Home Physical Sciences 14. METALLOINTERCALATORS AND METALLOINSERTORS: STRUCTURAL REQUIREMENTS FOR DNA RECOGNITION AND ANTICANCER ACTIVITY
Chapter
Licensed
Unlicensed Requires Authentication

14. METALLOINTERCALATORS AND METALLOINSERTORS: STRUCTURAL REQUIREMENTS FOR DNA RECOGNITION AND ANTICANCER ACTIVITY

  • Ulrich Schatzschneider
Become an author with De Gruyter Brill

Abstract

As the carrier of the inheritable information in cells, DNA has been the target of metal complexes for over 40 years. In this chapter, the focus will be on non-covalent recognition of the highly structured DNA surface by substitutionally inert metal complexes capable of either sliding in between the normal base pairs as metallointercalators or flipping out thermodynamically destabilized mispaired nucleobases as metalloinsertors. While most of the compounds discussed are based on ruthenium(II) and rhodium(III) due to their stable octahedral coordination environment and low-spin 4d6 electronic configuration, most recent developments of alternative metal complexes, based on both transition metals and main group elements, will also be highlighted. A particular focus of the coverage is on structural data from X-ray structure analysis, which now provides details of the interaction at unprecedented details and will enable development of novel DNA binding probes for fundamental studies as well as new anticancer drug candidates.

© 2020 Walter de Gruyter GmbH, Berlin/Munich/Boston

Abstract

As the carrier of the inheritable information in cells, DNA has been the target of metal complexes for over 40 years. In this chapter, the focus will be on non-covalent recognition of the highly structured DNA surface by substitutionally inert metal complexes capable of either sliding in between the normal base pairs as metallointercalators or flipping out thermodynamically destabilized mispaired nucleobases as metalloinsertors. While most of the compounds discussed are based on ruthenium(II) and rhodium(III) due to their stable octahedral coordination environment and low-spin 4d6 electronic configuration, most recent developments of alternative metal complexes, based on both transition metals and main group elements, will also be highlighted. A particular focus of the coverage is on structural data from X-ray structure analysis, which now provides details of the interaction at unprecedented details and will enable development of novel DNA binding probes for fundamental studies as well as new anticancer drug candidates.

© 2020 Walter de Gruyter GmbH, Berlin/Munich/Boston

Chapters in this book

  1. Frontmatter i
  2. About the Editors v
  3. Historical Development and Perspectives of the Series vii
  4. Preface to Volume 18 ix
  5. Contents xiii
  6. Contributors to Volume 18 xix
  7. Titles of Volumes 1–44 in the Metal Ions in Biological Systems Series xxiii
  8. Contents of Volumes in the Metal Ions in Life Sciences Series xxv
  9. 1. CISPLATIN AND OXALIPLATIN: OUR CURRENT UNDERSTANDING OF THEIR ACTIONS 1
  10. 2. POLYNUCLEAR PLATINUM COMPLEXES. STRUCTURAL DIVERSITY AND DNA BINDING 43
  11. 3. PLATINUM(IV) PRODRUGS 69
  12. 4. METALLOGLYCOMICS 109
  13. 5. THE DECEPTIVELY SIMILAR RUTHENIUM(III) DRUG CANDIDATES KP1019 AND NAMI-A HAVE DIFFERENT ACTIONS. WHAT DID WE LEARN IN THE PAST 30 YEARS? 141
  14. 6. MULTINUCLEAR ORGANOMETALLIC RUTHENIUM-ARENE COMPLEXES FOR CANCER THERAPY 171
  15. 7. MEDICINAL CHEMISTRY OF GOLD ANTICANCER METALLODRUGS 199
  16. 8. COORDINATION COMPLEXES OF TITANIUM(IV) FOR ANTICANCER THERAPY 219
  17. 9. HEALTH BENEFITS OF VANADIUM AND ITS POTENTIAL AS AN ANTICANCER AGENT 251
  18. 10. GALLIUM COMPLEXES AS ANTICANCER DRUGS 281
  19. 11. NON-COVALENT METALLO-DRUGS: USING SHAPE TO TARGET DNA AND RNA JUNCTIONS AND OTHER NUCLEIC ACID STRUCTURES 303
  20. 12. NUCLEIC ACID QUADRUPLEXES AND METALLO-DRUGS 325
  21. 13. ANTITUMOR METALLODRUGS THAT TARGET PROTEINS 351
  22. 14. METALLOINTERCALATORS AND METALLOINSERTORS: STRUCTURAL REQUIREMENTS FOR DNA RECOGNITION AND ANTICANCER ACTIVITY 387
  23. 15. IRON AND ITS ROLE IN CANCER DEFENSE: A DOUBLE-EDGED SWORD 437
  24. 16. COPPER COMPLEXES IN CANCER THERAPY 469
  25. 17. TARGETING ZINC(II) SIGNALLING TO PREVENT CANCER 507
  26. SUBJECT INDEX 531
Downloaded on 13.5.2025 from https://www.degruyterbrill.com/document/doi/10.1515/9783110470734-014/html
Scroll to top button