Skip to main content
Log in

Detection of an intergalactic meteor particle with the 6-m telescope

  • Published:
Astrophysical Bulletin Aims and scope Submit manuscript

Abstract

On July 28, 2006 the 6-m telescope of the Special Astrophysical Observatory of the Russian Academy of Sciences recorded the spectrum of a faint meteor. We confidently identify the lines of FeI and MgI, OI, NI and molecular-nitrogen (N2) bands. The entry velocity of the meteor body into the Earth’s atmosphere estimated from radial velocity is equal to 300 km/s. The body was several tens of a millimeter in size, like chondrules in carbon chondrites. The radiant of the meteor trajectory coincides with the sky position of the apex of the motion of the Solar system toward the centroid of the Local Group of galaxies. Observations of faint sporadic meteors with FAVOR TV CCD camera confirmed the radiant at a higher than 96% confidence level. We conclude that this meteor particle is likely to be of extragalactic origin. The following important questions remain open: (1) How metal-rich dust particles came to be in the extragalactic space? (2) Why are the sizes of extragalactic particles larger by two orders of magnitude (and their masses greater by six orders of magnitude) than common interstellar dust grains in our Galaxy? (3) If extragalactic dust surrounds galaxies in the form of dust (or gas-and-dust) aureoles, can such formations now be observed using other observational techniques (IR observations aboard Spitzer satellite, etc.)? (4) If inhomogeneous extragalactic dust medium with the parameters mentioned above actually exists, does it show up in the form of irregularities on the cosmic microwave background (WMAP etc.)?

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Hapgood, P. Rothwell, O. Royvik, MNRAS 201, 569, (1982).

    ADS  Google Scholar 

  2. J. Borovicka, R. Stork, J. Bocek, Meteorics and Planetary Science, 34 987, (1999).

    Article  ADS  Google Scholar 

  3. J. Stauffer, H. Spinrad, PASP 90, 222, (1978).

    Article  ADS  Google Scholar 

  4. V. L. Afanas’ev, A. V. Moiseev, Pis’ma Astron. Zh. 31, 214, (2005).

    Google Scholar 

  5. J. Borovicka, O. P. Popova, A. P. Golub, et al., Astronom. and Astrophys. 33, 591, (1998).

    ADS  Google Scholar 

  6. J. M. Trigo-Rodriguez, J. Llorca, J. Borovicka, J. Fabrecant, Meteorits & Planetary Science 38, 1283, (2003).

    ADS  Google Scholar 

  7. V. A. Kamenshchikov, Yu. A. Plastinin, V. M. Nikolaev, L. A. Novitskii, Radiatsionnye Svoistva Gazov pri Vysokikh Temperaturakh (Radiation Properties of Gases at Hight Temperatures), (Mashinostroenie, Moscow, 1971) (in Russian).

    Google Scholar 

  8. D. P. Galligan, W. J. Baggaley, MNRAS 359, 551, (2005).

    Article  ADS  Google Scholar 

  9. A. D. Taylor, W. J. Baggaley, R. G. T. Bennet, D. I. Steel, Planetary and Space Science 42, 135, (1994).

    Article  ADS  Google Scholar 

  10. I. D. Karachentsev, D. I. Makarov, AJ, 111, 794, (1996).

    Article  ADS  Google Scholar 

  11. V. V. Kalenichenko, Kinematica Fiz. Nebesnykh Tel 8, 69, (1992).

    ADS  Google Scholar 

  12. V. V. Kalenichenko, Astron. Vetsnik. 14, 86, (1982).

    ADS  Google Scholar 

  13. CIRA 1972, Cospar International Reference Atmosphere (Berlin, Akademie-Verlag, 1972), 450 pp.

    Google Scholar 

  14. V. V. Kalenichenko, Kinematica Fiz. Nebesnykh Tel 8, 61, (1992).

    ADS  Google Scholar 

  15. V. V. Kalenichenko, Kinematica Fiz. Nebesnykh Tel 9, 52, (1993).

    ADS  Google Scholar 

  16. V. A. Bronshten, Fizika Meteornykh Yavlenii (Physics of Meteor Phenomena), (Nauka, Moscow, 1981), 416 (in Russian).

    Google Scholar 

  17. V. V. Kalenichenko, Kinematica Fiz. Nebesnykh Tel 20, 157, (2004).

    ADS  Google Scholar 

  18. K. A. Hill, L. A. Rogers, R. L. Hawkes, Astronom. and Astrophys. 444, 615, (2005).

    Article  ADS  Google Scholar 

  19. R. T. Dodd, Meteority. Petrologiya i Geokhimiya, (Mir, Moscow, 1986), 384 (in Russian). Translated from R. T. Dodd. Meteorites — a Petrologic-Chemical Synthesis. Chemistry University Press, 1981. 368 pp

    Google Scholar 

  20. S. Karpov, G. Beskin, A. Biryukov, et al., I., IL NUOVO CIMENTO 28, 747, (2005).

    ADS  Google Scholar 

  21. I.D. Karachentsev, AJ, 129, 17, (2005)

    Article  ADS  Google Scholar 

  22. I. D. Karachentsev and V. A. Lipovetsky, Astron. Zh. 45, 1148, (1968).

    ADS  Google Scholar 

  23. F. Fraternali, J. Binney, T. Oosterloo, and R. Sancisi, New Astronomy Review 51, 95, (2007).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © V.L. Afanasiev, V.V. Kalenichenko, I.D. Karachentsev, 2007, published in Astrofizicheskij Byulleten, 2007, Vol. 62, No. 4, pp. 319–328.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Afanasiev, V.L., Kalenichenko, V.V. & Karachentsev, I.D. Detection of an intergalactic meteor particle with the 6-m telescope. Astrophys. Bull. 62, 301–310 (2007). https://doi.org/10.1134/S1990341307040013

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990341307040013

PACS numbers