Skip to main content
Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

NNLO corrections to top-pair production at hadron colliders: the all-fermionic scattering channels

  • Open access
  • Published: 11 December 2012
  • Volume 2012, article number 54, (2012)
  • Cite this article
Download PDF

You have full access to this open access article

Journal of High Energy Physics Aims and scope Submit manuscript
NNLO corrections to top-pair production at hadron colliders: the all-fermionic scattering channels
Download PDF
  • Michal Czakon1 &
  • Alexander Mitov2 
  • 772 Accesses

  • 406 Citations

  • Explore all metrics

Abstract

This is a second paper in our ongoing calculation of the next-to-next-to-leading order (NNLO) QCD correction to the total inclusive top-pair production cross-section at hadron colliders. In this paper we calculate the reaction \( q\overline{q}\to t\overline{t}+q\overline{q} \) which was not considered in our previous work on \( q\overline{q}\to t\overline{t}+X \) [1] due to its phenomenologically negligible size. We also calculate all remaining fermion-pair-initiated partonic channels \( q{q^{\prime }} \), \( q{{\overline{q}}^{\prime }} \) and qq that contribute to top-pair production starting from NNLO. The contributions of these reactions to the total cross-section for top-pair production at the Tevatron and LHC are small, at the permil level. The most interesting feature of these reactions is their characteristic logarithmic rise in the high energy limit. We compute the constant term in the leading power behavior in this limit, and achieve precision that is an order of magnitude better than the precision of a recent theoretical prediction for this constant. All four partonic reactions computed in this paper are included in our numerical program Top++. The calculation of the NNLO corrections to the two remaining partonic reactions, \( qg\to t\overline{t}+X \) and \( gg\to t\overline{t}+X \), is ongoing.

Article PDF

Download to read the full article text

Similar content being viewed by others

Top-pair production at the LHC through NNLO QCD and NLO EW

Article Open access 26 October 2017

Top quark pair production beyond NNLO

Article Open access 17 August 2015

Top-quark pair production at the LHC: fully differential QCD predictions at NNLO

Article Open access 17 July 2019
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. P. Baernreuther, M. Czakon and A. Mitov, Percent Level Precision Physics at the Tevatron: First Genuine NNLO QCD Corrections to \( q\overline{q}\to t\overline{t}+X \), Phys. Rev. Lett. 109 (2012) 132001 [arXiv:1204.5201] [INSPIRE].

    Article  ADS  Google Scholar 

  2. M. Beneke, P. Falgari and C. Schwinn, Soft radiation in heavy-particle pair production: All-order colour structure and two-loop anomalous dimension, Nucl. Phys. B 828 (2010) 69 [arXiv:0907.1443] [INSPIRE].

    Article  ADS  Google Scholar 

  3. M. Czakon, A. Mitov and G.F. Sterman, Threshold Resummation for Top-Pair Hadroproduction to Next-to-Next-to-Leading Log, Phys. Rev. D 80 (2009) 074017 [arXiv:0907.1790] [INSPIRE].

    ADS  Google Scholar 

  4. M. Beneke, M. Czakon, P. Falgari, A. Mitov and C. Schwinn, Threshold expansion of the \( gg\left( {q\overline{q}} \right)\to Q\overline{Q}+X \) cross section at \( O\left( {\alpha_s^4} \right) \), Phys. Lett. B 690 (2010) 483 [arXiv:0911.5166] [INSPIRE].

    ADS  Google Scholar 

  5. P. Nason, S. Dawson and R.K. Ellis, The Total Cross-Section for the Production of Heavy Quarks in Hadronic Collisions, Nucl. Phys. B 303 (1988) 607 [INSPIRE].

    Article  ADS  Google Scholar 

  6. W. Beenakker, H. Kuijf, W. van Neerven and J. Smith, QCD Corrections to Heavy Quark Production in \( p\overline{p} \) Collisions, Phys. Rev. D 40 (1989) 54 [INSPIRE].

    ADS  Google Scholar 

  7. M. Czakon and A. Mitov, Inclusive Heavy Flavor Hadroproduction in NLO QCD: The Exact Analytic Result, Nucl. Phys. B 824 (2010) 111 [arXiv:0811.4119] [INSPIRE].

    Article  ADS  Google Scholar 

  8. R. Bonciani, S. Catani, M.L. Mangano and P. Nason, NLL resummation of the heavy quark hadroproduction cross-section, Nucl. Phys. B 529 (1998) 424 [Erratum ibid. B 803 (2008) 234] [hep-ph/9801375] [INSPIRE].

    Article  ADS  Google Scholar 

  9. V. Ahrens, A. Ferroglia, M. Neubert, B.D. Pecjak and L.L. Yang, Renormalization-Group Improved Predictions for Top-Quark Pair Production at Hadron Colliders, JHEP 09 (2010) 097 [arXiv:1003.5827] [INSPIRE].

    Article  ADS  Google Scholar 

  10. V. Ahrens, A. Ferroglia, M. Neubert, B.D. Pecjak and L.-L. Yang, RG-improved single-particle inclusive cross sections and forward-backward asymmetry in \( t\overline{t} \) production at hadron colliders, JHEP 09 (2011) 070 [arXiv:1103.0550] [INSPIRE].

    Article  ADS  Google Scholar 

  11. V. Ahrens, A. Ferroglia, M. Neubert, B.D. Pecjak and L.L. Yang, Precision predictions for the t+t(bar) production cross section at hadron colliders, Phys. Lett. B 703 (2011) 135 [arXiv:1105.5824] [INSPIRE].

    ADS  Google Scholar 

  12. U. Langenfeld, S. Moch and P. Uwer, Measuring the running top-quark mass, Phys. Rev. D 80 (2009) 054009 [arXiv:0906.5273] [INSPIRE].

    ADS  Google Scholar 

  13. M. Beneke, P. Falgari, S. Klein and C. Schwinn, Threshold expansion of massive coloured particle cross sections, Nucl. Phys. Proc. Suppl. 205-206 (2010) 20 [arXiv:1009.4011] [INSPIRE].

    Article  Google Scholar 

  14. N. Kidonakis, Next-to-next-to-leading soft-gluon corrections for the top quark cross section and transverse momentum distribution, Phys. Rev. D 82 (2010) 114030 [arXiv:1009.4935] [INSPIRE].

    ADS  Google Scholar 

  15. N. Kidonakis and B.D. Pecjak, Top-quark production and QCD, Eur. Phys. J. C 72 (2012) 2084 [arXiv:1108.6063] [INSPIRE].

    ADS  Google Scholar 

  16. M. Beneke, P. Falgari, S. Klein and C. Schwinn, Hadronic top-quark pair production with NNLL threshold resummation, Nucl. Phys. B 855 (2012) 695 [arXiv:1109.1536] [INSPIRE].

    Article  ADS  Google Scholar 

  17. M. Cacciari, M. Czakon, M. Mangano, A. Mitov and P. Nason, Top-pair production at hadron colliders with next-to-next-to-leading logarithmic soft-gluon resummation, Phys. Lett. B 710 (2012) 612 [arXiv:1111.5869] [INSPIRE].

    ADS  Google Scholar 

  18. M. Beneke, P. Falgari, S. Klein and C. Schwinn, The Top-Quark Pair Production Cross section at Next-to-Next-to-Leading Logarithmic Order, arXiv:1112.4606 [INSPIRE].

  19. D0 collaboration, V.M. Abazov et al., Measurement of the \( t\overline{t} \) production cross section using dilepton events in \( p\overline{p} \) collisions, Phys. Lett. B 704 (2011) 403 [arXiv:1105.5384] [INSPIRE].

    ADS  Google Scholar 

  20. D0 collaboration, V.M. Abazov et al., Measurement of the top quark pair production cross section in the lepton+jets channel in proton-antiproton collisions at \( \sqrt{s}=1.96\;TeV \), Phys. Rev. D 84 (2011) 012008 [arXiv:1101.0124] [INSPIRE].

    ADS  Google Scholar 

  21. CDF collaboration, T. Aaltonen et al., Measurement of the \( t\overline{t} \) production cross section in \( p\overline{p} \) collisions at \( \sqrt{s}=1.96\;TeV \) using events with large Missing E T and jets, Phys. Rev. D 84 (2011) 032003 [arXiv:1105.1806] [INSPIRE].

    ADS  Google Scholar 

  22. CDF collaboration, T. Aaltonen et al., Measurement of the Top Pair Production Cross section in the Dilepton Decay Channel in \( p\overline{p} \) Collisions at \( \sqrt{s}=1.96\;TeV \), Phys. Rev. D 82 (2010) 052002 [arXiv:1002.2919] [INSPIRE].

    ADS  Google Scholar 

  23. CMS collaboration, V. Khachatryan et al., First Measurement of the Cross section for Top-Quark Pair Production in Proton-Proton Collisions at \( \sqrt{s}=7\;TeV \), Phys. Lett. B 695 (2011) 424 [arXiv:1010.5994] [INSPIRE].

    ADS  Google Scholar 

  24. CMS collaboration, S. Chatrchyan et al., Measurement of the \( t\overline{t} \) production cross section and the top quark mass in the dilepton channel in pp collisions at \( \sqrt{s}=7\;TeV \), JHEP 07 (2011) 049 [arXiv:1105.5661] [INSPIRE].

    Article  ADS  Google Scholar 

  25. ATLAS collaboration, G. Aad et al., Measurement of the top quark-pair production cross section with ATLAS in pp collisions at \( \sqrt{s}=7\;TeV \), Eur. Phys. J. C 71 (2011) 1577 [arXiv:1012.1792] [INSPIRE].

    Article  ADS  Google Scholar 

  26. CDF and D0 collaboration, T.T. E.W. Group, Combination of CDF and D0 Results on the Mass of the Top Quark Using Up to 5.6 f b −1 of Data, arXiv:1007.3178 [INSPIRE].

  27. ATLAS collaboration, G. Aad et al., Measurement of the top quark pair production cross section in pp collisions at \( \sqrt{s}=7\;TeV \) in dilepton final states with ATLAS, Phys. Lett. B 707 (2012) 459 [arXiv:1108.3699] [INSPIRE].

    ADS  Google Scholar 

  28. CDF collaboration, Combination of CDF top quark pair production cross section measurements with up to 4.6 f b −1, CDF note 9913 (2009).

  29. ATLAS collaboration, Measurement of the \( t\overline{t} \) production cross-section in pp collisions at \( \sqrt{s}=7\;TeV \) using kinematic information of lepton+jets events, ATLAS-CONF-2011-121 (2011).

  30. ATLAS collaboration, Measurement of the top quark pair production cross section in pp collisions at \( \sqrt{s}=7\;TeV \) in dilepton final states with ATLAS, ATLAS-CONF-2011-100 (2011).

  31. CMS collaboration, Measurement of \( t\overline{t} \) pair production cross section at \( \sqrt{s}=7\;TeV \) using b-quark Jet Identification Techniques in Lepton + Jet Events, CMS-PAS-TOP-11-003 (2011).

  32. S.J. Brodsky and X.-G. Wu, Application of the Principle of Maximum Conformality to Top-Pair Production, Phys. Rev. D 86 (2012) 014021 [arXiv:1204.1405] [INSPIRE].

    ADS  Google Scholar 

  33. S.J. Brodsky, G.P. Lepage and P.B. Mackenzie, On the Elimination of Scale Ambiguities in Perturbative Quantum Chromodynamics, Phys. Rev. D 28 (1983) 228 [INSPIRE].

    ADS  Google Scholar 

  34. S.J. Brodsky and L. Di Giustino, Setting the Renormalization Scale in QCD: The Principle of Maximum Conformality, Phys. Rev. D 86 (2012) 085026 [arXiv:1107.0338] [INSPIRE].

    ADS  Google Scholar 

  35. S.J. Brodsky and X.-G. Wu, Scale Setting Using the Extended Renormalization Group and the Principle of Maximum Conformality: the QCD Coupling Constant at Four Loops, Phys. Rev. D 85 (2012) 034038 [Erratum ibid. D 86 (2012) 079903] [arXiv:1111.6175] [INSPIRE].

    ADS  Google Scholar 

  36. R. Ball and R.K. Ellis, Heavy quark production at high-energy, JHEP 05 (2001) 053 [hep-ph/0101199] [INSPIRE].

    Article  ADS  Google Scholar 

  37. S. Moch, P. Uwer and A. Vogt, On top-pair hadro-production at next-to-next-to-leading order, Phys. Lett. B 714 (2012) 48 [arXiv:1203.6282] [INSPIRE].

    ADS  Google Scholar 

  38. M. Czakon, A novel subtraction scheme for double-real radiation at NNLO, Phys. Lett. B 693 (2010) 259 [arXiv:1005.0274] [INSPIRE].

    ADS  Google Scholar 

  39. M. Czakon, Double-real radiation in hadronic top quark pair production as a proof of a certain concept, Nucl. Phys. B 849 (2011) 250 [arXiv:1101.0642] [INSPIRE].

    Article  ADS  Google Scholar 

  40. G. Abelof and A. Gehrmann-De Ridder, Double real radiation corrections to \( t\overline{t} \) production at the LHC: the all-fermion processes, JHEP 04 (2012) 076 [arXiv:1112.4736] [INSPIRE].

    Article  ADS  Google Scholar 

  41. R.K. Ellis, W.J. Stirling and B.R. Webber, QCD and Collider Physics, Cambridge University Press, (1996).

  42. E. Remiddi and J. Vermaseren, Harmonic polylogarithms, Int. J. Mod. Phys. A 15 (2000) 725 [hep-ph/9905237] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  43. D. Maître, Extension of HPL to complex arguments, Comput. Phys. Commun. 183 (2012) 846 [hep-ph/0703052] [INSPIRE].

    Article  ADS  Google Scholar 

  44. D. Maître, HPL, a mathematica implementation of the harmonic polylogarithms, Comput. Phys. Commun. 174 (2006) 222 [hep-ph/0507152] [INSPIRE].

    Article  ADS  Google Scholar 

  45. K. Melnikov and A. Mitov, Perturbative heavy quark fragmentation function through O(alpha**2(s)), Phys. Rev. D 70 (2004) 034027 [hep-ph/0404143] [INSPIRE].

    ADS  Google Scholar 

  46. A. Mitov, S. Moch and A. Vogt, Next-to-Next-to-Leading Order Evolution of Non-Singlet Fragmentation Functions, Phys. Lett. B 638 (2006) 61 [hep-ph/0604053] [INSPIRE].

    ADS  Google Scholar 

  47. G. Curci, W. Furmanski and R. Petronzio, Evolution of Parton Densities Beyond Leading Order: The Nonsinglet Case, Nucl. Phys. B 175 (1980) 27 [INSPIRE].

    Article  ADS  Google Scholar 

  48. M. Neubert, Factorization analysis for the fragmentation functions of hadrons containing a heavy quark, arXiv:0706.2136 [INSPIRE].

  49. A. Ferroglia, B.D. Pecjak and L.L. Yang, Soft-gluon resummation for boosted top-quark production at hadron colliders, Phys. Rev. D 86 (2012) 034010 [arXiv:1205.3662] [INSPIRE].

    ADS  Google Scholar 

  50. M. Czakon and A. Mitov, Top++: A Program for the Calculation of the Top-Pair Cross-Section at Hadron Colliders, arXiv:1112.5675 [INSPIRE].

  51. S. Catani, M. Ciafaloni and F. Hautmann, Gluon contributions to small-x heavy flavor production, Phys. Lett. B 242 (1990) 97 [INSPIRE].

    ADS  Google Scholar 

  52. J.C. Collins and R.K. Ellis, Heavy quark production in very high-energy hadron collisions, Nucl. Phys. B 360 (1991) 3 [INSPIRE].

    Article  ADS  Google Scholar 

  53. S. Catani, M. Ciafaloni and F. Hautmann, High-energy factorization and small x heavy flavor production, Nucl. Phys. B 366 (1991) 135 [INSPIRE].

    Article  ADS  Google Scholar 

  54. S. Catani, M. Ciafaloni and F. Hautmann, High-energy factorization in QCD and minimal subtraction scheme, Phys. Lett. B 307 (1993) 147 [INSPIRE].

    ADS  Google Scholar 

  55. S. Catani and F. Hautmann, High-energy factorization and small x deep inelastic scattering beyond leading order, Nucl. Phys. B 427 (1994) 475 [hep-ph/9405388] [INSPIRE].

    Article  ADS  Google Scholar 

  56. M. Beneke et al., Inclusive Top-Pair Production Phenomenology with TOPIXS, JHEP 07 (2012) 194 [arXiv:1206.2454] [INSPIRE].

    Article  ADS  Google Scholar 

  57. F.-P. Schilling, Top Quark Physics at the LHC: A Review of the First Two Years, Int. J. Mod. Phys. A 27 (2012) 1230016 [arXiv:1206.4484] [INSPIRE].

    ADS  Google Scholar 

  58. A. Martin, W. Stirling, R. Thorne and G. Watt, Parton distributions for the LHC, Eur. Phys. J. C 63 (2009) 189 [arXiv:0901.0002] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Institut für Theoretische Teilchenphysik und Kosmologie, RWTH Aachen University, D-52056, Aachen, Germany

    Michal Czakon

  2. Theory Division, CERN, CH-1211, Geneva 23, Switzerland

    Alexander Mitov

Authors
  1. Michal Czakon
    View author publications

    You can also search for this author inPubMed Google Scholar

  2. Alexander Mitov
    View author publications

    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence to Alexander Mitov.

Additional information

ArXiv ePrint: 1207.0236

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License ( https://creativecommons.org/licenses/by/2.0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and permissions

About this article

Cite this article

Czakon, M., Mitov, A. NNLO corrections to top-pair production at hadron colliders: the all-fermionic scattering channels. J. High Energ. Phys. 2012, 54 (2012). https://doi.org/10.1007/JHEP12(2012)054

Download citation

  • Received: 13 July 2012

  • Revised: 22 October 2012

  • Accepted: 29 October 2012

  • Published: 11 December 2012

  • DOI: https://doi.org/10.1007/JHEP12(2012)054

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • QCD Phenomenology
  • Hadronic Colliders
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our brands

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Discover
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Legal notice
  • Cancel contracts here

Not affiliated

Springer Nature

© 2025 Springer Nature