Skip to main content
Log in

Upper limits on the cosmological gravitational wave background and maser clocks in space

  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

We consider the possibility of detecting gravitational waves through the measurement of a time varying phase shift using a hydrogen maser clock on a satellite. Such measurements enable us to put interesting upper limits on the contribution of the gravitational-wave background to the dimensionless density of the Universe. The requirements on residual accelerations and the sensitivity of an accelerometer on the spacecraft are shown to be realistic and could be achieved using the accelerometer technology developed by ONERA for the ARISTOTELES mission. Such an experiment placing upper limits on the cosmological gravitational wave background could be conducted using the proposed Russian satellite “Millimetron”.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dautcourt, G. (1969).Mon. Not. R. Astr. Soc. 144, 255.

    Google Scholar 

  2. Rees, M. J. (1971).Mon. Not. R. Astr. Soc. 154, 187.

    Google Scholar 

  3. Dautcourt, G. (1974). InConfrontation of Cosmological Theories with Observational Data, M. S. Longair, ed. (Reidel, Dordrecht).

    Google Scholar 

  4. Grishchuk, L. P. (1974).Zh.E.T.F. 67, 825.

    Google Scholar 

  5. Zel'dovich, Ya. B., Novikov, I. D. (1975).The Structure and Evolution of the Universe (Nauka, Moscow).

    Google Scholar 

  6. Doroshkevich, A. G., Novikov, I. D., and Polnarev, A. G. (1977). InProc. Symp. Experimental Gravitations, Pavia, Italy, Atti dei Convegni Lincei 34, 91.

    Google Scholar 

  7. Sazhin, M. V. (1978).Astron. J. 55, 65.

    Google Scholar 

  8. Starobinsky, A. A. (1979).Pis'ma Astron. 3, 719.

    Google Scholar 

  9. Starobinsky, A. A. (1979).Pis'ma Astron. 9, 579.

    Google Scholar 

  10. Detweiler, S. (1979).Astrophys. J. 234, 1100.

    Google Scholar 

  11. Bertotti, B., and Carr, B. J., (1980).Astrophys. J. 236, 100.

    Google Scholar 

  12. Mashhoon, B., and Grishchuk, L. P. (1980).Astrophys. J. 236, 990.

    Google Scholar 

  13. Carr, B. J. (1980).Astron. Astrophys. 89, 6.

    Google Scholar 

  14. Starobinsky, A. A. (1985).Pis'ma Astron. 11, 3232.

    Google Scholar 

  15. Deryagin, D. V., et al. (1986).Mod. Phys. Lett. A1, 593.

    Google Scholar 

  16. Deryagin, D. V., Sazhin, M. V., and Veryaskin, A. V. (1987).Phys. Lett. 115B, 189.

    Google Scholar 

  17. Romani, R. W. (1988).Phys. Lett. B215, 477.

    Google Scholar 

  18. Dolgov, A. D., Sazhin, M. V., and Zel'dovich, Ya. B. (1990).Modern Cosmology (Editions Frontières, Gif-sur-Yvette, France).

    Google Scholar 

  19. Demianski, M., Polnarev, A. G., and Naselsky, P. D. (1993).Phys. Rev. D 47, 5275.

    Google Scholar 

  20. Hellings, R. W. (1981).Phys. Rev. D 23, 832.

    Google Scholar 

  21. Mashhoon, B. (1982).Mon. Not. R. Astr. Soc. 199, 659.

    Google Scholar 

  22. Bertotti, B., Carr, B. J., and Rees, M. J. (1983).Mon. Not. R. Astr. Soc. 203, 945.

    Google Scholar 

  23. Romani, R. W., and Taylor, J. H. (1983).Astrophys. J. 265, L35.

    Google Scholar 

  24. Hellings, R. W., and Downs, G. S. (1983).Astrophys. J. 265, L39.

    Google Scholar 

  25. Fabri, R., and Polack, M. D. (1983).Phys. Lett. 125B, 445.

    Google Scholar 

  26. Hogan, C. J., and Rees, J. M. (1984).Nature 311, 109.

    Google Scholar 

  27. Adams, P. J., Hellings, R. W., and Zimmerman, R. L. (1984).Astrophys. J. 280, L39.

    Google Scholar 

  28. Anderson, J. D., and Mashhoon, B. (1985).Astrophys. J. 290, 445.

    Google Scholar 

  29. Polnarev, A. G. (1985).Soviet Astronomy 29, 607.

    Google Scholar 

  30. Carr, B. J. (1985).Nature 315, 540.

    Google Scholar 

  31. Hogan, C. J. (1986).Mon. Not. R. Astr. Soc. 218, 629.

    Google Scholar 

  32. Kolb, E. W., and Turner, M. S. (1990).The Very Early Universe (Addison-Wesley, New York).

    Google Scholar 

  33. Lidsley, J. E., and Coles, P. (1992).Mon. Not. R. Astr. Soc. 258, 57.

    Google Scholar 

  34. Grishchuk, L. P., and Polnarev, A. G. (1980). InGeneral Relativity and Gravitation, A. Held, ed. (Plenum Press, New York).

    Google Scholar 

  35. Grishchuk, L. P. (1985).Usp. Fiz. Nauk 156, 297.

    Google Scholar 

  36. Thorne, K. S. (1987). In300 Years of Gravitation, S. W. Hawking and W. Israel, eds. (Cambridge University Press, Cambridge).

    Google Scholar 

  37. Braginski, V. B., Kardashev, N. S., Novikov, I. D., and Polnarev, A. G. (1990).Nuovo Cimento 105B, 1141.

    Google Scholar 

  38. Braginsky, V. B., Kardashev, N. S., Novikov, I. D., and Polnarev, A. G. (1992). InAstrophysics on the Threshold of 21st Century, N. S. Kardashev, ed. (Gordon Breach, New York).

    Google Scholar 

  39. Busca, G., Kardashev, N. S., Polnarev, A. G., and Roxburgh, I. (1993). “CRONOS. Clock relativity observations of the nature of spacetime. A proposal for ESA M3 mission.” Preprint QMW ASTGP2 93.

  40. Polnarev, A. G., and Roxburgh, I. W. (1993). In1st working meeting on Hydrogen Maser Clocks in Space for Solid-Earth Research and Time-Transfer Applications. A Joint West European and Russian Experiment. Collected Papers and Presentations, n.16 (ESTEC, Nordwijk, The Netherlands).

    Google Scholar 

  41. Eastbrook, F. B., and Walquist, H. D. (1975).Gen. Rel. Grav. 6, 439.

    Google Scholar 

  42. Hellings, R. W., et al. (1993). “Mission Concept study for Sagitarius: A Spaceborne Astronomical Gravity-Wave Interferometer.” JPL Engineering Memorandum 314–569.

  43. Armstrong, J. W., Woo, R., and Estbrook, F. B. (1979).Astrophys. J. 230, 570.

    Google Scholar 

  44. Comoretto, G., et al. (1990).Nuovo Cimento 13C, 169.

    Google Scholar 

  45. Bertotti, B., et al. (1992).Astron. Astrophys. Suppl. Ser. 92, 431.

    Google Scholar 

  46. Armstrong, J. W. (1989). InGravitation Wave Analysis, B. F. Schutz, ed. (Kluwer Academic, Dordrecht).

    Google Scholar 

  47. Busca, G. (1993). In1st working meeting on Hydrogen Maser Clocks in Space for Solid-Earth Research and Time-Transfer Applications. A Joint West European and Russian Experiment. Collected Papers and Presentations, n.3 (ESTEC, Nordwijk, The Netherlands).

    Google Scholar 

  48. Blaser, J. P. et al. (1993) “STEP. Report on the phase a study.” ESA, NASA, SCI(93) 4.

  49. Touboul, P. (1993). In1st working meeting on Hydrogen Maser Clocks in Space for Solid-Earth Research and Time-Transfer Applications. A Joint West European and Russian Experiment. Collected Papers and Presentations, n.11 (ESTEC, Nordwijk, The Netherlands).

    Google Scholar 

  50. Gerstein, S. S., and Zel'dovich, Ya. B. (1966).JETP Lett. 4, 120.

    Google Scholar 

  51. Blandford, R., Narayan, R., and Romani, R. W. (1984).J. Astrophys. Astron. (India) 5, 369.

    Google Scholar 

  52. Davis, M. M., Taylor, J. H., Weisberg, J. M., and Backer, D. C. (1985).Nature 315, 547.

    Google Scholar 

  53. Krauss, L. M. (1985).Nature 313, 32.

    Google Scholar 

  54. Taylor, J. H. (1987). InGeneral Relativity and Gravitation 11, M. A. H. MacCallum, ed. (Cambridge University Press, Cambridge).

    Google Scholar 

  55. Backer, D. C., and Hellings, R. W. (1986).Ann. Rev. Astron. Astrophys. 24, 557.

    Google Scholar 

  56. Smoot, G. F., et al. (1992).Astrophys. J. 396, L1.

    Google Scholar 

  57. Allen, B., Shelard, E. P. S. (1992).Phys. Rev. D 45, 1898.

    Google Scholar 

  58. Caldwell, R. R., Allen B. (1992).Phys. Rev. D 45, 3447.

    Google Scholar 

  59. Smarr, L. L., et al. (1983).Gen. Rel. Grav. 15, 129.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

On leave from the Astro Space Center, Lebedev Physical Institute, Moscow, Russia

Rights and permissions

Reprints and permissions

About this article

Cite this article

Polnarev, A.G., Roxburgh, I.W. Upper limits on the cosmological gravitational wave background and maser clocks in space. Gen Relat Gravit 27, 379–396 (1995). https://doi.org/10.1007/BF02107936

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02107936

Keywords