Jump to content

Convex conjugate

From Wikipedia, the free encyclopedia

In mathematics and mathematical optimization, the convex conjugate of a function is a generalization of the Legendre transformation which applies to non-convex functions. It is also known as Legendre–Fenchel transformation, Fenchel transformation, or Fenchel conjugate (after Adrien-Marie Legendre and Werner Fenchel). The convex conjugate is widely used for constructing the dual problem in optimization theory, thus generalizing Lagrangian duality.

Definition

[edit]

Let be a real topological vector space and let be the dual space to . Denote by

the canonical dual pairing, which is defined by

For a function taking values on the extended real number line, its convex conjugate is the function

whose value at is defined to be the supremum:

or, equivalently, in terms of the infimum:

This definition can be interpreted as an encoding of the convex hull of the function's epigraph in terms of its supporting hyperplanes.[1]

Examples

[edit]

For more examples, see § Table of selected convex conjugates.

  • The convex conjugate of an affine function is
  • The convex conjugate of a power function is
  • The convex conjugate of the absolute value function is
  • The convex conjugate of the exponential function is

The convex conjugate and Legendre transform of the exponential function agree except that the ___domain of the convex conjugate is strictly larger as the Legendre transform is only defined for positive real numbers.

Connection with expected shortfall (average value at risk)

[edit]

See this article for example.

Let F denote a cumulative distribution function of a random variable X. Then (integrating by parts), has the convex conjugate

Ordering

[edit]

A particular interpretation has the transform as this is a nondecreasing rearrangement of the initial function f; in particular, for f nondecreasing.

Properties

[edit]

The convex conjugate of a closed convex function is again a closed convex function. The convex conjugate of a polyhedral convex function (a convex function with polyhedral epigraph) is again a polyhedral convex function.

Order reversing

[edit]

Declare that if and only if for all Then convex-conjugation is order-reversing, which by definition means that if then

For a family of functions it follows from the fact that supremums may be interchanged that

and from the max–min inequality that

Biconjugate

[edit]

The convex conjugate of a function is always lower semi-continuous. The biconjugate (the convex conjugate of the convex conjugate) is also the closed convex hull, i.e. the largest lower semi-continuous convex function with For proper functions

if and only if is convex and lower semi-continuous, by the Fenchel–Moreau theorem.

Fenchel's inequality

[edit]

For any function f and its convex conjugate f *, Fenchel's inequality (also known as the Fenchel–Young inequality) holds for every and :

Furthermore, the equality holds only when . The proof follows from the definition of convex conjugate:

Convexity

[edit]

For two functions and and a number the convexity relation

holds. The operation is a convex mapping itself.

Infimal convolution

[edit]

The infimal convolution (or epi-sum) of two functions and is defined as

Let be proper, convex and lower semicontinuous functions on Then the infimal convolution is convex and lower semicontinuous (but not necessarily proper),[2] and satisfies

The infimal convolution of two functions has a geometric interpretation: The (strict) epigraph of the infimal convolution of two functions is the Minkowski sum of the (strict) epigraphs of those functions.[3]

Maximizing argument

[edit]

If the function is differentiable, then its derivative is the maximizing argument in the computation of the convex conjugate:

and

hence

and moreover

Scaling properties

[edit]

If for some , then

Behavior under linear transformations

[edit]

Let be a bounded linear operator. For any convex function on

where

is the preimage of with respect to and is the adjoint operator of [4]

A closed convex function is symmetric with respect to a given set of orthogonal linear transformations,

for all and all

if and only if its convex conjugate is symmetric with respect to

Table of selected convex conjugates

[edit]

The following table provides Legendre transforms for many common functions as well as a few useful properties.[5]

(where )
(where )
(where ) (where )
(where ) (where )

See also

[edit]

References

[edit]
  1. ^ "Legendre Transform". Retrieved April 14, 2019.
  2. ^ Phelps, Robert (1993). Convex Functions, Monotone Operators and Differentiability (2 ed.). Springer. p. 42. ISBN 0-387-56715-1.
  3. ^ Bauschke, Heinz H.; Goebel, Rafal; Lucet, Yves; Wang, Xianfu (2008). "The Proximal Average: Basic Theory". SIAM Journal on Optimization. 19 (2): 766. CiteSeerX 10.1.1.546.4270. doi:10.1137/070687542.
  4. ^ Ioffe, A.D. and Tichomirov, V.M. (1979), Theorie der Extremalaufgaben. Deutscher Verlag der Wissenschaften. Satz 3.4.3
  5. ^ Borwein, Jonathan; Lewis, Adrian (2006). Convex Analysis and Nonlinear Optimization: Theory and Examples (2 ed.). Springer. pp. 50–51. ISBN 978-0-387-29570-1.

Further reading

[edit]