Abstract
We show that the splitting feature of the Einstein tensor, as the first term of the Lovelock tensor, into two parts, namely the Ricci tensor and the term proportional to the curvature scalar, with the trace relation between them is a common feature of any other homogeneous terms in the Lovelock tensor. Motivated by the principle of general invariance, we find that this property can be generalized, with the aid of a generalized trace operator which we define, for any inhomogeneous Euler–Lagrange expression that can be spanned linearly in terms of homogeneous tensors. Then, through an application of this generalized trace operator, we demonstrate that the Lovelock tensor analogizes the mathematical form of the Einstein tensor, hence, it represents a generalized Einstein tensor. Finally, we apply this technique to the scalar Gauss–Bonnet gravity as an another version of string–inspired gravity.
Similar content being viewed by others
References
Weyl, H.: Gravitation und Elektrizität. Preuss. Akad. Wiss. Berlin Sitz. 465–480 (1918)
Weyl H. (1919). Eine neue Erweiterung der Relativitätstheorie. Ann. der Phys. 59: 101–133
Weyl, H.: Raum-Zeit-Materie, (Springer-Verlag, Berlin, 1st ed. 1918, 4th ed. 1921). Its English version (of the 4th ed.) is: Space-Time-Matter, translated by: H. L. Brose (Dover Publications, New York, 1st ed. 1922, reprinted 1950)
Weyl H. (1921). Über die physikalischen Grundlagen der erweiterten Relativitätstheorie. Phys. Zeitschr. 22: 473–480
Eddington, A.: The Mathematical Theory of Relativity. (Cambridge University Press, 1st ed. 1923, 2nd ed. 1924, Chelsee Publishing Co., New York, 1975)
Farhoudi, M.: Non–linear Lagrangian Theories of Gravitation. Ph.D. Thesis. Queen Mary & Westfield College, University of London (1995)
Wheeler J.A. (1968). Einstein’s Vision. Springer, Berlin
Utiyama R. and DeWitt B.S. (1962). Renormalization of a classical gravitational interacting with quantized matter fields. J. Math. Phys. 3: 608–618
Birrell N.D. and Davies P.C.W. (1982). Quantum Fields in Curved Space. Cambridge University Press, London
Buchbinder I.L., Odintsov S.D. and Shapiro I.L. (1992). Effective Action in Quantum Gravity. Institute of Physics Publishing, Bristol
Stelle K.S. (1977). Renormalization of higher derivative quantum gravity. Phys. Rev. D16: 953–969
Fradkin E.S. and Tseytalin A.A. (1982). Renormalizable asymptotically free quantum theory of gravity. Nucl. Phys. B201: 469–491
Stelle K.S. (1978). Classical gravity with higher derivatives. Gen. Rel. Grav. 9: 353–371
Zwiebach B. (1985). Curvature squared terms and string theories. Phys. Lett. 156B: 315–317
Zumino B. (1986). Gravity theories in more than four dimensions. Phys. Rev. 137: 109–114
Lovelock D. (1971). The Einstein tensor and its generalizations. J. Math. Phys. 12: 498–501
Lovelock D. (1972). The four dimensionality of space and the Einstein tensor. J. Math. Phys. 13: 874–876
Briggs, C.C.: Some possible features of general expressions for Lovelock tensors and for the coefficients of Lovelock Lagrangians up to the 15th order in curvature (and beyond), gr-qc/9808050
Misner C.W., Thorne K.S. and Wheeler J.A. (1973). Gravitation. W. H. Freeman & Company, San Francisco
Isham, C.J.: Quantum gravity. In: MacCallum M.A.H. (ed.) Proc. 11th General Relativity and Gravitation, Stockholm, 1986, pp. 99–129. Cambridge University Press, London (1987)
Farhoudi M. (2006). On higher order gravities, their analogy to GR and dimensional dependent version of Duff’s trace anomaly relation. Gen. Rel. Grav. 38: 1261–1284
Nojiri S. and Odintsov S.D. (2007). Introduction to modified gravity and gravitational alternative for dark energy. Int. J. Geom. Meth. Mod. Phys. 4: 115–146
Farhoudi M. (2005). Classical trace anomaly. Int. J. Mod. Phys. D14: 1233–1250
Gottlöber S., Schmidt H.-J. and Starobinsky A.A. (1990). Sixth–order gravity and conformal transformations. Class. Quant. Grav. 7: 893–900
Berkin A.L. and Maeda K. (1990). Effects of R 3 and R □ R terms on R 2 inflation. Phys. Lett. B245: 348–354
Buchdahl H.A. (1962). On the gravitational field equations arising from the square of a Gaussian curvature. Nuovo Cim. 23: 141–157
Bicknell G.V. (1974). Non–viability of gravitational theory based on a quadratic Lagrangian. J. Phys. A: Math. Nucl. Gen. 7: 1061–1069
Stelle K.S. (1978). Classical gravity with higher derivatives. Gen. Rel. Grav. 9: 353–371
Maluf W. (1987). Conformal invariance and torsion in general relativity. Gen. Rel. Grav. 19: 57–71
Dadhich, N.: On the derivation of the gravitational dynamics. gr-qc/0802.3034
Farhoudi, M. New derivation of Weyl invariants in six dimensions. Work in progress
Magnano G., Ferraris M. and Francaviglia M. (1987). Non–linear gravitational Lagrangians. Gen. Rel. Grav. 19: 465–479
Magnano G., Ferraris M. and Francaviglia M. (1990). Legendre transformation and dynamical structure of higher derivative gravity. Class. Quant. Grav. 7: 557–570
Sirousse Zia H. (1994). Singularity theorems and the general relativity + additional matter fields formulation of metric theories of gravitation. Gen. Rel. Grav. 26: 587–597
Barrow J.D. and Cotsakis S. (1988). Inflation and the conformal structure of higher order gravity theories. Phys. Lett. B214: 515–518
Hindawi A., Ovrut B.A. and Waldram D. (1996). Non–trivial vacua in higher derivative gravitation. Phys. Rev. D53: 5597–5608
Farhoudi, M.: Lovelock metric as a generalized metric. work in progress
Duff M.J. (1977). Observations on conformal anomalies. Nucl. Phys. B125: 334–348
Nojiri S., Odintsov S.D. and Sasaki M. (2005). Gauss–Bonnet dark energy. Phys. Rev. D71: 123509
Cognola, G., Elizalde, E., Nojiri, S., Odintsov, S.D., Zerbini, S.: String–inspired Gauss–Bonnet gravity reconstructed from the universe expansion history and yielding the transition from matter dominance to dark energy. hep-th/0611198
Koivisto T. and Mota D.F. (2007). Cosmology and astrophysical constraints of Gauss–Bonnet dark energy. Phys. Lett. B644: 104–108
Tsujikawa S. and Sami M. (2007). String–inspired cosmology: a late time transition from scaling matter era to dark energy universe caused by a Gauss–Bonnet coupling. JCAP 01: 006
Sami M., Toporensky A., Tretjakov P.V. and Tsujikawa S. (2005). The fate of (phantom) dark energy universe with string curvature corrections. Phys. Lett. B619: 193–200
Nojiri S., Odintsov S.D. and Sami M. (2006). Dark energy cosmology from higher–order string–inspired gravity and its reconstruction. Phys. Rev. D74: 046004
Calcagni G., Tsujikawa S. and Sami M. (2005). Dark energy and cosmological solutions in second–order string gravity. Class. Quant. Grav. 22: 3977–4006
Author information
Authors and Affiliations
Corresponding author
Additional information
This work was partially supported by a grant from the MSRT/Iran.
Rights and permissions
About this article
Cite this article
Farhoudi, M. Lovelock tensor as generalized Einstein tensor. Gen Relativ Gravit 41, 117–129 (2009). https://doi.org/10.1007/s10714-008-0658-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10714-008-0658-9