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“Residual” entropy (3–12 J mol�1 K�1) is present near 0
K in some crystals composed of nonsymmetric molecules,
for example, CO, N2O, FClO3, and H2O. It is detected only
by the difference between spectroscopic calculations of the
absolute entropy of the gaseous chemical and calorimetric
measurements of its heat capacity (and phase changes) from
0 K to the temperature of the gas. Calorimetry, like any ther-
modynamic measurement, yields a difference, and thus gives
∆S rather than absolute entropy values. Unlike the corre-
sponding energy or enthalpy, entropy is normally set equal
to zero at 0 K in accord with the third law of thermodynam-
ics thereby allowing for the calculation of its absolute values
at any given temperature. I shall show that residual entropy
can be estimated by four different approaches to entropy
(methods 1–4). Because they are applied to the same system,
they should yield the same result and they do; therefore, con-
firming the utility of the informational, thermodynamic, sto-
chastic, and statistical–probabilistic aspects of entropy. The
assumptions, limitations, and constraints of this thesis will
be stated.

Method 1: Informational or Combinatoric

Informational or combinatoric method, derived using
the coin tossing model, is traditionally used in textbooks (1–
3). It applies the Boltzmann–Planck formula:
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where W2 and W1 correspond to the numbers of microstates
of the real and perfect crystals, respectively. The ratio of
W2�W1 available per molecule is often viewed as the static
number of configurationally nonequivalent arrangements, m.
Then, each molecule will have m times the number of posi-
tions in the randomized crystal containing N molecules as
compared to the perfect one
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and thus

ln =W N m2 ln (2b)

For instance, CO has two possible configurations, “head-to-
head” and “head-to-tail”, Figure 1A (the OC–CO arrange-
ment is not independent, so it is not counted separately). N
= NA for 1 mole in eqs 1 and 2; W1 = 1N = 1 because it rep-
resents the perfectly ordered crystal obeying the third law.
Therefore, based on eq 2, ∆Sresidual/mole = kBNAln m = R ln m.

Note that eqs 1–2 are usually applied without any refer-
ence to the energy of intermolecular interactions (ε); that is,
they calculate informational, configurational values of residual
entropy. Even though this is phenomenologically correct, this
approach does not fully represent the thermodynamic signifi-
cance of entropy because the fundamental equation

rev=Sd
dq

TT (3)

involves d–qrev, an energy exchange in the form of heat under
conditions of thermal equilibrium with the surroundings. To
reconcile eqs 1–3, I suggest using an approach that is based
on a consistent application of the Boltzmann distribution
whose role as a link between the classical and statistical ther-
modynamics was stressed earlier (4).1

Figure 1. Possible molecular arrangements in crystals and related
energy levels for the resulting intermolecular interactions: (A) CO
(B) FClO3, the central atom in each structure belongs to a different
(adjacent) molecule; the large unlabeled atom behind the central
atom is chlorine. The qualitative assignment of energy levels is based
on the difference in electronegativity for O and F atoms.

            A

            B
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Method 2: Thermodynamic

Let us consider freezing a polar diatomic molecular com-
pound like CO or ICl. At a thermodynamic melting point,
both the liquid and solid are at thermal equilibrium with the
surroundings. The molecules of the solid may be lined up
“head-to-tail” to maximize the dipole–dipole interactions or
be randomly dispersed (Figure 1A). The fraction of the
aligned molecules in the solid phase depends on the result of
the conflict between their thermal motion, indicated by the
Tfusion, and the strength of intermolecular forces. This is quan-
titatively described by the Boltzmann distribution of particles
on two levels, E and E + ε, where ε is the energy difference
between the low (“head-to-tail”) and higher energy (“head-
to-head”) aligned molecules (eq 4).
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If the dipole–dipole interactions between the oppositely
charged ends of the molecules are strong and the tempera-
ture at the melting point is low enough (ε >> kBTfusion, eq
4c), the crystal freezes as an organized molecular array (N1
>> N2), an “ordered” or perfect crystal, as in ICl (5). There-
fore, the maximal quantity of intermolecular potential en-
ergy in the system is released to the surroundings at the
freezing temperature.

Conversely, if the dipole–dipole forces are weak relative
to the kBT heat bath (ε << kBTfusion, eq 4c), N2�N1 is close to
1, as in CO. As a result, when the crystal freezes with nearly
random molecular orientation, only about half of the aligned
dipole–dipole interactions have formed (and only the corre-
sponding quantity of intermolecular potential energy is re-
leased from the crystal). Note that the difference between the
observed energy released from this real crystal, ∆fusionH observed,
and that from the theoretical perfect (aligned) crystal yields
the value of the energy gap (ε, per pair of molecules, or NAε�2
per mole):

∆ H q
NA

fusion observed ∆ Hfusion perfect latent− = =
ε

2
(5)

This potential energy in the real CO crystal that “should
have been released” at the solidification temperature (as would
the hypothetical perfect crystal) was “frozen-in” when the liq-
uid solidified with about half of the possible intermolecular
head-to-tail interactions not effected. The corresponding en-

tropy can be defined as ∆Slatent or, indicating the tempera-
ture of the reversible process, ∆Slatent (Tfusion). However, the
same crystal cannot freeze in a reversible process in both per-
fect and randomized forms at the same temperature. There-
fore, no simple equation like eq 3 involving Tfusion could be
written to connect ∆Hlatent (qrev) and ∆Slatent if one wants to
use true, that is, reversible, thermodynamic values of the heat
involved.

Upon further cooling of the randomly-aligned CO solid,
the increase in the difference between the values of ε and
kBT (eq 4c) favors alignment of the opposite ends of the mol-
ecules. If the CO were a liquid, the realignment would take
place as a reversible process as the system progresses toward
the structure of a perfect crystal (6). However, in its solid
form, rotation of molecules in the real crystal to become
aligned is impossible for kinetic reasons, that is, high “acti-
vation energy” (6). So, at any temperature between 0 K and
the solid’s melting point the CO or FClO3 crystal is not at
equilibrium with the surroundings—unlike a crystal with its
N2�N1 ratio corresponding to the surroundings’ temperature.
In this respect, the situation is similar to supercooled liquids
(2a).

To define the value of ∆Slatent, the Boltzmann–Planck
equation can be used. But eq 1 has to be modified to refer
the numbers of microstates to the temperatures correspond-
ing to the thermal equilibrium that is inherent for the Boltz-
mann distribution:

∆ laS ttent fusionT( ) = fusionT( ) (0))

=
( )

( )
W T

W
2kB

1 0 K
fusion

S S−random
crystal 

perfect
crystal 

t

ln
(6a)

W(T ) can be counted from the population of the en-
ergy levels using the following formula for distinct permuta-
tions (7a), which is consistent and inherently connected with
eqs 3–5 because it yields the W values for the most probable
(Boltzmann) distribution (2c, 4, 7c):
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W1(0 K) = 1 based on eq 4c. For W2, a nearly equal popula-
tion of all the available energy levels (m) for m types of di-
pole–dipole interactions should be postulated, assuming T
>> ε�kB in eq 4, thus reducing the denominator of eq 6b to
[(N �m)!]m (m = 2 for CO, Figure 1A). This allows for the
new method of calculation of the W2(Tfusion) and ∆Sresidual
values using Stirling’s approximation for factorials, ln N ! =
N lnN − N :
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where W2 and W1 correspond to the numbers of microstates
of the real and perfect crystals, respectively, at two points of
thermal equilibrium, T2 = Tfusion and T1 = 0, accounting for
only the energy of intermolecular interactions defined in eqs
4 and 5.

As one can see, method 2 (eq 6c) yields the same value
as method 1 (eq 2), that is, ∆Sresidual = ∆Slatent(Tfusion). From
the standpoint of mathematics, eq 2 appears to be consistent
with the Boltzmann distribution because, just like eq 6c, it
calculates the total number of permutations under no energy
constraints (ε << kBTfusion). Note that method 2 counts the
same arrangements as method 1 in virtually the same way
because they become energetically equivalent under such con-
ditions. However, the equivalence of two such strikingly dif-
ferent methods requires further validation from the
standpoint of physics. I shall show that this can be done con-
sidering the classical entropy of mixing.

Method 3: Stochastic or Mixing

The stochastic or mixing method is based on the fol-
lowing well-known equation

∆ Smixing = − ( )
=
∑
R ni i
i

m
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where ni is the number of moles of each component (for 1
mole of the mixture it is numerically equal to the mole frac-
tion, χi). Equation 7a can be derived by applying the Stirling’s
approximation to eq 6b (7a). Note that an intermediate step
in this derivation is eq 7b, so-called Gibbs entropy (2c)
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where pi is the probability of a microscopic state with a cer-
tain energy. Equation 7b bridges probability (which is sup-
posed to be temperature-dependent, based on eq 4) and
seemingly temperature-independent random spatial distribu-
tion of molecules, that is, combinatorics. How can it be both?

Note that eqs 2 and 6b–6c are applicable for distinguish-
able arrangements, and in crystals all particles are distin-
guished by their specific location in the network of
intermolecular forces. However, eqs 7a and 7b are used for
ideal gases or solutions, that is, for indistinguishable mol-
ecules with no intermolecular interactions (ε = 0). This ap-
parent contradiction was successfully addressed by Noggle
who showed that the derivation of eq 7a from eq 6a does
not require the lack of intermolecular interactions but rather
assumes no preference in them (7a). This is applicable to crys-
tals only at the melting point (as it is “frozen-in” the crystal
with residual entropy) and only when the molecular orienta-
tions are absolutely random—exactly the case of our inter-
est, when N1 = N2 = … = Nm, that is, when an “infinitely”
high temperature for this particular Boltzmann distribution
is achieved. Then, there is no preference for any molecular
orientation and no energy constraint; one can say that the
effective energy gap is zero because ε is totally overpowered
by kBT.2 Thus, the ideal solution assumption is equivalent to

that of infinitely high temperature [ε << kBT or ∆mixingH(per
mole) = (NAε)�2 << RT ]. This condition reconciles meth-
ods 1–3 and provides the physical basis for the connection
of eqs 7a and 7b with the Boltzmann distribution at Tfusion.

Equations 4a and 4b provide the formulas for mole frac-
tions of N1 and N2 to be used in eq 7a, that is, χ1 and χ2,
respectively. Expanding this to m species and assuming an
equal population of m energy levels, one would obtain:
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This approach (method 3) may be interpreted as stochastic,
probability-based “mixing” of either m different spatial, po-
sitional domains (eq 2; ref 2b) (at “infinitely” high T = Tfusion)
or m parallel sets of Boltzmann distributions (in electronic
energies and vibration for crystals) that are different only in
the energy of intermolecular interactions or vibrations (eq
6c). The only problem with this method is that, unlike the
other two, it does not calculate the values of W2. However,
this problem can be addressed as follows.

Method 4: Statistical or Probabilistic

The statistical or probabilistic method for the calcula-
tion of W2(Tfusion) can be derived by combining eqs 4a or 4b
with eq 7b (instead of 7a). It uses the partition function of
the system, Q (applied only to intermolecular interactions),
connected to the partition function of a single molecule (q)4

that, in turn, equals 1�pi, the inverse probability of equiprob-
able different species with different energies valid for “infi-
nitely” high T, ε << kBT (2c)

= = = =2
1N

i

N

W T Q q
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where N is the number of molecules in the system. Assum-
ing N1 = N2 at the freezing point, the single-molecule parti-
tion function, q, equals exactly 2 for a totally random CO
crystal [1�pi = 1�(1�2); q = 1�(1�m) = m in general]. In
combination with eq 7b, method 4 provides the final statis-
tical mechanical validation for the use of eq 6c for the calcu-
lations of W2 (then, ∆Sresidual) and also defines its limits.
Similar mathematics is used in methods 1, 2, and 4 because
both the coin tossing and Boltzmann distribution are based
on maximum probability. Yet, method 4, just like method 3,
is applicable only to separate species. As shown above, this is
true only when ε << kBT. This, in turn, leads to N1 = N2 = …
= Nm, so the general formula for permutations (W, eq 6b)
yields the same result as eqs 2 and 6c (unconstrained permu-
tations) as stressed in eq 9.

This is the reason why all four methods yield the same
value of residual entropy, R ln m; the only difference is that
the “infinitely” high temperature assumption for W2 is ex-
plicit in method 2 but implicit in methods 1, 3, and 4 (this,
along with the potential energy difference between the real
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and perfect crystals should always be stated). However, if the
value of ε is comparable with kBTfusion, the “solution” is not
ideal (i.e., method 3 is not applicable), the probabilities of
two possible orientations are not equal in method 4 and the
“informational” entropy (method 1) overestimates the val-
ues of W2 and the corresponding entropy unless the fractions
of each form are calculated using either eq 6b or the system
partition function (eq 9). Thus, the criterion for the appear-
ance of residual entropy equal to R ln m is that ε << kBT at
the melting point, so the system behaves as if ε � 0 at Tfusion.2

The use of eqs 3–5 does not imply that either the ap-
pearance or value of residual entropy depends on the value
of ε; it is the number of different energy levels, m, resulting
from different ways to arrange the molecules in a crystal that
determines the value of ∆Sresidual = R  ln m.

Applications

The molar residual entropy of CO can be calculated in
four ways, based on eqs 2, 6c, 8, and 9 (methods 1–4), re-
spectively:
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The same residual entropy value, based on the occupa-
tion of two different energy levels, can be obtained for linear
NNO, para-substituted benzenes, or crystals of metal cya-
nides. For nonlinear molecules, more than two energy levels

could be occupied. For instance, for tetrahedral FClO3 (or
CH3D), there are four possible dipole arrangements in a
tightly packed crystal (Figure 1B). Therefore, considering the
electrostatic interactions between the dipoles, there are four
different energy levels: this results in the presence of [(N�4)!]4

in the denominator of eq 6c yielding the ∆S value of R ln 4
= 11.52 J K�1 mol�1. Equations 2 (9) and 8 would be ad-
justed as ∆S residual = kBln(W2�W1) = kBln(4N�1) =
kBNAln(4�1) = R ln 4 and ∆Sresidual = �4R [(1�4)ln(1�4)] =
�R ln(1�4) = R ln 4, respectively—yielding the same number
as expected.

In real crystals, the value of W2 could be lower or higher
than predicted. The experimental values of molar residual
entropy for CO, RbCN, N2O, p-bromochlorobenzene,
CH3D, FClO3 are 4.6, 5.43, 5.8, 5.7, 11.6, and 10.1 J K�1,
respectively (1e, 2a, 7d, 8, 9). In addition to possible partial
rearrangements in the solid state (“freezing-in” is not always
perfect; also, the condition ε << kBTfusion may not be met
precisely), the differences between the predicted and real val-
ues underscore the limitation of the “head-to-tail” model,
which is valid only for a simplified explanation that assumes
the averaging of real molecular orientations.3 The real crys-
tal lattice formation occurs at short intermolecular distances
and, thus, is dominated by repulsive rather than attractive
potentials that force the system into a certain type of pack-
ing (10). To account for the deviations from the simple model
used in this study, molecular alignment in the real crystal lat-
tice and the related energy levels would have to be consid-
ered.

The advantages of using method 2 can be illustrated by
finding the value of residual entropy for ice crystals. The con-
figurational disorder in ice is caused by 16 possible alignments
of which only 6 can be realized because water molecules can-
not attain any “head-to-head” (O�O or H�H) configura-
tions (11). The combinatoric calculation by Pauling (11a)
requires visualizing all possible alignments that is, by far, not
as obvious as in CO or FClO3:
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In contrast, method 2 is based on experimental evidence
of the number of available energy levels and molecular ge-
ometry: If common ice Ih is converted to “ordered” ice XI,
based on X-ray data, the crystal’s unit cell is slightly com-
pressed in two out of three spatial dimensions by 0.23% and
0.78% (11b, c). This can be illustrated by considering an H2O
molecule located in the orthogonal x, y, z Cartesian space
(Figure 2A). Compression along the z direction would not
alter the hydrogen bond length whereas pressing along ei-
ther x or y coordinate would. The x and y dimensions of the
molecule are slightly nonequivalent because of the H�O�H
bond angle of 105–109� (11c): pressure on the molecule in
the x direction results in a greater impact in shortening the
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hydrogen bonds (Figure 2A). In turn, this results in creating
small differences (ε) between the energy levels for hydrogen
bonds of different strength (eq 4c) and consequently leads
to the occurrence of residual entropy with three different
forms (m = 3 including the ground state, which corresponds
to the uniform ice XI, Figure 2B).

This leads to the appearance of three (N�3)! terms in
the denominator of eq 6c. The lack of “head-to-head” align-
ment has to be accounted for by subtracting the correspond-
ing entropy, ∆S"head-to-head” = R ln 2 (eqs 10a–d):
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If one assumes m = 3 based on Figure 2B and method
2, then methods 1 and 4 lead to the same answer given no
“head-to-head” or “head-to-tail” randomness:
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This assumption (m = 3) is consistent with eq 11. The value
of m in eq 11 is hidden, but it can be made more visible if
the number of ways the system can be configured, 6N(1�2)2N,
is rewritten as [(6�2)(1�2)]N: there are 6 different arrange-
ments of molecular pairs, that is, 3 per one molecule (this is
m), and only half of them are realized for N molecules of
H2O accounting for the lack of the “head-to-head” align-
ment. Thus, method 2 may be viewed as a “shortcut” for
method 1 applicable to complex systems in which the num-
ber of energy levels for ε can be determined more easily than
the number of molecular arrangements.

Entropy of mixing of three different forms (method 3)
yields the same value as expected:
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Conclusions

Non-aligned molecular arrangements of molecular ar-
rangements in polar crystals are caused by weak molecular
dipoles (ε << kBTfusion) at the thermodynamic freezing point.
This “infinitely” high temperature assumption is implicit in
calculations of configurational entropy and is equivalent to

the ideal solution assumption in calculations of entropy of
mixing. This leads, in turn, to the same numerical answers
in calculating the residual entropy using different methods
thus showing the convergence of the configurational–infor-
mational, thermodynamic (energy distribution), stochastic
(mixing), and statistical–probabilistic aspects of entropy.
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Notes

1. The Boltzmann distribution and difference in energies be-
tween different molecular alignments are mentioned in covering
residual entropy by Levine and Noggle (6, 7b); however, no de-
tailed derivation has been provided.

2. The equal population of energy levels may also be obtained
when ε = 0, regardless of temperature. However, this would imply
that freezing a liquid comprised of symmetrical molecules, like N2,
would also result in creating residual entropy equal to R ln 2, that

Figure 2. Illustration of the presence of three energy levels for in-
termolecular interactions in ice crystals. (A) The molecule of water
spatial alignment that illustrates how compressing the crystal in x
and y directions results in shortening the hydrogen bonds in two
nonidentical ways. (B) The resulting splitting of the energy levels
for intermolecular O�H bonds
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is, a well-known Gibbs paradox. Of course, since ε = 0 at any tem-
perature, no energy of intermolecular interactions is “frozen in” solid
N2. Therefore, the intermolecular energy difference, as a marker,
appears to be essential for the experimental manifestation of re-
sidual entropy.

3. For instance, “ordered” ICl packs in a crystal as a puck-
ered zigzag chain in which not only the I�Cl but also I�I inter-
molecular interactions are significant. The “head-tail” alignment is
observed using X-ray crystallography; however, while viewed un-
der a different angle, the Cl�I�I�Cl�I�I atomic order may be
seen (5a, b).

4. Note that q used in eq 9 refers to the partition function of
a single molecule and should not be confused with the q used in
eq 3 to represent heat.
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