Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Impacts of biodiversity on the emergence and transmission of infectious diseases

Abstract

Current unprecedented declines in biodiversity reduce the ability of ecological communities to provide many fundamental ecosystem services. Here we evaluate evidence that reduced biodiversity affects the transmission of infectious diseases of humans, other animals and plants. In principle, loss of biodiversity could either increase or decrease disease transmission. However, mounting evidence indicates that biodiversity loss frequently increases disease transmission. In contrast, areas of naturally high biodiversity may serve as a source pool for new pathogens. Overall, despite many remaining questions, current evidence indicates that preserving intact ecosystems and their endemic biodiversity should generally reduce the prevalence of infectious diseases.

Access to this article via Institution of Civil Engineers Library is not available.

This is a preview of subscription content, access via your institution

Access options

Access to this article via Institution of Civil Engineers Library is not available.

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Roles of host species in the transmission of Lyme disease in the northeastern USA.
Figure 2: Drivers and locations of emergence events for zoonotic infectious diseases in humans from 1940–2005.

Similar content being viewed by others

References

  1. Marris, E. New UN science body to monitor biosphere. Nature 10.1038/news.2010.297 (2010)

  2. Naeem, S., Bunker, D., Hector, A., Loreau, M. & Perrings, C. Biodiversity, Ecosystem Functioning, and Human Wellbeing: an Ecological and Economic Perspective (Oxford University Press, 2009)

    Book  Google Scholar 

  3. Mace, G. M., Masundire, H. & Baillie, J. E. M. in Ecosystems and Human Well-Being: Current State and Trends: Findings of the Condition and Trends Working Group Vol. 1, Ch. 4 (Millennium Ecosystem Assessment Series, Island Press, 2005)

    Google Scholar 

  4. IUCN. IUCN Red List of Threatened Species Version 2010.2. 〈http://www.iucnredlist.org〉 (downloaded on, 29 June 2010)

  5. Loh, J. et al. in 2010 and Beyond: Rising to the Biodiversity Challenge (ed. Loh, J.) (Living Planet Index, WWF, 2008)

    Google Scholar 

  6. Dobson, A. P. et al. Homage to Linnaeus: How many parasites? How many hosts? Proc. Natl Acad. Sci. USA 105, 11482–11489 (2008)

    Article  ADS  CAS  Google Scholar 

  7. Allan, B. F. et al. Ecological correlates of risk and incidence of West Nile virus in the United States. Oecologia 155, 699–708 (2009)

    Article  ADS  Google Scholar 

  8. Ezenwa, V. O., Godsey, M. S., King, R. J. & Guptill, S. C. Avian diversity and West Nile virus: testing associations between biodiversity and infectious disease risk. Proc. R. Soc. Lond. B 273, 109–117 (2006)

    Article  Google Scholar 

  9. Swaddle, J. & Calos, P. Increased avian diversity is associated with lower incidence of human West Nile infection: observation of the dilution effect. PLoS ONE 3, e2488 (2008)

    Article  ADS  Google Scholar 

  10. Roscher, C., Schumacher, J., Foitzik, O. & Schulze, E.-D. Resistance to rust fungi in Lolium perenne depends on within-species variation and performance of the host species in grasslands of different plant diversity. Oecologia 153, 173–183 (2007)

    Article  ADS  Google Scholar 

  11. Begon, M. in Infectious Disease Ecology: Effects of Ecosystems on Disease and of Disease on Ecosystems (eds Ostfeld, R., Keesing, F. & Eviner, V.) 12–29 (Princeton University Press, 2008)

    Google Scholar 

  12. Johnson, P. T. J., Lund, P., Hartson, R. B. & Yoshino, T. Community diversity reduces Schistosoma mansoni transmission and human infection risk. Proc. R. Soc. Lond. B 276, 1657–1663 (2009)Through careful experimentation, the authors establish that the presence of another species can reduce parasite transmission even if the total density of hosts remains constant.

    Article  Google Scholar 

  13. Rudolf, V. H. & Antonovics, J. Species coexistence and pathogens with frequency-dependent transmission. Am. Nat. 166, 112–118 (2005)

    Article  Google Scholar 

  14. Dobson, A. P. Population dynamics of pathogens with multiple host species. Am. Nat. 164, S64–S78 (2004)

    Article  Google Scholar 

  15. Cecère, M. C., Gürtler, R. E., Chuit, R. & Cohen, J. Effects of chickens on the prevalence of infestation and population density of Triatoma infestans in rural houses of northwest Argentina. Med. Vet. Entomol. 11, 383–388 (1997)

    Article  Google Scholar 

  16. Bouma, M. & Rowland, M. Failure of passive zooprophylaxis: cattle ownership in Pakistan is associated with a higher prevalence of malaria. Trans. R. Soc. Trop. Med. Hyg. 89, 351–353 (1995)

    Article  CAS  Google Scholar 

  17. Laurenson, M. K., Norman, R. A., Gilbert, L., Reid, H. W. & Hudson, P. J. Identifying disease reservoirs in complex systems: mountain hares as reservoirs of ticks and louping-ill virus, pathogens of red grouse. J. Anim. Ecol. 72, 177–185 (2003)

    Article  Google Scholar 

  18. Keesing, F. et al. Hosts as ecological traps for the vector of Lyme disease. Proc. R. Soc. Lond. B 276, 3911–3919 (2009)This paper presents a suite of mechanisms by which diversity could reduce disease transmission and reviews the literature for evidence of these mechanisms.

    Article  CAS  Google Scholar 

  19. Clay, C. A., Lehmer, E. M., St Jeor, S. & Dearing, M. D. Testing mechanisms of the dilution effect: deer mice encounter rates, Sin Nombre virus prevalence and species diversity. EcoHealth 6, 250–259 (2009)

    Article  Google Scholar 

  20. Ostfeld, R. S. & LoGiudice, K. Community disassembly, biodiversity loss, and the erosion of an ecosystem service. Ecology 84, 1421–1427 (2003)The authors use analytical models of Lyme disease to explore the importance of knowing the order in which species are lost as biodiversity declines.

    Article  Google Scholar 

  21. Johnson, P. T. J. & Thieltges, D. W. Diversity, decoys and the dilution effect: how ecological communities affect disease risk. J. Exp. Biol. 213, 961–970 (2010)This paper reviews how diversity could affect disease transmission with particular attention to the transmission of parasites.

    Article  CAS  Google Scholar 

  22. LoGiudice, K. et al. Impact of host community composition on Lyme disease risk. Ecology 89, 2841–2849 (2008)

    Article  Google Scholar 

  23. Suzán, G. et al. Experimental evidence for reduced mammalian diversity causing increased hantavirus prevalence. PLoS ONE 4, e5461 (2009)

    Article  ADS  Google Scholar 

  24. Kosoy, M. et al. Distribution, diversity, and host specificity of Bartonella in rodents from the Southeastern United States. Am. J. Trop. Med. Hyg. 57, 578–588 (1997)

    Article  CAS  Google Scholar 

  25. Cronin, J. P., Welsh, M. E., Dekkers, M. G., Abercrombie, S. T. & Mitchell, C. E. Host physiological phenotype explains pathogen reservoir potential. Ecol. Lett. 10.1111/j.1461–0248.2010.01513.x (2010)

  26. Pilgrim, E. S., Crawley, M. J. & Dolphin, K. Patterns of rarity in the native British flora. Biol. Conserv. 120, 161–170 (2004)

    Article  Google Scholar 

  27. Cardillo, M. et al. The predictability of extinction: biological and external correlates of decline in mammals. Proc. R. Soc. Lond. B 275, 1441–1448 (2008)

    Article  Google Scholar 

  28. Martin, L. B., Hasselquist, D. & Wikelski, M. Investment in immune defense is linked to pace of life in house sparrows. Oecologia 147, 565–575 (2006)

    Article  ADS  Google Scholar 

  29. Martin, L. B., Weil, Z. M. & Nelson, R. J. Immune defense and reproductive pace of life in Peromyscus mice. Ecology 88, 2516–2528 (2007)

    Article  Google Scholar 

  30. Lee, K. A., Wikelski, M., Robinson, W. D., Robinson, T. R. & Klasing, K. C. Constitutive immune defenses correlate with life-history variables in tropical birds. J. Anim. Ecol. 77, 356–363 (2008)

    Article  CAS  Google Scholar 

  31. Turnbaugh, P. J. et al. The human microbiome project. Nature 449, 804–810 (2007)

    Article  ADS  CAS  Google Scholar 

  32. Sunagawa, S. et al. Bacterial diversity and White Plague disease-associated community changes in the Caribbean coral Montastraea faveolata . ISME J. 3, 512–521 (2009)

    Article  CAS  Google Scholar 

  33. Holzman, C. et al. Factors linked to bacterial vaginosis in nonpregnant women. Am. J. Public Health 91, 1664–1670 (2001)

    Article  CAS  Google Scholar 

  34. Atashili, J., Poolea, C., Ndumbeb, P. M., Adimoraa, A. A. & Smith, J. S. Bacterial vaginosis and HIV acquisition: a meta-analysis of published studies. AIDS 22, 1493–1501 (2008)

    Article  Google Scholar 

  35. Chang, J. Y. et al. Decreased diversity of the fecal microbiome in recurrent Clostridium difficile-associated diarrhea. J. Infect. Dis. 197, 435–438 (2008)

    Article  Google Scholar 

  36. Roos, K., Håkansson, E. G. & Holm, S. Effect of recolonisation with “interfering” α streptococci on recurrences of acute and secretory otitis media in children: randomised placebo controlled trial. Br. Med. J. 322, 1–4 (2001)

    Article  Google Scholar 

  37. Lawley, T. D. et al. Antibiotic treatment of Clostridium difficile carrier mice triggers a supershedder state, spore-mediated transmission, and severe disease in immunocompromised hosts. Infect. Immun. 77, 3661–3669 (2009)

    Article  CAS  Google Scholar 

  38. Matos, A., Kerkhof, L. & Garland, J. Effects of microbial community diversity on the survival of Pseudomonas aeruginosa in the wheat rhizosphere. Microb. Ecol. 49, 257–264 (2005)

    Article  CAS  Google Scholar 

  39. Mulder, I. E. et al. Environmentally-acquired bacteria influence microbial diversity and natural innate immune responses at gut surfaces. BMC Biol. 7 10.1186/1741–7007–7-79 (2009)

    Article  Google Scholar 

  40. Jones, K. et al. Global trends in emerging infectious diseases. Nature 451, 990–993 (2008)This paper explores patterns in emerging infectious diseases of humans during the 20th century and predicts hotspots for future disease emergence events.

    Article  ADS  CAS  Google Scholar 

  41. Hudson, P., Perkins, S. & Cattadori, I. in Infectious Disease Ecology: Effects of Ecosystems on Disease and of Disease on Ecosystems (eds Ostfeld, R., Keesing, F. & Eviner, V.) 347–367 (Princeton University Press, 2008)

    Google Scholar 

  42. Wolfe, N., Dunavan, C. P. & Diamond, J. Origins of major human infectious diseases. Nature 447, 279–283 (2007)

    Article  ADS  CAS  Google Scholar 

  43. Woolhouse, M. E. J. & Gowtage-Sequeria, S. Host range and emerging and reemerging pathogens. Emerg. Infect. Dis. 11, 1842–1847 (2005)

    Article  Google Scholar 

  44. Epstein, J. H., Field, H. E., Luby, S., Pulliam, J. R. C. & Daszak, P. Nipah virus: Impact, origins, and causes of emergence. Curr. Infect. Dis. Rep. 8, 59–65 (2006)

    Article  Google Scholar 

  45. Flanagan, J. L. et al. Loss of bacterial diversity during antibiotic treatment of intubated patients colonized with Pseudomonas aeruginosa . J. Clin. Microbiol. 45, 1954–1962 (2007)

    Article  CAS  Google Scholar 

  46. Dethlefsen, L., Huse, S., Sogin, M. L. & Relman, D. A. The pervasive effects of an antibiotic on the human gut microbiota, as revealed by deep 16S rRNA sequencing. PLoS Biol. 6, e280 (2008)

    Article  Google Scholar 

  47. Harris, R. et al. Skin microbes on frogs prevent morbidity and mortality caused by a lethal skin fungus. ISME J. 3, 818–824 (2009)

    Article  CAS  Google Scholar 

  48. Efrony, R., Atad, I. & Rosenberg, E. Phage therapy of Coral White Plague disease: properties of phage BA3. Curr. Microbiol. 58, 139–145 (2009)

    Article  CAS  Google Scholar 

  49. Sleator, R. D. & Hill, C. New frontiers in probiotic research. Lett. Appl. Microbiol. 46, 143–147 (2008)

    Article  CAS  Google Scholar 

  50. Margules, C. & Sarkar, S. Systematic Conservation Planning (Cambridge University Press, 2007)

    Google Scholar 

  51. Wolfe, N. D., Daszak, P., Kilpatrick, A. M. & Burke, D. S. Bushmeat hunting, deforestation, and prediction of zoonoses emergence. Emerg. Infect. Dis. 11, 1822–1827 (2005)

    Article  Google Scholar 

  52. Dennehy, J. J., Friedenberg, N. A., Yang, Y. W. & Turner, P. E. Virus population extinction via ecological traps. Ecol. Lett. 10, 230–240 (2007)

    Article  Google Scholar 

  53. Raymundo, L. J., Halforda, A. R., Maypab, A. P. & Kerr, A. M. Functionally diverse reef-fish communities ameliorate coral disease. Proc. Natl Acad. Sci. USA 106, 17067–17070 (2009)

    Article  ADS  CAS  Google Scholar 

  54. Hall, S. R. et al. Friendly competition: evidence for a dilution effect among competitors in a planktonic host–parasite system. Ecology 90, 791–801 (2009)

    Article  Google Scholar 

  55. Clay, C., Lehmer, E. M., St, Jeor, S. & Dearing, M. D. Sin Nombre virus and rodent species diversity: a test of the dilution and amplification hypotheses. PLoS ONE 4, e6467 (2009)

    Article  ADS  Google Scholar 

  56. Dizney, L. J. & Ruedas, L. A. Increased host species diversity and decreased prevalence of Sin Nombre virus. Emerg. Infect. Dis. 15, 1012–1018 (2009)

    Article  Google Scholar 

  57. Tersago, K. et al. Population, environmental, and community effects on local bank vole (Myodes glareolus) Puumala virus infection in an area with low human incidence. Vector-Borne Zoonotic Dis. 8, 235–244 (2008)

    Article  CAS  Google Scholar 

  58. Kelly, D. W., Paterson, R. A., Townsend, C. R., Poulin, R. & Tompkins, D. M. Has the introduction of brown trout altered disease patterns in native New Zealand fish? Freshwat. Biol. 54, 1805–1818 (2009)

    Article  Google Scholar 

  59. Brunner, J. & Ostfeld, R. S. Multiple causes of variable tick burdens on small-mammal hosts. Ecology 89, 2259–2272 (2008)

    Article  Google Scholar 

  60. Carlson, J. C., Dyer, L. A., Omlin, F. X. & Beier, J. C. Diversity cascades and malaria vectors. J. Med. Entomol. 46, 460–464 (2009)

    Article  Google Scholar 

  61. Kopp, K. & Jokela, J. Resistant invaders can convey benefits to native species. Oikos 116, 295–301 (2007)

    Article  Google Scholar 

  62. Thieltges, D. W., Bordalo, M. D., Caballero-Hernandez, A., Prinz, K. & Jensen, K. T. Ambient fauna impairs parasite transmission in a marine parasite-host system. Parasitology 135, 1111–1116 (2008)

    Article  CAS  Google Scholar 

  63. Thieltges, D. W., Reise, K., Prinz, K. & Jensen, K. T. Invaders interfere with native parasite-host interactions. Biol. Invasions 11, 1421–1429 (2009)

    Article  Google Scholar 

  64. Koenig, W. D., Hochachka, W. M., Zuckerberg, B. & Dickinson, J. L. Ecological determinants of American crow mortality due to West Nile virus during its North American sweep. Oecologia 163, 903–909 (2010)

    Article  ADS  Google Scholar 

  65. Keesing, F., Holt, R. D. & Ostfeld, R. S. Effects of species diversity on disease risk. Ecol. Lett. 9, 485–498 (2006)

    Article  CAS  Google Scholar 

  66. Mitchell, C. E. Mitchell, C. A., Tilman, D. & Groth, J. V. Effects of grassland plant species diversity, abundance, and composition on foliar fungal disease. Ecology 83, 1713–1726 (2002)

    Article  Google Scholar 

  67. Saul, A. Zooprophylaxis or zoopotentiation: the outcome of introducing animals on vector transmission is highly dependent on the mosquito mortality while searching. Malar. J. 2, 32–50 (2003)

    Article  Google Scholar 

  68. Laracuente, A., Brown, R. A. & Jobin, W. Comparison of four species of snails as potential decoys to intercept schistosome miracidia. Am. J. Trop. Med. Hyg. 28, 99–105 (1979)

    Article  CAS  Google Scholar 

  69. Zhu, Y.-Y. et al. Panicle blast and canopy moisture in rice cultivar mixtures. Phytopathology 95, 433–438 (2005)

    Article  Google Scholar 

  70. Mundt, C. Use of multiline cultivars and cultivar mixtures for disease management. Annu. Rev. Phytopathol. 40, 381–410 (2002)

    Article  CAS  Google Scholar 

  71. CDC. Hantavirus pulmonary syndrome in five pediatric patients—four states, 2009. Morbidity Mortality Week. Rep. 58, 1409–1412 (2009)

  72. Yates, T. L. et al. The ecology and evolutionary history of an emergent disease: hantavirus pulmonary syndrome. Bioscience 52, 989–998 (2002)

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the support of the joint NSF-NIH Ecology of Infectious Disease programme and the EPA Biodiversity and Human Health programme. M. Gillespie provided help in the preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

F.K. and R.S.O. conceived the review. F.K., L.K.B., P.D., A.D., C.D.H., R.D.H., P.H., A.J., K.E.J., C.E.M., S.S.M. and R.S.O. wrote and edited the text. T.B. prepared Fig. 2.

Corresponding author

Correspondence to Felicia Keesing.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Table 1 and additional references. (PDF 146 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Keesing, F., Belden, L., Daszak, P. et al. Impacts of biodiversity on the emergence and transmission of infectious diseases. Nature 468, 647–652 (2010). https://doi.org/10.1038/nature09575

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature09575

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing