Skip to main content
Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations

  • Open access
  • Published: 17 July 2014
  • Volume 2014, article number 79, (2014)
  • Cite this article
Download PDF

You have full access to this open access article

Journal of High Energy Physics Aims and scope Submit manuscript
The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations
Download PDF
  • J. Alwall1,
  • R. Frederix2,
  • S. Frixione2,
  • V. Hirschi3,
  • F. Maltoni4,
  • O. Mattelaer4,
  • H.-S. Shao5,
  • T. Stelzer6,
  • P. Torrielli7 &
  • …
  • M. Zaro8,9 
  • 6291 Accesses

  • 5298 Citations

  • 2 Altmetric

  • Explore all metrics

A preprint version of the article is available at arXiv.

Abstract

We discuss the theoretical bases that underpin the automation of the computations of tree-level and next-to-leading order cross sections, of their matching to parton shower simulations, and of the merging of matched samples that differ by light-parton multiplicities. We present a computer program, MadGraph5 aMC@NLO, capable of handling all these computations — parton-level fixed order, shower-matched, merged — in a unified framework whose defining features are flexibility, high level of parallelisation, and human intervention limited to input physics quantities. We demonstrate the potential of the program by presenting selected phenomenological applications relevant to the LHC and to a 1-TeV e + e − collider. While next-to-leading order results are restricted to QCD corrections to SM processes in the first public version, we show that from the user viewpoint no changes have to be expected in the case of corrections due to any given renormalisable Lagrangian, and that the implementation of these are well under way.

Article PDF

Download to read the full article text

Similar content being viewed by others

MiNNLOPS: a new method to match NNLO QCD to parton showers

Article Open access 27 May 2020

Matching and event-shape NNDL accuracy in parton showers

Article Open access 28 March 2023

Multiplicative-accumulative matching of NLO calculations with parton showers

Article Open access 14 January 2022
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. D.J. Gross and F. Wilczek, Ultraviolet behavior of non-Abelian gauge theories, Phys. Rev. Lett. 30 (1973) 1343 [INSPIRE].

    ADS  Google Scholar 

  2. H.D. Politzer, Reliable perturbative results for strong interactions?, Phys. Rev. Lett. 30 (1973) 1346 [INSPIRE].

    ADS  Google Scholar 

  3. T. Appelquist and H. Georgi, e + e − annihilation in gauge theories of strong interactions, Phys. Rev. D 8 (1973) 4000 [INSPIRE].

    ADS  Google Scholar 

  4. G.F. Sterman and S. Weinberg, Jets from quantum chromodynamics, Phys. Rev. Lett. 39 (1977) 1436 [INSPIRE].

    ADS  Google Scholar 

  5. A.J. Buras, E.G. Floratos, D.A. Ross and C.T. Sachrajda, Asymptotic freedom beyond the leading order, Nucl. Phys. B 131 (1977) 308 [INSPIRE].

    ADS  Google Scholar 

  6. W.A. Bardeen, A.J. Buras, D.W. Duke and T. Muta, Deep inelastic scattering beyond the leading order in asymptotically free gauge theories, Phys. Rev. D 18 (1978) 3998 [INSPIRE].

    ADS  Google Scholar 

  7. G. Altarelli, R.K. Ellis and G. Martinelli, Leptoproduction and Drell-Yan processes beyond the leading approximation in chromodynamics, Nucl. Phys. B 143 (1978) 521 [Erratum ibid. B 146 (1978) 544] [INSPIRE].

  8. W. Celmaster and R.J. Gonsalves, Fourth order QCD contributions to the e + e − annihilation cross-section, Phys. Rev. D 21 (1980) 3112 [INSPIRE].

    ADS  Google Scholar 

  9. R.K. Ellis, D.A. Ross and A.E. Terrano, The perturbative calculation of jet structure in e + e − annihilation, Nucl. Phys. B 178 (1981) 421 [INSPIRE].

    ADS  Google Scholar 

  10. S. Frixione, Z. Kunszt and A. Signer, Three jet cross-sections to next-to-leading order, Nucl. Phys. B 467 (1996) 399 [hep-ph/9512328] [INSPIRE].

    ADS  Google Scholar 

  11. S. Catani and M.H. Seymour, A general algorithm for calculating jet cross-sections in NLO QCD, Nucl. Phys. B 485 (1997) 291 [Erratum ibid. B 510 (1998) 503] [hep-ph/9605323] [INSPIRE].

  12. S. Frixione, A general approach to jet cross-sections in QCD, Nucl. Phys. B 507 (1997) 295 [hep-ph/9706545] [INSPIRE].

    ADS  Google Scholar 

  13. D.A. Kosower, Antenna factorization of gauge theory amplitudes, Phys. Rev. D 57 (1998) 5410 [hep-ph/9710213] [INSPIRE].

    ADS  Google Scholar 

  14. J.M. Campbell, M.A. Cullen and E.W.N. Glover, Four jet event shapes in electron-positron annihilation, Eur. Phys. J. C 9 (1999) 245 [hep-ph/9809429] [INSPIRE].

    ADS  Google Scholar 

  15. Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, One loop n-point gauge theory amplitudes, unitarity and collinear limits, Nucl. Phys. B 425 (1994) 217 [hep-ph/9403226] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  16. F. del Aguila and R. Pittau, Recursive numerical calculus of one-loop tensor integrals, JHEP 07 (2004) 017 [hep-ph/0404120] [INSPIRE].

    Google Scholar 

  17. Z. Bern, L.J. Dixon and D.A. Kosower, Bootstrapping multi-parton loop amplitudes in QCD, Phys. Rev. D 73 (2006) 065013 [hep-ph/0507005] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  18. G. Ossola, C.G. Papadopoulos and R. Pittau, Reducing full one-loop amplitudes to scalar integrals at the integrand level, Nucl. Phys. B 763 (2007) 147 [hep-ph/0609007] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  19. C. Anastasiou, R. Britto, B. Feng, Z. Kunszt and P. Mastrolia, D-dimensional unitarity cut method, Phys. Lett. B 645 (2007) 213 [hep-ph/0609191] [INSPIRE].

    ADS  Google Scholar 

  20. C. Anastasiou, R. Britto, B. Feng, Z. Kunszt and P. Mastrolia, Unitarity cuts and reduction to master integrals in d dimensions for one-loop amplitudes, JHEP 03 (2007) 111 [hep-ph/0612277] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  21. R.K. Ellis, W.T. Giele and Z. Kunszt, A numerical unitarity formalism for evaluating one-loop amplitudes, JHEP 03 (2008) 003 [arXiv:0708.2398] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  22. R.K. Ellis, W.T. Giele, Z. Kunszt and K. Melnikov, Masses, fermions and generalized D-dimensional unitarity, Nucl. Phys. B 822 (2009) 270 [arXiv:0806.3467] [INSPIRE].

    ADS  Google Scholar 

  23. W.T. Giele, Z. Kunszt and K. Melnikov, Full one-loop amplitudes from tree amplitudes, JHEP 04 (2008) 049 [arXiv:0801.2237] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  24. F. Cascioli, P. Maierhofer and S. Pozzorini, Scattering amplitudes with open loops, Phys. Rev. Lett. 108 (2012) 111601 [arXiv:1111.5206] [INSPIRE].

    ADS  Google Scholar 

  25. P. Mastrolia, E. Mirabella and T. Peraro, Integrand reduction of one-loop scattering amplitudes through Laurent series expansion, JHEP 06 (2012) 095 [Erratum ibid. 11 (2012) 128] [arXiv:1203.0291] [INSPIRE].

  26. S. Frixione and B.R. Webber, Matching NLO QCD computations and parton shower simulations, JHEP 06 (2002) 029 [hep-ph/0204244] [INSPIRE].

    ADS  Google Scholar 

  27. P. Nason, A new method for combining NLO QCD with shower Monte Carlo algorithms, JHEP 11 (2004) 040 [hep-ph/0409146] [INSPIRE].

    ADS  Google Scholar 

  28. M. Dobbs, Incorporating next-to-leading order matrix elements for hadronic diboson production in showering event generators, Phys. Rev. D 64 (2001) 034016 [hep-ph/0103174] [INSPIRE].

    ADS  Google Scholar 

  29. Y.-J. Chen, J. Collins and X.-M. Zu, NLO corrections in MC event generator for angular distribution of Drell-Yan lepton pair production, JHEP 04 (2002) 041 [hep-ph/0110257] [INSPIRE].

    ADS  Google Scholar 

  30. Y. Kurihara et al., QCD event generators with next-to-leading order matrix elements and parton showers, Nucl. Phys. B 654 (2003) 301 [hep-ph/0212216] [INSPIRE].

    ADS  Google Scholar 

  31. Z. Nagy and D.E. Soper, Matching parton showers to NLO computations, JHEP 10 (2005) 024 [hep-ph/0503053] [INSPIRE].

    ADS  Google Scholar 

  32. C.W. Bauer and M.D. Schwartz, Event generation from effective field theory, Phys. Rev. D 76 (2007) 074004 [hep-ph/0607296] [INSPIRE].

    ADS  Google Scholar 

  33. Z. Nagy and D.E. Soper, Parton showers with quantum interference, JHEP 09 (2007) 114 [arXiv:0706.0017] [INSPIRE].

    ADS  Google Scholar 

  34. W.T. Giele, D.A. Kosower and P.Z. Skands, A simple shower and matching algorithm, Phys. Rev. D 78 (2008) 014026 [arXiv:0707.3652] [INSPIRE].

    ADS  Google Scholar 

  35. C.W. Bauer, F.J. Tackmann and J. Thaler, GenEvA. I. A new framework for event generation, JHEP 12 (2008) 010 [arXiv:0801.4026] [INSPIRE].

    ADS  Google Scholar 

  36. S. Hoeche, F. Krauss, M. Schonherr and F. Siegert, A critical appraisal of NLO + PS matching methods, JHEP 09 (2012) 049 [arXiv:1111.1220] [INSPIRE].

    ADS  Google Scholar 

  37. K. Hamilton, P. Nason, E. Re and G. Zanderighi, NNLOPS simulation of Higgs boson production, JHEP 10 (2013) 222 [arXiv:1309.0017] [INSPIRE].

    ADS  Google Scholar 

  38. J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer and T. Stelzer, MadGraph 5: going beyond, JHEP 06 (2011) 128 [arXiv:1106.0522] [INSPIRE].

    ADS  Google Scholar 

  39. T. Stelzer and W.F. Long, Automatic generation of tree level helicity amplitudes, Comput. Phys. Commun. 81 (1994) 357 [hep-ph/9401258] [INSPIRE].

    ADS  Google Scholar 

  40. F. Caravaglios and M. Moretti, An algorithm to compute Born scattering amplitudes without Feynman graphs, Phys. Lett. B 358 (1995) 332 [hep-ph/9507237] [INSPIRE].

    ADS  Google Scholar 

  41. F. Yuasa et al., Automatic computation of cross-sections in HEP: status of GRACE system, Prog. Theor. Phys. Suppl. 138 (2000) 18 [hep-ph/0007053] [INSPIRE].

    ADS  Google Scholar 

  42. A. Kanaki and C.G. Papadopoulos, HELAC: a package to compute electroweak helicity amplitudes, Comput. Phys. Commun. 132 (2000) 306 [hep-ph/0002082] [INSPIRE].

    ADS  MATH  Google Scholar 

  43. M. Moretti, T. Ohl and J. Reuter, O’Mega: an optimizing matrix element generator, hep-ph/0102195 [INSPIRE].

  44. F. Krauss, R. Kuhn and G. Soff, AMEGIC++ 1.0: a matrix element generator in C++, JHEP 02 (2002) 044 [hep-ph/0109036] [INSPIRE].

    ADS  Google Scholar 

  45. M.L. Mangano, M. Moretti, F. Piccinini, R. Pittau and A.D. Polosa, ALPGEN, a generator for hard multiparton processes in hadronic collisions, JHEP 07 (2003) 001 [hep-ph/0206293] [INSPIRE].

    ADS  Google Scholar 

  46. J. Fujimoto et al., GRACE/SUSY automatic generation of tree amplitudes in the minimal supersymmetric standard model, Comput. Phys. Commun. 153 (2003) 106 [hep-ph/0208036] [INSPIRE].

    ADS  Google Scholar 

  47. CompHEP collaboration, E. Boos et al., CompHEP 4.4: automatic computations from Lagrangians to events, Nucl. Instrum. Meth. A 534 (2004) 250 [hep-ph/0403113] [INSPIRE].

    ADS  Google Scholar 

  48. S. Tsuno, T. Kaneko, Y. Kurihara, S. Odaka and K. Kato, GR@PPA 2.7 event generator for \( pp/ p\overline{p} \) collisions, Comput. Phys. Commun. 175 (2006) 665 [hep-ph/0602213] [INSPIRE].

    ADS  Google Scholar 

  49. A. Cafarella, C.G. Papadopoulos and M. Worek, Helac-Phegas: a generator for all parton level processes, Comput. Phys. Commun. 180 (2009) 1941 [arXiv:0710.2427] [INSPIRE].

    ADS  Google Scholar 

  50. W. Kilian, T. Ohl and J. Reuter, WHIZARD: simulating multi-particle processes at LHC and ILC, Eur. Phys. J. C 71 (2011) 1742 [arXiv:0708.4233] [INSPIRE].

    ADS  Google Scholar 

  51. J. Alwall et al., MadGraph/MadEvent v4: the new web generation, JHEP 09 (2007) 028 [arXiv:0706.2334] [INSPIRE].

    ADS  Google Scholar 

  52. T. Gleisberg and S. Hoeche, Comix, a new matrix element generator, JHEP 12 (2008) 039 [arXiv:0808.3674] [INSPIRE].

    ADS  Google Scholar 

  53. A. Belyaev, N.D. Christensen and A. Pukhov, CalcHEP 3.4 for collider physics within and beyond the standard model, Comput. Phys. Commun. 184 (2013) 1729 [arXiv:1207.6082] [INSPIRE].

    ADS  MATH  Google Scholar 

  54. T. Hahn and M. Pérez-Victoria, Automatized one loop calculations in four-dimensions and D-dimensions, Comput. Phys. Commun. 118 (1999) 153 [hep-ph/9807565] [INSPIRE].

    ADS  Google Scholar 

  55. T. Hahn, Generating Feynman diagrams and amplitudes with FeynArts 3, Comput. Phys. Commun. 140 (2001) 418 [hep-ph/0012260] [INSPIRE].

    ADS  MATH  Google Scholar 

  56. T. Gleisberg and F. Krauss, Automating dipole subtraction for QCD NLO calculations, Eur. Phys. J. C 53 (2008) 501 [arXiv:0709.2881] [INSPIRE].

    ADS  Google Scholar 

  57. C.F. Berger et al., An automated implementation of on-shell methods for one-loop amplitudes, Phys. Rev. D 78 (2008) 036003 [arXiv:0803.4180] [INSPIRE].

    ADS  Google Scholar 

  58. R. Frederix, T. Gehrmann and N. Greiner, Automation of the dipole subtraction method in MadGraph/MadEvent, JHEP 09 (2008) 122 [arXiv:0808.2128] [INSPIRE].

    ADS  Google Scholar 

  59. W.T. Giele and G. Zanderighi, On the numerical evaluation of one-loop amplitudes: the gluonic case, JHEP 06 (2008) 038 [arXiv:0805.2152] [INSPIRE].

    ADS  Google Scholar 

  60. M. Czakon, C.G. Papadopoulos and M. Worek, Polarizing the dipoles, JHEP 08 (2009) 085 [arXiv:0905.0883] [INSPIRE].

    ADS  Google Scholar 

  61. R. Frederix, S. Frixione, F. Maltoni and T. Stelzer, Automation of next-to-leading order computations in QCD: the FKS subtraction, JHEP 10 (2009) 003 [arXiv:0908.4272] [INSPIRE].

    ADS  Google Scholar 

  62. K. Hasegawa, S. Moch and P. Uwer, AutoDipole: automated generation of dipole subtraction terms, Comput. Phys. Commun. 181 (2010) 1802 [arXiv:0911.4371] [INSPIRE].

    ADS  MATH  MathSciNet  Google Scholar 

  63. S. Hoche, F. Krauss, M. Schonherr and F. Siegert, Automating the POWHEG method in Sherpa, JHEP 04 (2011) 024 [arXiv:1008.5399] [INSPIRE].

    ADS  Google Scholar 

  64. S. Alioli, P. Nason, C. Oleari and E. Re, A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX, JHEP 06 (2010) 043 [arXiv:1002.2581] [INSPIRE].

    ADS  Google Scholar 

  65. P. Mastrolia, G. Ossola, T. Reiter and F. Tramontano, Scattering amplitudes from unitarity-based reduction algorithm at the integrand-level, JHEP 08 (2010) 080 [arXiv:1006.0710] [INSPIRE].

    ADS  Google Scholar 

  66. R. Frederix, T. Gehrmann and N. Greiner, Integrated dipoles with MadDipole in the MadGraph framework, JHEP 06 (2010) 086 [arXiv:1004.2905] [INSPIRE].

    ADS  Google Scholar 

  67. S. Becker, C. Reuschle and S. Weinzierl, Numerical NLO QCD calculations, JHEP 12 (2010) 013 [arXiv:1010.4187] [INSPIRE].

    ADS  Google Scholar 

  68. V. Hirschi et al., Automation of one-loop QCD corrections, JHEP 05 (2011) 044 [arXiv:1103.0621] [INSPIRE].

    ADS  Google Scholar 

  69. G. Bevilacqua et al., HELAC-NLO, Comput. Phys. Commun. 184 (2013) 986 [arXiv:1110.1499] [INSPIRE].

    ADS  Google Scholar 

  70. S. Becker, D. Goetz, C. Reuschle, C. Schwan and S. Weinzierl, NLO results for five, six and seven jets in electron-positron annihilation, Phys. Rev. Lett. 108 (2012) 032005 [arXiv:1111.1733] [INSPIRE].

    ADS  Google Scholar 

  71. G. Cullen et al., Automated one-loop calculations with GoSam, Eur. Phys. J. C 72 (2012) 1889 [arXiv:1111.2034] [INSPIRE].

    ADS  Google Scholar 

  72. T. Binoth et al., Automized squark-neutralino production to next-to-leading order, Phys. Rev. D 84 (2011) 075005 [arXiv:1108.1250] [INSPIRE].

    ADS  Google Scholar 

  73. S. Agrawal, T. Hahn and E. Mirabella, FormCalc 7, J. Phys. Conf. Ser. 368 (2012) 012054 [arXiv:1112.0124] [INSPIRE].

    ADS  Google Scholar 

  74. Z. Bern et al., Four-jet production at the Large Hadron Collider at next-to-leading order in QCD, Phys. Rev. Lett. 109 (2012) 042001 [arXiv:1112.3940] [INSPIRE].

    ADS  Google Scholar 

  75. S. Actis, A. Denner, L. Hofer, A. Scharf and S. Uccirati, Recursive generation of one-loop amplitudes in the standard model, JHEP 04 (2013) 037 [arXiv:1211.6316] [INSPIRE].

    ADS  Google Scholar 

  76. S. Badger, B. Biedermann, P. Uwer and V. Yundin, Numerical evaluation of virtual corrections to multi-jet production in massless QCD, Comput. Phys. Commun. 184 (2013) 1981 [arXiv:1209.0100] [INSPIRE].

    ADS  Google Scholar 

  77. D. Goncalves-Netto, D. Lopez-Val, K. Mawatari, T. Plehn and I. Wigmore, Automated squark and gluino production to next-to-leading order, Phys. Rev. D 87 (2013) 014002 [arXiv:1211.0286] [INSPIRE].

    ADS  Google Scholar 

  78. S. Badger, B. Biedermann, P. Uwer and V. Yundin, Computation of multi-leg amplitudes with NJet, J. Phys. Conf. Ser. 523 (2014) 012057 [arXiv:1312.7140] [INSPIRE].

    ADS  Google Scholar 

  79. Z. Bern et al., The BlackHat library for one-loop amplitudes, J. Phys. Conf. Ser. 523 (2014) 012051 [arXiv:1310.2808] [INSPIRE].

    ADS  Google Scholar 

  80. G. Cullen et al., GoSam-2.0: a tool for automated one-loop calculations within the standard model and beyond, arXiv:1404.7096 [INSPIRE].

  81. H. van Deurzen et al., Multi-leg one-loop massive amplitudes from integrand reduction via Laurent expansion, JHEP 03 (2014) 115 [arXiv:1312.6678] [INSPIRE].

    ADS  Google Scholar 

  82. T. Peraro, Ninja: automated integrand reduction via Laurent expansion for one-loop amplitudes, arXiv:1403.1229 [INSPIRE].

  83. E. Byckling and K. Kajantie, Particle kinematics, Wiley, U.S.A. (1971).

    Google Scholar 

  84. N.D. Christensen and C. Duhr, FeynRules — Feynman rules made easy, Comput. Phys. Commun. 180 (2009) 1614 [arXiv:0806.4194] [INSPIRE].

    ADS  Google Scholar 

  85. N.D. Christensen et al., A comprehensive approach to new physics simulations, Eur. Phys. J. C 71 (2011) 1541 [arXiv:0906.2474] [INSPIRE].

    ADS  Google Scholar 

  86. N.D. Christensen, C. Duhr, B. Fuks, J. Reuter and C. Speckner, Introducing an interface between WHIZARD and FeynRules, Eur. Phys. J. C 72 (2012) 1990 [arXiv:1010.3251] [INSPIRE].

    ADS  Google Scholar 

  87. C. Duhr and B. Fuks, A superspace module for the FeynRules package, Comput. Phys. Commun. 182 (2011) 2404 [arXiv:1102.4191] [INSPIRE].

    ADS  MATH  Google Scholar 

  88. A. Alloul, N.D. Christensen, C. Degrande, C. Duhr and B. Fuks, FeynRules 2.0 — a complete toolbox for tree-level phenomenology, Comput. Phys. Commun. 185 (2014) 2250 [arXiv:1310.1921] [INSPIRE].

    ADS  Google Scholar 

  89. A. Alloul, J. D’Hondt, K. De Causmaecker, B. Fuks and M. Rausch de Traubenberg, Automated mass spectrum generation for new physics, Eur. Phys. J. C 73 (2013) 2325 [arXiv:1301.5932] [INSPIRE].

    ADS  Google Scholar 

  90. C. Degrande, Automated computation of the R 2 rational terms and ultraviolet counterterms by NLOCT: an illustration on the 2HDM, in preparation.

  91. H. Murayama, I. Watanabe and K. Hagiwara, HELAS: helicity amplitude subroutines for Feynman diagram evaluations, KEK-91-11, Japan (1992) [INSPIRE].

  92. P. de Aquino, W. Link, F. Maltoni, O. Mattelaer and T. Stelzer, ALOHA: automatic libraries of helicity amplitudes for Feynman diagram computations, Comput. Phys. Commun. 183 (2012) 2254 [arXiv:1108.2041] [INSPIRE].

    ADS  Google Scholar 

  93. C. Degrande et al., UFO — the Universal FeynRules Output, Comput. Phys. Commun. 183 (2012) 1201 [arXiv:1108.2040] [INSPIRE].

    ADS  Google Scholar 

  94. J. Alwall et al., A standard format for Les Houches event files, Comput. Phys. Commun. 176 (2007) 300 [hep-ph/0609017] [INSPIRE].

    ADS  Google Scholar 

  95. J.M. Butterworth et al., The tools and Monte Carlo working group summary report, arXiv:1003.1643 [INSPIRE].

  96. E.N. Argyres et al., Stable calculations for unstable particles: restoring gauge invariance, Phys. Lett. B 358 (1995) 339 [hep-ph/9507216] [INSPIRE].

    ADS  Google Scholar 

  97. W. Beenakker et al., The Fermion loop scheme for finite width effects in e + e − annihilation into four fermions, Nucl. Phys. B 500 (1997) 255 [hep-ph/9612260] [INSPIRE].

    ADS  Google Scholar 

  98. G. Passarino, Unstable particles and nonconserved currents: a generalization of the fermion loop scheme, Nucl. Phys. B 574 (2000) 451 [hep-ph/9911482] [INSPIRE].

    ADS  Google Scholar 

  99. W. Beenakker, F.A. Berends and A.P. Chapovsky, An effective Lagrangian approach for unstable particles, Nucl. Phys. B 573 (2000) 503 [hep-ph/9909472] [INSPIRE].

    ADS  Google Scholar 

  100. W. Beenakker, A.P. Chapovsky, A. Kanaki, C.G. Papadopoulos and R. Pittau, Towards an effective Lagrangian approach to fermion loop corrections, Nucl. Phys. B 667 (2003) 359 [hep-ph/0303105] [INSPIRE].

    ADS  Google Scholar 

  101. M. Beneke, A.P. Chapovsky, A. Signer and G. Zanderighi, Effective theory approach to unstable particle production, Phys. Rev. Lett. 93 (2004) 011602 [hep-ph/0312331] [INSPIRE].

    ADS  Google Scholar 

  102. A. Denner, S. Dittmaier, M. Roth and D. Wackeroth, Predictions for all processes e+e− → 4 fermions + γ, Nucl. Phys. B 560 (1999) 33 [hep-ph/9904472] [INSPIRE].

    ADS  Google Scholar 

  103. A. Denner, S. Dittmaier, M. Roth and L.H. Wieders, Electroweak corrections to charged-current e + e − → 4 fermion processes: technical details and further results, Nucl. Phys. B 724 (2005) 247 [Erratum ibid. B 854 (2012) 504] [hep-ph/0505042] [INSPIRE].

  104. F. Staub, SARAH 3.2: Dirac gauginos, UFO output and more, Comput. Phys. Commun. 184 (2013) 1792 [arXiv:1207.0906] [INSPIRE].

    ADS  Google Scholar 

  105. N.D. Christensen et al., Simulating spin- \( \frac{3}{2} \) particles at colliders, Eur. Phys. J. C 73 (2013) 2580 [arXiv:1308.1668] [INSPIRE].

    ADS  Google Scholar 

  106. J. Alwall et al., Computing decay rates for new physics theories with FeynRules and MadGraph5/aMC@NLO, arXiv:1402.1178 [INSPIRE].

  107. F.A. Berends, R. Kleiss, P. De Causmaecker, R. Gastmans and T.T. Wu, Single Bremsstrahlung processes in gauge theories, Phys. Lett. B 103 (1981) 124 [INSPIRE].

    ADS  Google Scholar 

  108. P. De Causmaecker, R. Gastmans, W. Troost and T.T. Wu, Multiple Bremsstrahlung in gauge theories at high-energies. 1. General formalism for quantum electrodynamics, Nucl. Phys. B 206 (1982) 53 [INSPIRE].

    ADS  Google Scholar 

  109. R. Kleiss and W.J. Stirling, Spinor techniques for calculating \( p\overline{p} \) → W ± /Z 0 + jets, Nucl. Phys. B 262 (1985) 235 [INSPIRE].

    ADS  Google Scholar 

  110. R. Gastmans and T. Wu, The ubiquitous photon: helicity method for QED and QCD, Int. Ser. Monogr. Phys. 80 (1990) 1 [INSPIRE].

    Google Scholar 

  111. Z. Xu, D.-H. Zhang and L. Chang, Helicity amplitudes for multiple Bremsstrahlung in massless non-Abelian gauge theories, Nucl. Phys. B 291 (1987) 392 [INSPIRE].

    ADS  Google Scholar 

  112. J.F. Gunion and Z. Kunszt, Improved analytic techniques for tree graph calculations and the \( Ggq\overline{q} \) lepton anti-lepton subprocess, Phys. Lett. B 161 (1985) 333 [INSPIRE].

    ADS  Google Scholar 

  113. K. Hagiwara and D. Zeppenfeld, Helicity amplitudes for heavy lepton production in e + e − annihilation, Nucl. Phys. B 274 (1986) 1 [INSPIRE].

    ADS  Google Scholar 

  114. M.L. Mangano and S.J. Parke, Multiparton amplitudes in gauge theories, Phys. Rept. 200 (1991) 301 [hep-th/0509223] [INSPIRE].

    ADS  Google Scholar 

  115. V. Del Duca, L.J. Dixon and F. Maltoni, New color decompositions for gauge amplitudes at tree and loop level, Nucl. Phys. B 571 (2000) 51 [hep-ph/9910563] [INSPIRE].

    ADS  Google Scholar 

  116. F. Maltoni, K. Paul, T. Stelzer and S. Willenbrock, Color flow decomposition of QCD amplitudes, Phys. Rev. D 67 (2003) 014026 [hep-ph/0209271] [INSPIRE].

  117. C. Duhr, S. Hoeche and F. Maltoni, Color-dressed recursive relations for multi-parton amplitudes, JHEP 08 (2006) 062 [hep-ph/0607057] [INSPIRE].

    ADS  Google Scholar 

  118. K. Hagiwara, J. Kanzaki, Q. Li and K. Mawatari, HELAS and MadGraph/MadEvent with spin-2 particles, Eur. Phys. J. C 56 (2008) 435 [arXiv:0805.2554] [INSPIRE].

    ADS  Google Scholar 

  119. K. Hagiwara, J. Kanzaki, N. Okamura, D. Rainwater and T. Stelzer, Fast calculation of HELAS amplitudes using graphics processing unit (GPU), Eur. Phys. J. C 66 (2010) 477 [arXiv:0908.4403] [INSPIRE].

    ADS  Google Scholar 

  120. K. Hagiwara, J. Kanzaki, N. Okamura, D. Rainwater and T. Stelzer, Calculation of HELAS amplitudes for QCD processes using graphics processing unit (GPU), Eur. Phys. J. C 70 (2010) 513 [arXiv:0909.5257] [INSPIRE].

    ADS  Google Scholar 

  121. M. Bahr et al., HERWIG++ physics and manual, Eur. Phys. J. C 58 (2008) 639 [arXiv:0803.0883] [INSPIRE].

    ADS  Google Scholar 

  122. J. Bellm et al., HERWIG++ 2.7 release note, arXiv:1310.6877 [INSPIRE].

  123. T. Sjöstrand, S. Mrenna and P.Z. Skands, A brief introduction to PYTHIA 8.1, Comput. Phys. Commun. 178 (2008) 852 [arXiv:0710.3820] [INSPIRE].

    ADS  MATH  Google Scholar 

  124. N. Arkani-Hamed, S. Dimopoulos and G.R. Dvali, The hierarchy problem and new dimensions at a millimeter, Phys. Lett. B 429 (1998) 263 [hep-ph/9803315] [INSPIRE].

  125. R. Frederix et al., Four-lepton production at hadron colliders: aMC@NLO predictions with theoretical uncertainties, JHEP 02 (2012) 099 [arXiv:1110.4738] [INSPIRE].

    ADS  Google Scholar 

  126. J. Alwall, Q. Li and F. Maltoni, Matched predictions for Higgs production via heavy-quark loops in the SM and beyond, Phys. Rev. D 85 (2012) 014031 [arXiv:1110.1728] [INSPIRE].

    ADS  Google Scholar 

  127. R. Frederix et al., Higgs pair production at the LHC with NLO and parton-shower effects, Phys. Lett. B 732 (2014) 142 [arXiv:1401.7340] [INSPIRE].

    ADS  Google Scholar 

  128. K. Kondo, Dynamical likelihood method for reconstruction of events with missing momentum. 1: method and toy models, J. Phys. Soc. Jap. 57 (1988) 4126 [INSPIRE].

    ADS  Google Scholar 

  129. R.H. Dalitz and G.R. Goldstein, The decay and polarization properties of the top quark, Phys. Rev. D 45 (1992) 1531 [INSPIRE].

    ADS  Google Scholar 

  130. K. Kondo, Dynamical likelihood method and top quark mass measurement at CDF, J. Phys. Conf. Ser. 53 (2006) 202 [INSPIRE].

    ADS  Google Scholar 

  131. Y. Gao et al., Spin determination of single-produced resonances at hadron colliders, Phys. Rev. D 81 (2010) 075022 [arXiv:1001.3396] [INSPIRE].

    ADS  Google Scholar 

  132. P. Avery et al., Precision studies of the Higgs boson decay channel H → ZZ → 4ℓ with MEKD, Phys. Rev. D 87 (2013) 055006 [arXiv:1210.0896] [INSPIRE].

    ADS  Google Scholar 

  133. J.M. Campbell, W.T. Giele and C. Williams, The matrix element method at next-to-leading order, JHEP 11 (2012) 043 [arXiv:1204.4424] [INSPIRE].

    ADS  Google Scholar 

  134. J.S. Gainer, J. Lykken, K.T. Matchev, S. Mrenna and M. Park, Geolocating the Higgs boson candidate at the LHC, Phys. Rev. Lett. 111 (2013) 041801 [arXiv:1304.4936] [INSPIRE].

    ADS  Google Scholar 

  135. T. Plehn, P. Schichtel and D. Wiegand, MadMax, or where boosted significances come from, arXiv:1311.2591 [INSPIRE].

  136. P. Artoisenet, V. Lemaitre, F. Maltoni and O. Mattelaer, Automation of the matrix element reweighting method, JHEP 12 (2010) 068 [arXiv:1007.3300] [INSPIRE].

    ADS  Google Scholar 

  137. P. Artoisenet and O. Mattelaer, MadWeight5.0, in preparation.

  138. J. Alwall, A. Freitas and O. Mattelaer, The matrix element method and QCD radiation, Phys. Rev. D 83 (2011) 074010 [arXiv:1010.2263] [INSPIRE].

    ADS  Google Scholar 

  139. P. Artoisenet, P. de Aquino, F. Maltoni and O. Mattelaer, Unravelling \( t\overline{t} h \) via the matrix element method, Phys. Rev. Lett. 111 (2013) 091802 [arXiv:1304.6414] [INSPIRE].

    ADS  Google Scholar 

  140. T. Gleisberg et al., SHERPA 1.α: a proof of concept version, JHEP 02 (2004) 056 [hep-ph/0311263] [INSPIRE].

    ADS  Google Scholar 

  141. T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].

    ADS  Google Scholar 

  142. G. Corcella et al., HERWIG 6: an event generator for hadron emission reactions with interfering gluons (including supersymmetric processes), JHEP 01 (2001) 010 [hep-ph/0011363] [INSPIRE].

    ADS  Google Scholar 

  143. G. Corcella et al., HERWIG 6.5 release note, hep-ph/0210213 [INSPIRE].

  144. S. Catani, Y.L. Dokshitzer, M.H. Seymour and B.R. Webber, Longitudinally invariant K t clustering algorithms for hadron hadron collisions, Nucl. Phys. B 406 (1993) 187 [INSPIRE].

    ADS  Google Scholar 

  145. L. Lönnblad, Correcting the color dipole cascade model with fixed order matrix elements, JHEP 05 (2002) 046 [hep-ph/0112284] [INSPIRE].

    Google Scholar 

  146. L. Lönnblad and S. Prestel, Matching tree-level matrix elements with interleaved showers, JHEP 03 (2012) 019 [arXiv:1109.4829] [INSPIRE].

    Google Scholar 

  147. L. Lönnblad and S. Prestel, Unitarising matrix element + parton shower merging, JHEP 02 (2013) 094 [arXiv:1211.4827] [INSPIRE].

    Google Scholar 

  148. J. Alwall et al., Comparative study of various algorithms for the merging of parton showers and matrix elements in hadronic collisions, Eur. Phys. J. C 53 (2008) 473 [arXiv:0706.2569] [INSPIRE].

    ADS  Google Scholar 

  149. J. Alwall, S. de Visscher and F. Maltoni, QCD radiation in the production of heavy colored particles at the LHC, JHEP 02 (2009) 017 [arXiv:0810.5350] [INSPIRE].

    ADS  Google Scholar 

  150. P. de Aquino, F. Maltoni, K. Mawatari and B. Oexl, Light gravitino production in association with gluinos at the LHC, JHEP 10 (2012) 008 [arXiv:1206.7098] [INSPIRE].

    Google Scholar 

  151. P. Artoisenet et al., A framework for Higgs characterisation, JHEP 11 (2013) 043 [arXiv:1306.6464] [INSPIRE].

    ADS  Google Scholar 

  152. F. Maltoni and T. Stelzer, MadEvent: automatic event generation with MadGraph, JHEP 02 (2003) 027 [hep-ph/0208156] [INSPIRE].

  153. R. Kleiss and R. Pittau, Weight optimization in multichannel Monte Carlo, Comput. Phys. Commun. 83 (1994) 141 [hep-ph/9405257] [INSPIRE].

    ADS  Google Scholar 

  154. G. Passarino and M.J.G. Veltman, One loop corrections for e + e − annihilation into μ + μ − in the Weinberg model, Nucl. Phys. B 160 (1979) 151 [INSPIRE].

    ADS  Google Scholar 

  155. A.I. Davydychev, A simple formula for reducing Feynman diagrams to scalar integrals, Phys. Lett. B 263 (1991) 107 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  156. G. Ossola, C.G. Papadopoulos and R. Pittau, CutTools: a program implementing the OPP reduction method to compute one-loop amplitudes, JHEP 03 (2008) 042 [arXiv:0711.3596] [INSPIRE].

    ADS  Google Scholar 

  157. G. ’t Hooft and M.J.G. Veltman, Regularization and renormalization of gauge fields, Nucl. Phys. B 44 (1972) 189 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  158. G. Ossola, C.G. Papadopoulos and R. Pittau, On the rational terms of the one-loop amplitudes, JHEP 05 (2008) 004 [arXiv:0802.1876] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  159. P. Draggiotis, M.V. Garzelli, C.G. Papadopoulos and R. Pittau, Feynman rules for the rational part of the QCD 1-loop amplitudes, JHEP 04 (2009) 072 [arXiv:0903.0356] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  160. M.V. Garzelli, I. Malamos and R. Pittau, Feynman rules for the rational part of the electroweak 1-loop amplitudes, JHEP 01 (2010) 040 [Erratum ibid. 10 (2010) 097] [arXiv:0910.3130] [INSPIRE].

  161. M.V. Garzelli, I. Malamos and R. Pittau, Feynman rules for the rational part of the electroweak 1-loop amplitudes in the R x i gauge and in the unitary gauge, JHEP 01 (2011) 029 [arXiv:1009.4302] [INSPIRE].

    ADS  Google Scholar 

  162. H.-S. Shao, Y.-J. Zhang and K.-T. Chao, Feynman rules for the rational part of the standard model one-loop amplitudes in the ’t Hooft-Veltman γ 5 scheme, JHEP 09 (2011) 048 [arXiv:1106.5030] [INSPIRE].

    ADS  Google Scholar 

  163. R. Pittau, Primary Feynman rules to calculate the epsilon-dimensional integrand of any 1-loop amplitude, JHEP 02 (2012) 029 [arXiv:1111.4965] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  164. H.-S. Shao and Y.-J. Zhang, Feynman rules for the rational part of one-loop QCD corrections in the MSSM, JHEP 06 (2012) 112 [arXiv:1205.1273] [INSPIRE].

    ADS  Google Scholar 

  165. B. Page and R. Pittau, R 2 vertices for the effective ggH theory, JHEP 09 (2013) 078 [arXiv:1307.6142] [INSPIRE].

    ADS  Google Scholar 

  166. T. Binoth, J.P. Guillet and G. Heinrich, Algebraic evaluation of rational polynomials in one-loop amplitudes, JHEP 02 (2007) 013 [hep-ph/0609054] [INSPIRE].

    ADS  Google Scholar 

  167. S.D. Badger, Direct extraction of one loop rational terms, JHEP 01 (2009) 049 [arXiv:0806.4600] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  168. H.-S. Shao, Iregi user manual, unpublished.

  169. J. Fleischer, T. Riemann and V. Yundin, New developments in PJFry, PoS(LL2012)020 [arXiv:1210.4095] [INSPIRE].

  170. V. Yundin, Massive loop corrections for collider physics, Ph.D. thesis, Humboldt-Universitat zu Berlin, Berlin Germany (2012).

  171. P. Nason, MINT: a computer program for adaptive Monte Carlo integration and generation of unweighted distributions, arXiv:0709.2085 [INSPIRE].

  172. S. Frixione, P. Nason and B.R. Webber, Matching NLO QCD and parton showers in heavy flavor production, JHEP 08 (2003) 007 [hep-ph/0305252] [INSPIRE].

    ADS  Google Scholar 

  173. S. Frixione, E. Laenen, P. Motylinski and B.R. Webber, Single-top production in MC@NLO, JHEP 03 (2006) 092 [hep-ph/0512250] [INSPIRE].

    ADS  Google Scholar 

  174. P. Torrielli and S. Frixione, Matching NLO QCD computations with PYTHIA using MC@NLO, JHEP 04 (2010) 110 [arXiv:1002.4293] [INSPIRE].

    ADS  Google Scholar 

  175. S. Frixione, F. Stoeckli, P. Torrielli and B.R. Webber, NLO QCD corrections in HERWIG++ with MC@NLO, JHEP 01 (2011) 053 [arXiv:1010.0568] [INSPIRE].

    ADS  Google Scholar 

  176. L. Lönnblad, ARIADNE version 4: a program for simulation of QCD cascades implementing the color dipole model, Comput. Phys. Commun. 71 (1992) 15 [INSPIRE].

    ADS  Google Scholar 

  177. Z. Nagy and D.E. Soper, A new parton shower algorithm: shower evolution, matching at leading and next-to-leading order level, hep-ph/0601021 [INSPIRE].

  178. M. Dinsdale, M. Ternick and S. Weinzierl, Parton showers from the dipole formalism, Phys. Rev. D 76 (2007) 094003 [arXiv:0709.1026] [INSPIRE].

    ADS  Google Scholar 

  179. S. Schumann and F. Krauss, A parton shower algorithm based on Catani-Seymour dipole factorisation, JHEP 03 (2008) 038 [arXiv:0709.1027] [INSPIRE].

    ADS  Google Scholar 

  180. J.-C. Winter and F. Krauss, Initial-state showering based on colour dipoles connected to incoming parton lines, JHEP 07 (2008) 040 [arXiv:0712.3913] [INSPIRE].

    ADS  Google Scholar 

  181. S. Platzer and S. Gieseke, Dipole showers and automated NLO matching in HERWIG++, Eur. Phys. J. C 72 (2012) 2187 [arXiv:1109.6256] [INSPIRE].

    ADS  Google Scholar 

  182. M. Ritzmann, D.A. Kosower and P. Skands, Antenna showers with hadronic initial states, Phys. Lett. B 718 (2013) 1345 [arXiv:1210.6345] [INSPIRE].

    ADS  Google Scholar 

  183. C. Friberg, G. Gustafson and J. Hakkinen, Color connections in e + e − annihilation, Nucl. Phys. B 490 (1997) 289 [hep-ph/9604347] [INSPIRE].

    ADS  Google Scholar 

  184. W.T. Giele, D.A. Kosower and P.Z. Skands, Higher-order corrections to timelike jets, Phys. Rev. D 84 (2011) 054003 [arXiv:1102.2126] [INSPIRE].

    ADS  Google Scholar 

  185. S. Platzer and M. Sjodahl, Subleading N c improved parton showers, JHEP 07 (2012) 042 [arXiv:1201.0260] [INSPIRE].

    ADS  Google Scholar 

  186. Z. Nagy and D.E. Soper, Parton shower evolution with subleading color, JHEP 06 (2012) 044 [arXiv:1202.4496] [INSPIRE].

    ADS  Google Scholar 

  187. G. Altarelli and G. Parisi, Asymptotic freedom in parton language, Nucl. Phys. B 126 (1977) 298 [INSPIRE].

    ADS  Google Scholar 

  188. K. Odagiri, Color connection structure of supersymmetric QCD (2 → 2) processes, JHEP 10 (1998) 006 [hep-ph/9806531] [INSPIRE].

    ADS  Google Scholar 

  189. P. Nason and B. Webber, Next-to-leading-order event generators, Ann. Rev. Nucl. Part. Sci. 62 (2012) 187 [arXiv:1202.1251] [INSPIRE].

    ADS  Google Scholar 

  190. S. Hoeche, F. Krauss and M. Schonherr, Uncertainties in MEPS@NLO calculations of h + jets, arXiv:1401.7971 [INSPIRE].

  191. R. Frederix and S. Frixione, Merging meets matching in MC@NLO, JHEP 12 (2012) 061 [arXiv:1209.6215] [INSPIRE].

    ADS  Google Scholar 

  192. S. Catani, F. Krauss, R. Kuhn and B.R. Webber, QCD matrix elements + parton showers, JHEP 11 (2001) 063 [hep-ph/0109231] [INSPIRE].

    ADS  Google Scholar 

  193. F. Krauss, Matrix elements and parton showers in hadronic interactions, JHEP 08 (2002) 015 [hep-ph/0205283] [INSPIRE].

    ADS  Google Scholar 

  194. S. Mrenna and P. Richardson, Matching matrix elements and parton showers with HERWIG and PYTHIA, JHEP 05 (2004) 040 [hep-ph/0312274] [INSPIRE].

    ADS  Google Scholar 

  195. N. Lavesson and L. Lönnblad, W + jets matrix elements and the dipole cascade, JHEP 07 (2005) 054 [hep-ph/0503293] [INSPIRE].

    ADS  Google Scholar 

  196. S. Hoeche, F. Krauss, S. Schumann and F. Siegert, QCD matrix elements and truncated showers, JHEP 05 (2009) 053 [arXiv:0903.1219] [INSPIRE].

    ADS  Google Scholar 

  197. K. Hamilton, P. Richardson and J. Tully, A modified CKKW matrix element merging approach to angular-ordered parton showers, JHEP 11 (2009) 038 [arXiv:0905.3072] [INSPIRE].

    ADS  Google Scholar 

  198. N. Lavesson and L. Lönnblad, Extending CKKW-merging to one-loop matrix elements, JHEP 12 (2008) 070 [arXiv:0811.2912] [INSPIRE].

    ADS  Google Scholar 

  199. K. Hamilton and P. Nason, Improving NLO-parton shower matched simulations with higher order matrix elements, JHEP 06 (2010) 039 [arXiv:1004.1764] [INSPIRE].

    ADS  Google Scholar 

  200. S. Hoche, F. Krauss, M. Schonherr and F. Siegert, NLO matrix elements and truncated showers, JHEP 08 (2011) 123 [arXiv:1009.1127] [INSPIRE].

    ADS  Google Scholar 

  201. S. Alioli, K. Hamilton and E. Re, Practical improvements and merging of POWHEG simulations for vector boson production, JHEP 09 (2011) 104 [arXiv:1108.0909] [INSPIRE].

    ADS  Google Scholar 

  202. S. Hoeche, F. Krauss, M. Schonherr and F. Siegert, QCD matrix elements + parton showers: the NLO case, JHEP 04 (2013) 027 [arXiv:1207.5030] [INSPIRE].

    ADS  Google Scholar 

  203. S. Plätzer, Controlling inclusive cross sections in parton shower + matrix element merging, JHEP 08 (2013) 114 [arXiv:1211.5467] [INSPIRE].

    ADS  Google Scholar 

  204. S. Alioli et al., Combining higher-order resummation with multiple NLO calculations and parton showers in GENEVA, JHEP 09 (2013) 120 [arXiv:1211.7049] [INSPIRE].

    ADS  Google Scholar 

  205. L. Lönnblad and S. Prestel, Merging multi-leg NLO matrix elements with parton showers, JHEP 03 (2013) 166 [arXiv:1211.7278] [INSPIRE].

    ADS  Google Scholar 

  206. K. Hamilton, P. Nason, C. Oleari and G. Zanderighi, Merging H/W/Z + 0 and 1 jet at NLO with no merging scale: a path to parton shower + NNLO matching, JHEP 05 (2013) 082 [arXiv:1212.4504] [INSPIRE].

    ADS  Google Scholar 

  207. S. Alioli et al., Matching fully differential NNLO calculations and parton showers, JHEP 06 (2014) 089 [arXiv:1311.0286] [INSPIRE].

    Google Scholar 

  208. G. Bozzi, S. Catani, D. de Florian and M. Grazzini, Transverse-momentum resummation and the spectrum of the Higgs boson at the LHC, Nucl. Phys. B 737 (2006) 73 [hep-ph/0508068] [INSPIRE].

    ADS  Google Scholar 

  209. R.G. Stuart, Gauge invariance, analyticity and physical observables at the Z 0 resonance, Phys. Lett. B 262 (1991) 113 [INSPIRE].

    ADS  Google Scholar 

  210. A. Aeppli, G.J. van Oldenborgh and D. Wyler, Unstable particles in one loop calculations, Nucl. Phys. B 428 (1994) 126 [hep-ph/9312212] [INSPIRE].

    ADS  Google Scholar 

  211. S. Frixione, E. Laenen, P. Motylinski and B.R. Webber, Angular correlations of lepton pairs from vector boson and top quark decays in Monte Carlo simulations, JHEP 04 (2007) 081 [hep-ph/0702198] [INSPIRE].

    ADS  Google Scholar 

  212. P. Richardson, Spin correlations in Monte Carlo simulations, JHEP 11 (2001) 029 [hep-ph/0110108] [INSPIRE].

    ADS  Google Scholar 

  213. P. Artoisenet, R. Frederix, O. Mattelaer and R. Rietkerk, Automatic spin-entangled decays of heavy resonances in Monte Carlo simulations, JHEP 03 (2013) 015 [arXiv:1212.3460] [INSPIRE].

    ADS  Google Scholar 

  214. A.S. Papanastasiou, R. Frederix, S. Frixione, V. Hirschi and F. Maltoni, Single-top t-channel production with off-shell and non-resonant effects, Phys. Lett. B 726 (2013) 223 [arXiv:1305.7088] [INSPIRE].

    ADS  Google Scholar 

  215. J. Conway, Pretty Good Simulator webpage, http://www.physics.ucdavis.edu/∼conway/research/software/pgs/pgs4-general.htm.

  216. DELPHES 3 collaboration, J. de Favereau et al., DELPHES 3, a modular framework for fast simulation of a generic collider experiment, JHEP 02 (2014) 057 [arXiv:1307.6346] [INSPIRE].

    Google Scholar 

  217. S. Ovyn, X. Rouby and V. Lemaitre, DELPHES, a framework for fast simulation of a generic collider experiment, arXiv:0903.2225 [INSPIRE].

  218. SM Working group collaboration, Proceedings of the workshop physics at TeV colliders, Les Houches, 2013, to appear.

  219. A.D. Martin, W.J. Stirling, R.S. Thorne and G. Watt, Parton distributions for the LHC, Eur. Phys. J. C 63 (2009) 189 [arXiv:0901.0002] [INSPIRE].

    ADS  Google Scholar 

  220. M. Cacciari, G.P. Salam and G. Soyez, The anti-k t jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [INSPIRE].

    ADS  Google Scholar 

  221. S. Frixione, Isolated photons in perturbative QCD, Phys. Lett. B 429 (1998) 369 [hep-ph/9801442] [INSPIRE].

  222. R. Frederix, E. Re and P. Torrielli, Single-top t-channel hadroproduction in the four-flavour scheme with POWHEG and aMC@NLO, JHEP 09 (2012) 130 [arXiv:1207.5391] [INSPIRE].

    ADS  Google Scholar 

  223. J.M. Campbell and R.K. Ellis, Next-to-leading order corrections to W + 2 jet and Z + 2 jet production at hadron colliders, Phys. Rev. D 65 (2002) 113007 [hep-ph/0202176] [INSPIRE].

    ADS  Google Scholar 

  224. J.M. Campbell, R.K. Ellis and D.L. Rainwater, Next-to-leading order QCD predictions for W +2 jet and Z + 2 jet production at the CERN LHC, Phys. Rev. D 68 (2003) 094021 [hep-ph/0308195] [INSPIRE].

    ADS  Google Scholar 

  225. J.M. Campbell, R.K. Ellis, P. Nason and G. Zanderighi, W and Z bosons in association with two jets using the POWHEG method, JHEP 08 (2013) 005 [arXiv:1303.5447] [INSPIRE].

    ADS  Google Scholar 

  226. J.M. Campbell et al., Associated production of a W boson and one b jet, Phys. Rev. D 79 (2009) 034023 [arXiv:0809.3003] [INSPIRE].

    ADS  Google Scholar 

  227. J.M. Campbell, R.K. Ellis, F. Maltoni and S. Willenbrock, Associated production of a Z boson and a single heavy quark jet, Phys. Rev. D 69 (2004) 074021 [hep-ph/0312024] [INSPIRE].

    ADS  Google Scholar 

  228. J.M. Campbell, R.K. Ellis, F. Maltoni and S. Willenbrock, Production of a Z boson and two jets with one heavy-quark tag, Phys. Rev. D 73 (2006) 054007 [Erratum ibid. D 77 (2008) 019903] [hep-ph/0510362] [INSPIRE].

  229. J.M. Campbell, R.K. Ellis, F. Maltoni and S. Willenbrock, Production of a W boson and two jets with one b − quark tag, Phys. Rev. D 75 (2007) 054015 [hep-ph/0611348] [INSPIRE].

    ADS  Google Scholar 

  230. J.M. Campbell, F. Caola, F. Febres Cordero, L. Reina and D. Wackeroth, NLO QCD predictions for W + 1 jet and W + 2 jet production with at least one b jet at the 7 TeV LHC, Phys. Rev. D 86 (2012) 034021 [arXiv:1107.3714] [INSPIRE].

    ADS  Google Scholar 

  231. S. Alioli, P. Nason, C. Oleari and E. Re, NLO vector-boson production matched with shower in POWHEG, JHEP 07 (2008) 060 [arXiv:0805.4802] [INSPIRE].

    ADS  Google Scholar 

  232. S. Alioli, P. Nason, C. Oleari and E. Re, Vector boson plus one jet production in POWHEG, JHEP 01 (2011) 095 [arXiv:1009.5594] [INSPIRE].

    ADS  Google Scholar 

  233. E. Re, NLO corrections merged with parton showers for Z + 2 jets production using the POWHEG method, JHEP 10 (2012) 031 [arXiv:1204.5433] [INSPIRE].

    ADS  Google Scholar 

  234. R.K. Ellis, K. Melnikov and G. Zanderighi, Generalized unitarity at work: first NLO QCD results for hadronic W + 3 jet production, JHEP 04 (2009) 077 [arXiv:0901.4101] [INSPIRE].

    ADS  Google Scholar 

  235. K. Melnikov and G. Zanderighi, W + 3 jet production at the LHC as a signal or background, Phys. Rev. D 81 (2010) 074025 [arXiv:0910.3671] [INSPIRE].

    ADS  Google Scholar 

  236. C.F. Berger et al., Precise predictions for W + 3 jet production at hadron colliders, Phys. Rev. Lett. 102 (2009) 222001 [arXiv:0902.2760] [INSPIRE].

    ADS  Google Scholar 

  237. C.F. Berger et al., Next-to-leading order QCD predictions for W + 3-jet distributions at hadron colliders, Phys. Rev. D 80 (2009) 074036 [arXiv:0907.1984] [INSPIRE].

    ADS  Google Scholar 

  238. C.F. Berger et al., Next-to-leading order QCD predictions for Z, γ * + 3-jet distributions at the Tevatron, Phys. Rev. D 82 (2010) 074002 [arXiv:1004.1659] [INSPIRE].

    ADS  Google Scholar 

  239. C.F. Berger et al., Precise predictions for W + 4 jet production at the Large Hadron Collider, Phys. Rev. Lett. 106 (2011) 092001 [arXiv:1009.2338] [INSPIRE].

    ADS  Google Scholar 

  240. H. Ita et al., Precise predictions for Z + 4 jets at hadron colliders, Phys. Rev. D 85 (2012) 031501 [arXiv:1108.2229] [INSPIRE].

    ADS  Google Scholar 

  241. S. Hoeche, F. Krauss, M. Schonherr and F. Siegert, W + n-jet predictions at the Large Hadron Collider at next-to-leading order matched with a parton shower, Phys. Rev. Lett. 110 (2013) 052001 [arXiv:1201.5882] [INSPIRE].

    ADS  Google Scholar 

  242. S. Catani, M. Fontannaz, J.P. Guillet and E. Pilon, Cross-section of isolated prompt photons in hadron hadron collisions, JHEP 05 (2002) 028 [hep-ph/0204023] [INSPIRE].

    ADS  Google Scholar 

  243. Z. Bern et al., Driving missing data at next-to-leading order, Phys. Rev. D 84 (2011) 114002 [arXiv:1106.1423] [INSPIRE].

    ADS  Google Scholar 

  244. K. Arnold et al., VBFNLO: a parton level Monte Carlo for processes with electroweak bosons — manual for version 2.5.0, arXiv:1107.4038 [INSPIRE].

  245. B. Jager, S. Schneider and G. Zanderighi, Next-to-leading order QCD corrections to electroweak Zjj production in the POWHEG BOX, JHEP 09 (2012) 083 [arXiv:1207.2626] [INSPIRE].

    ADS  Google Scholar 

  246. B. Mele, P. Nason and G. Ridolfi, QCD radiative corrections to Z boson pair production in hadronic collisions, Nucl. Phys. B 357 (1991) 409 [INSPIRE].

    ADS  Google Scholar 

  247. J. Ohnemus and J.F. Owens, An order α s calculation of hadronic ZZ production, Phys. Rev. D 43 (1991) 3626 [INSPIRE].

    ADS  Google Scholar 

  248. S. Frixione, P. Nason and G. Ridolfi, Strong corrections to W Z production at hadron colliders, Nucl. Phys. B 383 (1992) 3 [INSPIRE].

    ADS  Google Scholar 

  249. J. Ohnemus, An order α s calculation of hadronic W − W + production, Phys. Rev. D 44 (1991) 1403 [INSPIRE].

    ADS  Google Scholar 

  250. J. Ohnemus, An order α s calculation of hadronic W ± Z production, Phys. Rev. D 44 (1991) 3477 [INSPIRE].

    ADS  Google Scholar 

  251. S. Frixione, A next-to-leading order calculation of the cross-section for the production of W + W − pairs in hadronic collisions, Nucl. Phys. B 410 (1993) 280 [INSPIRE].

    ADS  Google Scholar 

  252. J.M. Campbell and R.K. Ellis, An update on vector boson pair production at hadron colliders, Phys. Rev. D 60 (1999) 113006 [hep-ph/9905386] [INSPIRE].

    ADS  Google Scholar 

  253. L.J. Dixon, Z. Kunszt and A. Signer, Vector boson pair production in hadronic collisions at order α s : lepton correlations and anomalous couplings, Phys. Rev. D 60 (1999) 114037 [hep-ph/9907305] [INSPIRE].

    ADS  Google Scholar 

  254. D. De Florian and A. Signer, Wγ and Zγ production at hadron colliders, Eur. Phys. J. C 16 (2000) 105 [hep-ph/0002138] [INSPIRE].

    ADS  Google Scholar 

  255. N. Greiner et al., NLO QCD corrections to the production of W + W − plus two jets at the LHC, Phys. Lett. B 713 (2012) 277 [arXiv:1202.6004] [INSPIRE].

    ADS  Google Scholar 

  256. J.M. Campbell, R.K. Ellis and C. Williams, Vector boson pair production at the LHC, JHEP 07 (2011) 018 [arXiv:1105.0020] [INSPIRE].

    ADS  Google Scholar 

  257. P. Nason and G. Ridolfi, A positive-weight next-to-leading-order Monte Carlo for Z pair hadroproduction, JHEP 08 (2006) 077 [hep-ph/0606275] [INSPIRE].

    ADS  Google Scholar 

  258. T. Melia, P. Nason, R. Rontsch and G. Zanderighi, W + W − , W Z and ZZ production in the POWHEG BOX, JHEP 11 (2011) 078 [arXiv:1107.5051] [INSPIRE].

    ADS  Google Scholar 

  259. P. Nason and G. Zanderighi, W + W − , W Z and ZZ production in the POWHEG-BOX-V 2, Eur. Phys. J. C 74 (2014) 2702 [arXiv:1311.1365] [INSPIRE].

    ADS  Google Scholar 

  260. V. Del Duca, F. Maltoni, Z. Nagy and Z. Trócsányi, QCD radiative corrections to prompt diphoton production in association with a jet at hadron colliders, JHEP 04 (2003) 059 [hep-ph/0303012] [INSPIRE].

    ADS  Google Scholar 

  261. T. Gehrmann, N. Greiner and G. Heinrich, Precise QCD predictions for the production of a photon pair in association with two jets, Phys. Rev. Lett. 111 (2013) 222002 [arXiv:1308.3660] [INSPIRE].

    ADS  Google Scholar 

  262. S. Badger, A. Guffanti and V. Yundin, Next-to-leading order QCD corrections to di-photon production in association with up to three jets at the Large Hadron Collider, JHEP 03 (2014) 122 [arXiv:1312.5927] [INSPIRE].

    ADS  Google Scholar 

  263. Z. Bern et al., Next-to-leading order diphoton + 2-jet production at the LHC, arXiv:1312.0592 [INSPIRE].

  264. Z. Bern et al., Next-to-leading order γγ + 2-jet production at the LHC, arXiv:1402.4127 [INSPIRE].

  265. T. Melia, K. Melnikov, R. Rontsch and G. Zanderighi, Next-to-leading order QCD predictions for W + W + jj production at the LHC, JHEP 12 (2010) 053 [arXiv:1007.5313] [INSPIRE].

    ADS  Google Scholar 

  266. F. Campanario, M. Kerner, L.D. Ninh and D. Zeppenfeld, Next-to-leading order QCD corrections to W + W + and W − W − production in association with two jets, Phys. Rev. D 89 (2014) 054009 [arXiv:1311.6738] [INSPIRE].

    ADS  Google Scholar 

  267. J.M. Campbell, H.B. Hartanto and C. Williams, Next-to-leading order predictions for Zγ + jet and Zγγ final states at the LHC, JHEP 11 (2012) 162 [arXiv:1208.0566] [INSPIRE].

    ADS  Google Scholar 

  268. F. Campanario, M. Kerner, L.D. Ninh and D. Zeppenfeld, Next-to-leading order QCD corrections to Wγ production in association with two jets, arXiv:1402.0505 [INSPIRE].

  269. F. Campanario, M. Kerner, L.D. Ninh and D. Zeppenfeld, NLO QCD corrections to WZjj production at the LHC, arXiv:1310.4369 [INSPIRE].

  270. F. Campanario, C. Englert, M. Spannowsky and D. Zeppenfeld, NLO-QCD corrections to Wγj production, Europhys. Lett. 88 (2009) 11001 [arXiv:0908.1638] [INSPIRE].

    ADS  Google Scholar 

  271. F. Campanario, C. Englert and M. Spannowsky, Precise predictions for (non-standard) Wγ + jet production, Phys. Rev. D 83 (2011) 074009 [arXiv:1010.1291] [INSPIRE].

    ADS  Google Scholar 

  272. F. Campanario, C. Englert, S. Kallweit, M. Spannowsky and D. Zeppenfeld, NLO QCD corrections to W Z + jet production with leptonic decays, JHEP 07 (2010) 076 [arXiv:1006.0390] [INSPIRE].

    ADS  Google Scholar 

  273. B. Jager and G. Zanderighi, Electroweak W + W − jj prodution at NLO in QCD matched with parton shower in the POWHEG-BOX, JHEP 04 (2013) 024 [arXiv:1301.1695] [INSPIRE].

    ADS  Google Scholar 

  274. F. Schissler and D. Zeppenfeld, Parton shower effects on W and Z production via vector boson fusion at NLO QCD, JHEP 04 (2013) 057 [arXiv:1302.2884] [INSPIRE].

    ADS  Google Scholar 

  275. B. Jäger, A. Karlberg and G. Zanderighi, Electroweak ZZjj production in the standard model and beyond in the POWHEG-BOX-V 2, JHEP 03 (2014) 141 [arXiv:1312.3252] [INSPIRE].

    ADS  Google Scholar 

  276. G. Bozzi, F. Campanario, M. Rauch and D. Zeppenfeld, Zγγ production with leptonic decays and triple photon production at next-to-leading order QCD, Phys. Rev. D 84 (2011) 074028 [arXiv:1107.3149] [INSPIRE].

    ADS  Google Scholar 

  277. G. Bozzi, F. Campanario, M. Rauch and D. Zeppenfeld, W +− γγ production with leptonic decays at NLO QCD, Phys. Rev. D 83 (2011) 114035 [arXiv:1103.4613] [INSPIRE].

    ADS  Google Scholar 

  278. G. Bozzi, F. Campanario, M. Rauch, H. Rzehak and D. Zeppenfeld, NLO QCD corrections to W ± Zγ production with leptonic decays, Phys. Lett. B 696 (2011) 380 [arXiv:1011.2206] [INSPIRE].

    ADS  Google Scholar 

  279. G. Bozzi, F. Campanario, V. Hankele and D. Zeppenfeld, NLO QCD corrections to W + W − γ and ZZγ production with leptonic decays, Phys. Rev. D 81 (2010) 094030 [arXiv:0911.0438] [INSPIRE].

    ADS  Google Scholar 

  280. F. Campanario, V. Hankele, C. Oleari, S. Prestel and D. Zeppenfeld, QCD corrections to charged triple vector boson production with leptonic decay, Phys. Rev. D 78 (2008) 094012 [arXiv:0809.0790] [INSPIRE].

    ADS  Google Scholar 

  281. J.M. Campbell and C. Williams, Triphoton production at hadron colliders, Phys. Rev. D 89 (2014) 113001 [arXiv:1403.2641] [INSPIRE].

    ADS  Google Scholar 

  282. M.K. Mandal, P. Mathews, V. Ravindran and S. Seth, Three photon production to NLO + PS accuracy at the LHC, arXiv:1403.2917 [INSPIRE].

  283. A. Lazopoulos, K. Melnikov and F. Petriello, QCD corrections to tri-boson production, Phys. Rev. D 76 (2007) 014001 [hep-ph/0703273] [INSPIRE].

    ADS  Google Scholar 

  284. F. Campanario, C. Englert, M. Rauch and D. Zeppenfeld, Precise predictions for Wγγ + jet production at hadron colliders, Phys. Lett. B 704 (2011) 515 [arXiv:1106.4009] [INSPIRE].

    ADS  Google Scholar 

  285. S. Hoeche et al., Triple vector boson production through Higgs-Strahlung with NLO multijet merging, Phys. Rev. D 89 (2014) 093015 [arXiv:1403.7516] [INSPIRE].

    ADS  Google Scholar 

  286. P. Nason, S. Dawson and R.K. Ellis, The total cross-section for the production of heavy quarks in hadronic collisions, Nucl. Phys. B 303 (1988) 607 [INSPIRE].

    ADS  Google Scholar 

  287. W. Beenakker, H. Kuijf, W.L. van Neerven and J. Smith, QCD corrections to heavy quark production in pp collisions, Phys. Rev. D 40 (1989) 54 [INSPIRE].

    ADS  Google Scholar 

  288. P. Nason, S. Dawson and R.K. Ellis, The one particle inclusive differential cross-section for heavy quark production in hadronic collisions, Nucl. Phys. B 327 (1989) 49 [Erratum ibid. B 335 (1990) 260] [INSPIRE].

  289. W. Beenakker, W.L. van Neerven, R. Meng, G.A. Schuler and J. Smith, QCD corrections to heavy quark production in hadron hadron collisions, Nucl. Phys. B 351 (1991) 507 [INSPIRE].

    ADS  Google Scholar 

  290. M.L. Mangano, P. Nason and G. Ridolfi, Heavy quark correlations in hadron collisions at next-to-leading order, Nucl. Phys. B 373 (1992) 295 [INSPIRE].

    ADS  Google Scholar 

  291. S. Frixione, P. Nason and G. Ridolfi, A positive-weight next-to-leading-order Monte Carlo for heavy flavour hadroproduction, JHEP 09 (2007) 126 [arXiv:0707.3088] [INSPIRE].

    ADS  Google Scholar 

  292. S. Dittmaier, P. Uwer and S. Weinzierl, NLO QCD corrections to \( t\overline{t} \) + jet production at hadron colliders, Phys. Rev. Lett. 98 (2007) 262002 [hep-ph/0703120] [INSPIRE].

    ADS  Google Scholar 

  293. K. Melnikov, A. Scharf and M. Schulze, Top quark pair production in association with a jet: QCD corrections and jet radiation in top quark decays, Phys. Rev. D 85 (2012) 054002 [arXiv:1111.4991] [INSPIRE].

    ADS  Google Scholar 

  294. S. Alioli, S.-O. Moch and P. Uwer, Hadronic top-quark pair-production with one jet and parton showering, JHEP 01 (2012) 137 [arXiv:1110.5251] [INSPIRE].

    ADS  Google Scholar 

  295. G. Bevilacqua, M. Czakon, C.G. Papadopoulos and M. Worek, Dominant QCD backgrounds in Higgs boson analyses at the LHC: a study of pp → \( t\overline{t} \) + 2 jets at next-to-leading order, Phys. Rev. Lett. 104 (2010) 162002 [arXiv:1002.4009] [INSPIRE].

    ADS  Google Scholar 

  296. M. Schönherr, S. Höche, J. Huang, G. Luisoni and J. Winter, NLO merging in \( t\overline{t} \) + jets, PoS(EPS-HEP 2013)246 [arXiv:1311.3621] [INSPIRE].

  297. S. Hoeche et al., Next-to-leading order QCD predictions for top-quark pair production with up to two jets merged with a parton shower, arXiv:1402.6293 [INSPIRE].

  298. Z. Nagy, Next-to-leading order calculation of three jet observables in hadron hadron collision, Phys. Rev. D 68 (2003) 094002 [hep-ph/0307268] [INSPIRE].

    ADS  Google Scholar 

  299. S. Badger, B. Biedermann, P. Uwer and V. Yundin, NLO QCD corrections to multi-jet production at the LHC with a centre-of-mass energy of \( \sqrt{s} \) = 8 TeV, Phys. Lett. B 718 (2013) 965 [arXiv:1209.0098] [INSPIRE].

    ADS  Google Scholar 

  300. S. Badger, B. Biedermann, P. Uwer and V. Yundin, Next-to-leading order QCD corrections to five jet production at the LHC, Phys. Rev. D 89 (2014) 034019 [arXiv:1309.6585] [INSPIRE].

    ADS  Google Scholar 

  301. S. Alioli, K. Hamilton, P. Nason, C. Oleari and E. Re, Jet pair production in POWHEG, JHEP 04 (2011) 081 [arXiv:1012.3380] [INSPIRE].

    ADS  Google Scholar 

  302. A. Kardos, P. Nason and C. Oleari, Three-jet production in POWHEG, JHEP 04 (2014) 043 [arXiv:1402.4001] [INSPIRE].

    ADS  Google Scholar 

  303. N. Greiner, A. Guffanti, T. Reiter and J. Reuter, NLO QCD corrections to the production of two bottom-antibottom pairs at the LHC, Phys. Rev. Lett. 107 (2011) 102002 [arXiv:1105.3624] [INSPIRE].

    ADS  Google Scholar 

  304. G. Bevilacqua, M. Czakon, M. Krämer, M. Kubocz and M. Worek, Quantifying quark mass effects at the LHC: a study of pp → \( b\overline{b} b\overline{b} \) + X at next-to-leading order, JHEP 07 (2013) 095 [arXiv:1304.6860] [INSPIRE].

    ADS  Google Scholar 

  305. G. Bevilacqua, M. Czakon, C.G. Papadopoulos, R. Pittau and M. Worek, Assault on the NLO wishlist: pp → \( t\overline{t} b\overline{b} \), JHEP 09 (2009) 109 [arXiv:0907.4723] [INSPIRE].

    ADS  Google Scholar 

  306. A. Bredenstein, A. Denner, S. Dittmaier and S. Pozzorini, NLO QCD corrections to pp → \( t\overline{t} b\overline{b} \) + X at the LHC, Phys. Rev. Lett. 103 (2009) 012002 [arXiv:0905.0110] [INSPIRE].

    ADS  Google Scholar 

  307. A. Bredenstein, A. Denner, S. Dittmaier and S. Pozzorini, NLO QCD corrections to top anti-top bottom anti-bottom production at the LHC: 2. Full hadronic results, JHEP 03 (2010) 021 [arXiv:1001.4006] [INSPIRE].

    ADS  Google Scholar 

  308. G. Bevilacqua and M. Worek, Constraining BSM physics at the LHC: four top final states with NLO accuracy in perturbative QCD, JHEP 07 (2012) 111 [arXiv:1206.3064] [INSPIRE].

    ADS  Google Scholar 

  309. R.K. Ellis and S. Veseli, Strong radiative corrections to \( W\ b\overline{b} \) production in \( p\overline{p} \) collisions, Phys. Rev. D 60 (1999) 011501 [hep-ph/9810489] [INSPIRE].

    ADS  Google Scholar 

  310. S. Badger, J.M. Campbell and R.K. Ellis, QCD corrections to the hadronic production of a heavy quark pair and a W-boson including decay correlations, JHEP 03 (2011) 027 [arXiv:1011.6647] [INSPIRE].

    ADS  Google Scholar 

  311. R. Frederix et al., W and Z/γ* boson production in association with a bottom-antibottom pair, JHEP 09 (2011) 061 [arXiv:1106.6019] [INSPIRE].

    ADS  Google Scholar 

  312. C. Oleari and L. Reina, \( {W}^{\pm } b\overline{b} \) production in POWHEG, JHEP 08 (2011) 061 [Erratum ibid. 11 (2011) 040] [arXiv:1105.4488] [INSPIRE].

  313. J.M. Campbell and R.K. Ellis, Radiative corrections to \( Zb\overline{b} \) production, Phys. Rev. D 62 (2000) 114012 [hep-ph/0006304] [INSPIRE].

    ADS  Google Scholar 

  314. K. Melnikov, M. Schulze and A. Scharf, QCD corrections to top quark pair production in association with a photon at hadron colliders, Phys. Rev. D 83 (2011) 074013 [arXiv:1102.1967] [INSPIRE].

    ADS  Google Scholar 

  315. A. Lazopoulos, T. McElmurry, K. Melnikov and F. Petriello, Next-to-leading order QCD corrections to \( t\overline{t} Z \) production at the LHC, Phys. Lett. B 666 (2008) 62 [arXiv:0804.2220] [INSPIRE].

    ADS  Google Scholar 

  316. M.V. Garzelli, A. Kardos, C.G. Papadopoulos and Z. Trócsányi, \( t\overline{t}{W}^{+-} \) and \( t\overline{t} Z \) hadroproduction at NLO accuracy in QCD with parton shower and hadronization effects, JHEP 11 (2012) 056 [arXiv:1208.2665] [INSPIRE].

    ADS  Google Scholar 

  317. J.M. Campbell and R.K. Ellis, \( t\overline{t}{W}^{+-} \) production and decay at NLO, JHEP 07 (2012) 052 [arXiv:1204.5678] [INSPIRE].

    ADS  Google Scholar 

  318. T. Stelzer and S. Willenbrock, Single top quark production via \( q\overline{q}\to t\overline{b} \), Phys. Lett. B 357 (1995) 125 [hep-ph/9505433] [INSPIRE].

    ADS  Google Scholar 

  319. T. Stelzer, Z. Sullivan and S. Willenbrock, Single top quark production via W-gluon fusion at next-to-leading order, Phys. Rev. D 56 (1997) 5919 [hep-ph/9705398] [INSPIRE].

    ADS  Google Scholar 

  320. J.M. Campbell, R.K. Ellis and F. Tramontano, Single top production and decay at next-to-leading order, Phys. Rev. D 70 (2004) 094012 [hep-ph/0408158] [INSPIRE].

    ADS  Google Scholar 

  321. J.M. Campbell, R. Frederix, F. Maltoni and F. Tramontano, NLO predictions for t-channel production of single top and fourth generation quarks at hadron colliders, JHEP 10 (2009) 042 [arXiv:0907.3933] [INSPIRE].

    ADS  Google Scholar 

  322. J.M. Campbell, R. Frederix, F. Maltoni and F. Tramontano, Next-to-leading-order predictions for t-channel single-top production at hadron colliders, Phys. Rev. Lett. 102 (2009) 182003 [arXiv:0903.0005] [INSPIRE].

    ADS  Google Scholar 

  323. J.M. Campbell and F. Tramontano, Next-to-leading order corrections to Wt production and decay, Nucl. Phys. B 726 (2005) 109 [hep-ph/0506289] [INSPIRE].

    ADS  Google Scholar 

  324. S. Frixione, E. Laenen, P. Motylinski, B.R. Webber and C.D. White, Single-top hadroproduction in association with a W boson, JHEP 07 (2008) 029 [arXiv:0805.3067] [INSPIRE].

    ADS  Google Scholar 

  325. S. Alioli, P. Nason, C. Oleari and E. Re, NLO single-top production matched with shower in POWHEG: s- and t-channel contributions, JHEP 09 (2009) 111 [Erratum ibid. 02 (2010) 011] [arXiv:0907.4076] [INSPIRE].

  326. E. Re, Single-top Wt-channel production matched with parton showers using the POWHEG method, Eur. Phys. J. C 71 (2011) 1547 [arXiv:1009.2450] [INSPIRE].

    ADS  Google Scholar 

  327. J. Campbell, R.K. Ellis and R. Rötsch, Single top production in association with a Z boson at the LHC, Phys. Rev. D 87 (2013) 114006 [arXiv:1302.3856] [INSPIRE].

    ADS  Google Scholar 

  328. LHC Higgs Cross section Working Group collaboration, S. Dittmaier et al., Handbook of LHC Higgs cross sections: 1. Inclusive observables, arXiv:1101.0593 [INSPIRE].

  329. LHC Higgs Cross section Working Group collaboration, S. Dittmaier et al., Handbook of LHC Higgs cross sections: 2. Differential distributions, arXiv:1201.3084 [INSPIRE].

  330. LHC Higgs Cross section Working Group collaboration, S. Heinemeyer et al., Handbook of LHC Higgs cross sections: 3. Higgs properties, arXiv:1307.1347 [INSPIRE].

  331. J. Baglio et al., The measurement of the Higgs self-coupling at the LHC: theoretical status, JHEP 04 (2013) 151 [arXiv:1212.5581] [INSPIRE].

    ADS  Google Scholar 

  332. T. Plehn, M. Spira and P.M. Zerwas, Pair production of neutral Higgs particles in gluon-gluon collisions, Nucl. Phys. B 479 (1996) 46 [Erratum ibid. B 531 (1998) 655] [hep-ph/9603205] [INSPIRE].

  333. S. Dawson, S. Dittmaier and M. Spira, Neutral Higgs boson pair production at hadron colliders: QCD corrections, Phys. Rev. D 58 (1998) 115012 [hep-ph/9805244] [INSPIRE].

    ADS  Google Scholar 

  334. A. Signer and L.J. Dixon, Electron-positron annihilation into four jets at next-to-leading order in α s , Phys. Rev. Lett. 78 (1997) 811 [hep-ph/9609460] [INSPIRE].

    ADS  Google Scholar 

  335. A. Signer, Next-to-leading order corrections to e + e − → four jets, hep-ph/9705218 [INSPIRE].

  336. Z. Nagy and Z. Trócsányi, Four jet production in e + e − annihilation at next-to-leading order, Nucl. Phys. Proc. Suppl. 64 (1998) 63 [hep-ph/9708344] [INSPIRE].

    ADS  Google Scholar 

  337. Z. Nagy and Z. Trócsányi, Next-to-leading order calculation of four jet shape variables, Phys. Rev. Lett. 79 (1997) 3604 [hep-ph/9707309] [INSPIRE].

    ADS  Google Scholar 

  338. R. Frederix, S. Frixione, K. Melnikov and G. Zanderighi, NLO QCD corrections to five-jet production at LEP and the extraction of α s (M Z ), JHEP 11 (2010) 050 [arXiv:1008.5313] [INSPIRE].

    ADS  Google Scholar 

  339. M.S. Bilenky, G. Rodrigo and A. Santamaria, Three jet production at LEP and the bottom quark mass, Nucl. Phys. B 439 (1995) 505 [hep-ph/9410258] [INSPIRE].

    ADS  Google Scholar 

  340. C.R. Schmidt, Top quark production and decay at next-to-leading order in e + e − annihilation, Phys. Rev. D 54 (1996) 3250 [hep-ph/9504434] [INSPIRE].

    ADS  Google Scholar 

  341. C. Oleari, Next-to-leading order corrections to the production of heavy flavor jets in e + e − collisions, hep-ph/9802431 [INSPIRE].

  342. P. Nason and C. Oleari, Next-to-leading order corrections to the production of heavy flavor jets in e + e − collisions, Nucl. Phys. B 521 (1998) 237 [hep-ph/9709360] [INSPIRE].

    ADS  Google Scholar 

  343. W. Bernreuther, A. Brandenburg and P. Uwer, Next-to-leading order QCD corrections to three jet cross-sections with massive quarks, Phys. Rev. Lett. 79 (1997) 189 [hep-ph/9703305] [INSPIRE].

    ADS  Google Scholar 

  344. A. Brandenburg and P. Uwer, Next-to-leading order QCD corrections and massive quarks in e + e − → three jets, Nucl. Phys. B 515 (1998) 279 [hep-ph/9708350] [INSPIRE].

    ADS  Google Scholar 

  345. A. Brandenburg, The reaction e + e − → \( t\overline{t} g \) at next-to-leading order in αs, hep-ph/9908383 [INSPIRE].

  346. S. Dittmaier, M. Krämer, Y. Liao, M. Spira and P.M. Zerwas, Higgs radiation off top quarks in e + e − collisions, Phys. Lett. B 441 (1998) 383 [hep-ph/9808433] [INSPIRE].

    ADS  Google Scholar 

  347. S. Frixione, P. Torrielli and M. Zaro, Higgs production through vector-boson fusion at the NLO matched with parton showers, Phys. Lett. B 726 (2013) 273 [arXiv:1304.7927] [INSPIRE].

    ADS  Google Scholar 

  348. ATLAS collaboration, Measurement of top-quark pair differential cross-sections in the l + jets channel in pp collisions at \( \sqrt{s} \) = 7 TeV using the ATLAS detector, ATLAS-CONF-2013-099, CERN, Geneva Switzerland (2013).

  349. CMS collaboration, Measurement of differential top-quark pair production cross sections in pp colisions at \( \sqrt{s} \) = 7 TeV, Eur. Phys. J. C 73 (2013) 2339 [arXiv:1211.2220] [INSPIRE].

    ADS  Google Scholar 

  350. CMS collaboration, Measurement of differential top-quark pair production cross sections in the lepton + jets channel in pp collisions at 8 TeV, CMS-TOP-12-027, CERN, Geneva Switzerland (2012).

  351. CMS collaboration, Measurement of the differential \( t\overline{t} \) cross section in the dilepton channel at 8 TeV, CMS-TOP-12-028, CERN, Geneva Switzerland (2012).

  352. ATLAS collaboration, Measurement of \( t\overline{t} \) production with a veto on additional central jet activity in pp collisions at \( \sqrt{s} \) = 7 TeV using the ATLAS detector, Eur. Phys. J. C 72 (2012) 2043 [arXiv:1203.5015] [INSPIRE].

    ADS  Google Scholar 

  353. CMS collaboration, Measurement of jet multiplicity distributions in top quark events with two leptons in the final state at a centre-of-mass energy of 7 TeV, CMS-TOP-12-023, CERN, Geneva Switzerland (2012).

  354. CMS collaboration, Measurement of the jet multiplicity in dileptonic top quark pair events at 8 TeV, CMS-TOP-12-041, CERN, Geneva Switzerland (2012).

  355. S. Dittmaier and M. Kramer, Electroweak radiative corrections to W boson production at hadron colliders, Phys. Rev. D 65 (2002) 073007 [hep-ph/0109062] [INSPIRE].

    ADS  Google Scholar 

  356. A. Denner, Techniques for calculation of electroweak radiative corrections at the one loop level and results for W physics at LEP-200, Fortsch. Phys. 41 (1993) 307 [arXiv:0709.1075] [INSPIRE].

    ADS  Google Scholar 

  357. W. Beenakker et al., NLO QCD corrections to \( t\overline{t} H \) production in hadron collisions, Nucl. Phys. B 653 (2003) 151 [hep-ph/0211352] [INSPIRE].

    ADS  Google Scholar 

  358. T. Binoth, G. Ossola, C.G. Papadopoulos and R. Pittau, NLO QCD corrections to tri-boson production, JHEP 06 (2008) 082 [arXiv:0804.0350] [INSPIRE].

    ADS  Google Scholar 

  359. T. Melia, K. Melnikov, R. Rontsch and G. Zanderighi, NLO QCD corrections for W + W − pair production in association with two jets at hadron colliders, Phys. Rev. D 83 (2011) 114043 [arXiv:1104.2327] [INSPIRE].

    ADS  Google Scholar 

  360. G. Cullen et al., Next-to-leading-order QCD corrections to Higgs boson production plus three jets in gluon fusion, Phys. Rev. Lett. 111 (2013) 131801 [arXiv:1307.4737] [INSPIRE].

    ADS  Google Scholar 

  361. H. van Deurzen et al., Next-to-leading-order QCD corrections to Higgs boson production in association with a top quark pair and a jet, Phys. Rev. Lett. 111 (2013) 171801 [arXiv:1307.8437] [INSPIRE].

    ADS  Google Scholar 

  362. A. Kardos and Z. Trócsányi, Hadroproduction of tt pair with a bb pair using PowHel, J. Phys. G 41 (2014) 075005 [arXiv:1303.6291] [INSPIRE].

    ADS  Google Scholar 

  363. A. Kardos, Z. Trócsányi and C. Papadopoulos, Top quark pair production in association with a Z-boson at NLO accuracy, Phys. Rev. D 85 (2012) 054015 [arXiv:1111.0610] [INSPIRE].

    ADS  Google Scholar 

  364. M.V. Garzelli, A. Kardos, C.G. Papadopoulos and Z. Trócsányi, Z 0 -boson production in association with a top anti-top pair at NLO accuracy with parton shower effects, Phys. Rev. D 85 (2012) 074022 [arXiv:1111.1444] [INSPIRE].

    ADS  Google Scholar 

  365. A. Kardos, C. Papadopoulos and Z. Trócsányi, Top quark pair production in association with a jet with NLO parton showering, Phys. Lett. B 705 (2011) 76 [arXiv:1101.2672] [INSPIRE].

    ADS  Google Scholar 

  366. M.R. Whalley, D. Bourilkov and R.C. Group, The Les Houches accord PDFs (LHAPDF) and LHAGLUE, hep-ph/0508110 [INSPIRE].

  367. M. Cacciari, S. Frixione, M.L. Mangano, P. Nason and G. Ridolfi, Updated predictions for the total production cross sections of top and of heavier quark pairs at the Tevatron and at the LHC, JHEP 09 (2008) 127 [arXiv:0804.2800] [INSPIRE].

    ADS  Google Scholar 

  368. R.D. Ball et al., A first unbiased global NLO determination of parton distributions and their uncertainties, Nucl. Phys. B 838 (2010) 136 [arXiv:1002.4407] [INSPIRE].

    ADS  Google Scholar 

  369. D.E. Soper and M. Spannowsky, Finding top quarks with shower deconstruction, Phys. Rev. D 87 (2013) 054012 [arXiv:1211.3140] [INSPIRE].

    ADS  Google Scholar 

  370. D.E. Soper and M. Spannowsky, Finding physics signals with event deconstruction, arXiv:1402.1189 [INSPIRE].

  371. A. van Hameren, OneLOop: for the evaluation of one-loop scalar functions, Comput. Phys. Commun. 182 (2011) 2427 [arXiv:1007.4716] [INSPIRE].

    ADS  MATH  Google Scholar 

  372. R.K. Ellis and G. Zanderighi, Scalar one-loop integrals for QCD, JHEP 02 (2008) 002 [arXiv:0712.1851] [INSPIRE].

    ADS  Google Scholar 

  373. A. Denner and S. Dittmaier, Reduction schemes for one-loop tensor integrals, Nucl. Phys. B 734 (2006) 62 [hep-ph/0509141] [INSPIRE].

    ADS  Google Scholar 

  374. O.V. Tarasov, Connection between Feynman integrals having different values of the space-time dimension, Phys. Rev. D 54 (1996) 6479 [hep-th/9606018] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  375. G. Duplancic and B. Nizic, Reduction method for dimensionally regulated one loop N point Feynman integrals, Eur. Phys. J. C 35 (2004) 105 [hep-ph/0303184] [INSPIRE].

    ADS  Google Scholar 

  376. M. Cacciari, G.P. Salam and G. Soyez, FastJet user manual, Eur. Phys. J. C 72 (2012) 1896 [arXiv:1111.6097] [INSPIRE].

    ADS  Google Scholar 

  377. R. Kleiss, W.J. Stirling and S.D. Ellis, A new Monte Carlo treatment of multiparticle phase space at high-energies, Comput. Phys. Commun. 40 (1986) 359 [INSPIRE].

    ADS  Google Scholar 

  378. L. Garren and P. Lebrun, StdHEP v5 manual, http://cepa.fnal.gov/psm/stdhep/.

  379. G.P. Lepage, A new algorithm for adaptive multidimensional integration, J. Comput. Phys. 27 (1978) 192 [INSPIRE].

    ADS  MATH  Google Scholar 

  380. G.P. Lepage, VEGAS: an adaptive multidimentional integration program, CLNS-80/447, (1980) [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

  1. Department of Physics, National Taiwan University, Taipei, 10617, Taiwan

    J. Alwall

  2. PH Department, TH Unit, CERN, CH-1211, Geneva 23, Switzerland

    R. Frederix & S. Frixione

  3. SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025-7090, U.S.A.

    V. Hirschi

  4. CP3, Université Catholique de Louvain, B-1348, Louvain-la-Neuve, Belgium

    F. Maltoni & O. Mattelaer

  5. Department of Physics and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, 100871, China

    H.-S. Shao

  6. University of Illinois, Urbana, IL, 61801-3080, U.S.A.

    T. Stelzer

  7. Physik-Institut, Universität Zürich, Winterthurerstrasse 190, 8057, Zurich, Switzerland

    P. Torrielli

  8. Sorbonne Universités, UPMC Univ. Paris 06, UMR 7589, LPTHE, F-75005, Paris, France

    M. Zaro

  9. CNRS, UMR 7589, LPTHE, F-75005, Paris, France

    M. Zaro

Authors
  1. J. Alwall
    View author publications

    You can also search for this author inPubMed Google Scholar

  2. R. Frederix
    View author publications

    You can also search for this author inPubMed Google Scholar

  3. S. Frixione
    View author publications

    You can also search for this author inPubMed Google Scholar

  4. V. Hirschi
    View author publications

    You can also search for this author inPubMed Google Scholar

  5. F. Maltoni
    View author publications

    You can also search for this author inPubMed Google Scholar

  6. O. Mattelaer
    View author publications

    You can also search for this author inPubMed Google Scholar

  7. H.-S. Shao
    View author publications

    You can also search for this author inPubMed Google Scholar

  8. T. Stelzer
    View author publications

    You can also search for this author inPubMed Google Scholar

  9. P. Torrielli
    View author publications

    You can also search for this author inPubMed Google Scholar

  10. M. Zaro
    View author publications

    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence to S. Frixione.

Additional information

ArXiv ePrint: 1405.0301

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alwall, J., Frederix, R., Frixione, S. et al. The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations. J. High Energ. Phys. 2014, 79 (2014). https://doi.org/10.1007/JHEP07(2014)079

Download citation

  • Received: 20 May 2014

  • Accepted: 25 June 2014

  • Published: 17 July 2014

  • DOI: https://doi.org/10.1007/JHEP07(2014)079

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Monte Carlo Simulations
  • NLO Computations
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our brands

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Discover
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Legal notice
  • Cancel contracts here

Not affiliated

Springer Nature

© 2025 Springer Nature