle of general invariance, we find that this property can be generalized, with the aid of a generalized trace operator which we define, for any inhomogeneous Euler–Lagrange expression that can be spanned linearly in terms of homogeneous tensors. Then, through an application of this generalized trace operator, we demonstrate that the Lovelock tensor analogizes the mathematical form of the Einstein tensor, hence, it represents a generalized Einstein tensor. Finally, we apply this technique to the scalar Gauss–Bonnet gravity as an another version of string–inspired gravity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Weyl, H.: Gravitation und Elektrizität. Preuss. Akad. Wiss. Berlin Sitz. 465–480 (1918)

  2. Weyl H. (1919). Eine neue Erweiterung der Relativitätstheorie. Ann. der Phys. 59: 101–133

    Article  ADS  Google Scholar 

  3. Weyl, H.: Raum-Zeit-Materie, (Springer-Verlag, Berlin, 1st ed. 1918, 4th ed. 1921). Its English version (of the 4th ed.) is: Space-Time-Matter, translated by: H. L. Brose (Dover Publications, New York, 1st ed. 1922, reprinted 1950)

  4. Weyl H. (1921). Über die physikalischen Grundlagen der erweiterten Relativitätstheorie. Phys. Zeitschr. 22: 473–480

    Google Scholar 

  5. Eddington, A.: The Mathematical Theory of Relativity. (Cambridge University Press, 1st ed. 1923, 2nd ed. 1924, Chelsee Publishing Co., New York, 1975)

  6. Farhoudi, M.: Non–linear Lagrangian Theories of Gravitation. Ph.D. Thesis. Queen Mary & Westfield College, University of London (1995)

  7. Wheeler J.A. (1968). Einstein’s Vision. Springer, Berlin

    Google Scholar 

  8. Utiyama R. and DeWitt B.S. (1962). Renormalization of a classical gravitational interacting with quantized matter fields. J. Math. Phys. 3: 608–618

    Article  ADS  MATH  MathSciNet  Google Scholar 

  9. Birrell N.D. and Davies P.C.W. (1982). Quantum Fields in Curved Space. Cambridge University Press, London

    MATH  Google Scholar 

  10. Buchbinder I.L., Odintsov S.D. and Shapiro I.L. (1992). Effective Action in Quantum Gravity. Institute of Physics Publishing, Bristol

    Google Scholar 

  11. Stelle K.S. (1977). Renormalization of higher derivative quantum gravity. Phys. Rev. D16: 953–969

    ADS  MathSciNet  Google Scholar 

  12. Fradkin E.S. and Tseytalin A.A. (1982). Renormalizable asymptotically free quantum theory of gravity. Nucl. Phys. B201: 469–491

    Article  ADS  Google Scholar 

  13. Stelle K.S. (1978). Classical gravity with higher derivatives. Gen. Rel. Grav. 9: 353–371

    Article  ADS  MathSciNet  Google Scholar 

  14. Zwiebach B. (1985). Curvature squared terms and string theories. Phys. Lett. 156B: 315–317

    ADS  Google Scholar 

  15. Zumino B. (1986). Gravity theories in more than four dimensions. Phys. Rev. 137: 109–114

    MathSciNet  Google Scholar 

  16. Lovelock D. (1971). The Einstein tensor and its generalizations. J. Math. Phys. 12: 498–501

    Article  ADS  MATH  MathSciNet  Google Scholar 

  17. Lovelock D. (1972). The four dimensionality of space and the Einstein tensor. J. Math. Phys. 13: 874–876

    Article  ADS  MATH  MathSciNet  Google Scholar 

  18. Briggs, C.C.: Some possible features of general expressions for Lovelock tensors and for the coefficients of Lovelock Lagrangians up to the 15th order in curvature (and beyond), gr-qc/9808050

  19. Misner C.W., Thorne K.S. and Wheeler J.A. (1973). Gravitation. W. H. Freeman & Company, San Francisco

    Google Scholar 

  20. Isham, C.J.: Quantum gravity. In: MacCallum M.A.H. (ed.) Proc. 11th General Relativity and Gravitation, Stockholm, 1986, pp. 99–129. Cambridge University Press, London (1987)

  21. Farhoudi M. (2006). On higher order gravities, their analogy to GR and dimensional dependent version of Duff’s trace anomaly relation. Gen. Rel. Grav. 38: 1261–1284

    Article  ADS  MATH  MathSciNet  Google Scholar 

  22. Nojiri S. and Odintsov S.D. (2007). Introduction to modified gravity and gravitational alternative for dark energy. Int. J. Geom. Meth. Mod. Phys. 4: 115–146

    Article  MATH  MathSciNet  Google Scholar 

  23. Farhoudi M. (2005). Classical trace anomaly. Int. J. Mod. Phys. D14: 1233–1250

    ADS  MathSciNet  Google Scholar 

  24. Gottlöber S., Schmidt H.-J. and Starobinsky A.A. (1990). Sixth–order gravity and conformal transformations. Class. Quant. Grav. 7: 893–900

    Article  ADS  MATH  Google Scholar 

  25. Berkin A.L. and Maeda K. (1990). Effects of R 3 and RR terms on R 2 inflation. Phys. Lett. B245: 348–354

    ADS  MathSciNet  Google Scholar 

  26. Buchdahl H.A. (1962). On the gravitational field equations arising from the square of a Gaussian curvature. Nuovo Cim. 23: 141–157

    Article  MathSciNet  Google Scholar 

  27. Bicknell G.V. (1974). Non–viability of gravitational theory based on a quadratic Lagrangian. J. Phys. A: Math. Nucl. Gen. 7: 1061–1069

    Article  ADS  Google Scholar 

  28. Stelle K.S. (1978). Classical gravity with higher derivatives. Gen. Rel. Grav. 9: 353–371

    Article  ADS  MathSciNet  Google Scholar 

  29. Maluf W. (1987). Conformal invariance and torsion in general relativity. Gen. Rel. Grav. 19: 57–71

    Article  ADS  MATH  MathSciNet  Google Scholar 

  30. Dadhich, N.: On the derivation of the gravitational dynamics. gr-qc/0802.3034

  31. Farhoudi, M. New derivation of Weyl invariants in six dimensions. Work in progress

  32. Magnano G., Ferraris M. and Francaviglia M. (1987). Non–linear gravitational Lagrangians. Gen. Rel. Grav. 19: 465–479

    Article  ADS  MATH  MathSciNet  Google Scholar 

  33. Magnano G., Ferraris M. and Francaviglia M. (1990). Legendre transformation and dynamical structure of higher derivative gravity. Class. Quant. Grav. 7: 557–570

    Article  ADS  MATH  MathSciNet  Google Scholar 

  34. Sirousse Zia H. (1994). Singularity theorems and the general relativity + additional matter fields formulation of metric theories of gravitation. Gen. Rel. Grav. 26: 587–597

    Article  ADS  MATH  MathSciNet  Google Scholar 

  35. Barrow J.D. and Cotsakis S. (1988). Inflation and the conformal structure of higher order gravity theories. Phys. Lett. B214: 515–518

    ADS  MathSciNet  Google Scholar 

  36. Hindawi A., Ovrut B.A. and Waldram D. (1996). Non–trivial vacua in higher derivative gravitation. Phys. Rev. D53: 5597–5608

    ADS  MathSciNet  Google Scholar 

  37. Farhoudi, M.: Lovelock metric as a generalized metric. work in progress

  38. Duff M.J. (1977). Observations on conformal anomalies. Nucl. Phys. B125: 334–348

    Article  ADS  Google Scholar 

  39. Nojiri S., Odintsov S.D. and Sasaki M. (2005). Gauss–Bonnet dark energy. Phys. Rev. D71: 123509

    ADS  Google Scholar 

  40. Cognola, G., Elizalde, E., Nojiri, S., Odintsov, S.D., Zerbini, S.: String–inspired Gauss–Bonnet gravity reconstructed from the universe expansion history and yielding the transition from matter dominance to dark energy. hep-th/0611198

  41. Koivisto T. and Mota D.F. (2007). Cosmology and astrophysical constraints of Gauss–Bonnet dark energy. Phys. Lett. B644: 104–108

    ADS  MathSciNet  Google Scholar 

  42. Tsujikawa S. and Sami M. (2007). String–inspired cosmology: a late time transition from scaling matter era to dark energy universe caused by a Gauss–Bonnet coupling. JCAP 01: 006

    ADS  Google Scholar 

  43. Sami M., Toporensky A., Tretjakov P.V. and Tsujikawa S. (2005). The fate of (phantom) dark energy universe with string curvature corrections. Phys. Lett. B619: 193–200

    ADS  Google Scholar 

  44. Nojiri S., Odintsov S.D. and Sami M. (2006). Dark energy cosmology from higher–order string–inspired gravity and its reconstruction. Phys. Rev. D74: 046004

    ADS  Google Scholar 

  45. Calcagni G., Tsujikawa S. and Sami M. (2005). Dark energy and cosmological solutions in second–order string gravity. Class. Quant. Grav. 22: 3977–4006

    Article  ADS  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehrdad Farhoudi.

Additional information

This work was partially supported by a grant from the MSRT/Iran.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Farhoudi, M. Lovelock tensor as generalized Einstein tensor. Gen Relativ Gravit 41, 117–129 (2009). https://doi.org/10.1007/s10714-008-0658-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10714-008-0658-9

Keywords