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Abstract. Electromagnetic coils are ubiquitously used in the modern world in motors, antennas, etc. In many
applications (magnetic field coil calibration and nuclear magnetic resonance spectroscopy and imaging) there
is a strong need for a homogeneous magnetic field. In this paper, we propose a simple modelling based on
serial Fourier decomposition allowing the determination of the electrical conductor distribution to make the
magnetic field homogeneous. The method is valid both for plane and axisymmetric geometries. The method
allows the retrieval of the classical configurations of saddle coil for the plane geometry and Helmholtz coil
for the axisymmetric one. The method is generalized for any number of electrical conductors and brings the
perspective of new homogeneous magnetic resonance imaging (MRI) coil configuration.

1 Introduction

Electrical coils have had a long history since the pioneer
works of Ampere and Tesla. Their emergence comes prob-
ably from their ability to extend the fascinating properties
of the magnetized matter by modulating their behaviour by
means of electrical currents. Unfortunately, the magnetic
field produced by electrical coils exhibits a strong depen-
dance on the distance compared to the coil, since the mag-
netic field produced by a coil vanishes when going away from
the coil plane, while numerous applications require a homo-
geneous one. This is the concern of nuclear magnetic reso-
nance spectroscopy (NMR) and magnetic resonance imag-
ing (MRI) where the homogeneity of coils is crucial for the
static B0 magnetic field but also important for the radiofre-
quency (RF) coil, which produces the B1 RF field to excite
and to detect the nuclear spin induction. This MRI coil homo-
geneity, which has guided the present work, remains a major
issue for the MRI experiment (Mispelter et al., 2006). Usu-

ally, MRI coil length should be smaller than a fraction of the
wavelength (1/20) at the frequency of interest. When it is
not the case, MRI coil should be segmented (Mispelter et al.,
2006) to ensure that quasi-static magnetic field hypothesis is
suitable. Our work will be examined based on this hypothe-
sis. We will consider the 1 and 10 % homogeneity defined as
the fraction of coil diameter, where the magnetic field inten-
sity remains, respectively, within 1 and 10 % of its maximum
value.

2 Homogeneous magnetic field coils: the cosine
current distribution theorem

It was assumed by Bolinger et al. (1988) that a cosine current
distribution for both a spherical coil and a coil constituted
by parallel conductors placed on a circle allows them to ap-
proach an ideal magnetic field homogeneity. We will try to
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Figure 1. Current density distribution: (a) axisymmetric geometry
in spherical coordinates, (b) plane geometry (infinite in z direction)
in cylindrical coordinates. We adopt a unique angle notation for the
two problems by substituting the usual ϕ (in the cylindrical coordi-
nates) by θ .

understand, in the following, the origin of this current den-
sity distribution theorem.

The cosine distribution can be deduced from the Maxwell–
Ampere equation (Eq. 1), which basically links the magnetic
field H and the current density J.
h
×H= J (1)

We have to determine the current density component on the
circumference of a R radius, along z, for cylindrical coordi-
nates (see Fig. 1b), or along eϕ , for spherical coordinates (see
Fig. 1a).

Since the current density has only a component along z

(following the Bolinger et al., 1988, case study), in cylindri-
cal coordinates, Maxwell–Ampere equation becomes

1
r

(
∂(rHϕ)
∂r

−
∂Hr

∂ϕ
)= Jz(θ,r). (2)

In spherical coordinates, Maxwell–Ampere equation be-
comes

1
r

(
∂(rHθ )
∂r

−
∂Hr

∂θ
)= Jeϕ (θ,r). (3)

Due to the equivalence between these two equations we
will adopt a unique angle notation by substituting ϕ (in the
cylindrical coordinates) with θ . Consequently, Eq. (2) is re-
placed by

1
r

(
∂(rHθ )
∂r

−
∂Hr

∂θ
)= Jz(θ,r). (4)

Next, by assuming a constant magnitude of the magnetic
field (H, as depicted in Fig. 2), we getH 2

r +H
2
θ =H

2, while
the x and y components of H in cartesian coordinates are
related to the ones in cylindrical (and spherical) coordinates:{

H · x =Hrcos(θ )−Hθ sin(θ )
H · y =Hrsin(θ )+Hθcos(θ ).

Figure 2. Representation of the magnetic field components H, Hr
and Hθ in the cartesian and cylindrical coordinates. Spherical coor-
dinate representation is equivalent to the cylindrical one in a revo-
lution near.

Then, by assuming a given direction of the magnetic field,
for instance H · x = 0 (see Fig. 2), we deduce Hrcos(θ )=
Hθ sin(θ ) and consequently Hr =H sin(θ ).

By solving Maxwell–Ampere equation at r = R (the term
∂(rHθ )
∂r

vanishes) Eqs. (3) and (4) become, respectively,
Eqs. (5) and (6):

−
1
R

∂Hr

∂θ
= Jeϕ (θ ) (5)

−
1
R

∂Hr

∂θ
= Jz(θ ). (6)

Thus, we obtain the condition that must be fulfilled by the
current density to produce a homogeneous magnetic field
for coils of revolution with axisymmetric geometry (Fig. 1a)
and infinite plane geometry (Fig. 1b), given respectively by
Eqs. (7) and (8):

Jeϕ (θ )= J0cos(θ )eϕ (7)

Jz(θ )= J0cos(θ )z, (8)

where J0 =−
1
R
H .

Lastly, the simulation performed on a finite-element soft-
ware, which allows the confirmation of this rule, illustrates
the perfect homogeneity inside the coil obtained both for
axisymmetric revolution geometry and 2-D plane when the
magnitude of the current density is cosinusoidal along the
circumference of a circle (see Fig. 3). In both cases, the cur-
rent density direction is normal to the figure.

3 The cosine coils: a brief review

The spherical coil configuration was initially proposed to en-
hance the Helmholtz coil homogeneity for nuclear research
(Clarck, 1938). Later, it was used to build a proton magne-
tometer (Everett and Osemeikhian, 1966). In this context it
was required to produce a homogeneous magnetic field. For
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Figure 3. Magnetic field magnitude distribution of the ideal homo-
geneous coil (assuming cos(θ ) distribution of the current density
along the circumference) performed on a numerical finite-element
software: (a) case of a solid of revolution and (b) case of a 2-D
plane infinite (along z) geometry. The colour scale is related to the
magnitude of the magnetic field. The homogeneity of the colour is
related to the homogeneity of the magnetic field.

this purpose Everett tried to approach the ideal cosine current
density distribution, and the authors suggested to approach
the ideal sphere coil by placing N equally spaced turns (on
the diameter projection) separated by a distance b, each turn
being flown by the same current (see Fig. 4). The main vari-
able of the problem was the parameterization (through a pa-
rameter p) of the last turn position, namely pb. Then sophis-
ticated analytic calculations were performed to get the opti-
mum p value (0< p < 1), with respect to a magnetic field
homogeneity criterion. Finally the coil, let us call it Everett’s
coil, was constructed but the conclusion concerning the ef-
ficiency was mitigated. Surprisingly, the alternative solution
to produce a cosine current distribution, namely by adjusting
the current density in the conductors of the sphere coil, was
not evoked.

Later on, in the field of MRI coils, there were numerous
efforts to enhance the homogeneity of the coil. The saddle
coil, which is the extruded plane version of the Helmholtz
coil, was generalized because of its convenience with re-
spect to the NMR experience (Hoult and Richards, 1976).
A very important enhancement of the saddle coil was then
proposed by Hayes et al. (1985) through the birdcage res-
onator. This famous MRI coil consists in multiple conduc-
tors equally spaced (on the angular point of view). Capac-
itors are used to produce a phase shift of the current along
the circumference to approach the ideal cosine distribution
(as given by Eq. 8). The Bolinger idea was to apply Everett’s
coil strategy to the saddle coil (Bolinger et al., 1988). How-
ever, Bolinger simplified the original problem by assuming
N equally spaced conductors, without the p parameter. A ho-
mogenous image about four-fifths of the internal volume of
the coil was reported. Nevertheless, a quantitative and rele-
vant method to quantify homogeneity of MRI coils by means
of field histogram proposed by Yang et al. (1994) has high-

Figure 4. Bolinger’s coil: the turns, distributed along the circum-
ference (placed around the cylinder at angles θ (NB the comple-
mentary angle8 was used in Bolinger’s paper)), are equally spaced
projected along the diameter (b = 2R/(2N + 1)).

lighted the disappointing homogeneity reached by Bolinger’s
coil.

On the other hand, an improvement of the birdcage was
invented by Harpen (1991), who proposed a spherical RF
coil where the turns were equally spaced (by equal an-
gle). The cosine current distribution (as given by Eq. 7)
was reached by an adequate distribution of the capacitances:
C(θ )= C0/sin(θ ).

Lastly the four coils proposed by Hoult and Deslaurier
(1990) gave a significant improvement of the Helmholtz coil,
at the expense of sophisticated computation, where both con-
ductor locations and current flowing through the coils are
computed to improve the homogeneity. The four coils require
a specific ratio between the current flowing into the inner and
outer pairs of conductor.

4 The Bolinger cosine coil paradox

As proposed initially by Clarck (1938) and Everett and Ose-
meikhian (1966), for axisymmetric revolution, and revisited
by Bolinger, for plane geometry, the cosine coil is such that
wire positions are found by a geometric construction where
intervals of equal length along the diameter are projected
onto the circumference (Bolinger et al., 1988), as shown in
Fig. 4. Thus, for N turns (or conductors), the space between
turns is given by b = 2R/(N + 1) while the position of the
nth turn on the y axis is given by y(nth)= nthb+R/N .

Let us first consider the simplest coil obeying this rule: the
two-turn coil. By applying the cosine coil rule as proposed
by Bolinger, it follows that distance between turns should be
2R/3, so the angle θ (with respect to x axis, as defined in
Fig. 4) is ≈ 19.5◦. Surprisingly, this is far from the classical
saddle coil condition (namely θ = 30◦). That strangeness led
us to investigate the rule to obtain a cosine current repartition.

www.j-sens-sens-syst.net/5/401/2016/ J. Sens. Sens. Syst., 5, 401–408, 2016



404 C. Coillot et al.: The magnetic field homogeneity of coils

Figure 5. Electrical conductors of unknown angular positions (θ ),
flown by the same current I , distributed along the circumference.

5 Spatial harmonics of the current distribution
produced by the discrete conductors coil

We now go back to the original problem: how to distribute the
electrical conductors, flown by the same current, along the
circumference to get a homogeneous magnetic field inside
the coil.

The problem, as illustrated in Fig. 5, is equivalent to seek-
ing the optimum angle position (θ ) of each conductor.

Let us now represent the current distribution of the coil of
Fig. 5 in a more convenient way where electrical conductors
are represented by means of Dirac distributions (see Fig. 6).
To this end, we use a one-dimensional Dirac distribution (δ)
as a function of the angle θ so that δ has the unit rad−1 and
such as

∫ 2π
0 δ(θ )dθ = 1. Next, we consider N pairs of con-

ductors infinitely thin, flown by the same current I , and the
nth conductor is defined by its angle position θn (Fig. 6).
For such a conductor, we use a current density distribution
j (θ )=±Iδ(θ − θn) in A/rad, where the ± sign depends on
the direction of the current density flow. Finally, the current
density distribution of the coil of Fig. 5 is expressed as

j (θ )= Iδ(θ )− Iδ(θ −π )+6Nn=1(Iδ(θ − θn)+ Iδ(θ + θn)
− Iδ((θ − θn)−π )− Iδ((θ + θn)−π )). (9)

The current density distribution is an even function, and
the terms δ(θ ) and δ(θ −π ) are related to the central coil.
In the case of an even-turn number (namely without the cen-
tral conductor at x = 0), these terms can be omitted. Next,
due to the symmetries of the current density distribution (see
Fig. 6), the calculation of the Fourier series (a(2k−1)) coeffi-
cients is simplified and we get k as an integer:

a(2k−1) =
2
π

π/2∫
−π/2

j (θ )cos((2k− 1)θ )dθ. (10)

Figure 6. Representation of the space current density distribution.

For the coils having a central conductor we get k as an
integer:

a(2k−1)odd =
2I
π
6Nn=1(1+ 2cos((2k− 1)θn)), (11)

and the current density function is expressed as

j (θ )odd =6
∞

k=1

(
6Nn=1

2I
π

(1+ 2cos((2k− 1)θn))
)

× cos((2k− 1)θ ). (12)

For the coils without the central conductor we get

a(2k−1)even =
4I
π
6Nn=1cos((2k− 1)θn), (13)

and the current density function is expressed as

j (θ )even =6
∞

k=1

(
6Nn=1

4I
π

cos((2k− 1)θn)
)

× cos((2k− 1)θ ). (14)

Equations (12) and (14) will be the basis of the space har-
monic suppression (SHS) method. The Fourier series decom-
position has an infinite number of harmonics. Each harmonic
can be cancelled by means of a supplementary conductor.
To reach a perfect homogeneity all the harmonics should be
cancelled and consequently an infinite number of conduc-
tors would be required. In such a “theoretical” case, the infi-
nite discrete conductor distribution will be equivalent to the
perfect homogeneous coil (i.e. with an ideal cosine current
density distribution) whose simulation result is reported in
Fig. 3.

In the following, we will perform a case study for two,
three, four and six turns by means of a magnetostatic finite-
element numerical simulation for the two kinds of cosine
coils: the cosine coil obeying Everett–Bolinger rule and the
cosine coil obtained by the SHS method, referred to as SHS
coil. The simulation results will be presented for the infinite
plane geometry, but they are also valid for the axisymmetric
geometry.

J. Sens. Sens. Syst., 5, 401–408, 2016 www.j-sens-sens-syst.net/5/401/2016/
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Table 1. Three-turn infinite plane coil homogeneity: comparison
between the Maxwell and the three-turn SHS coils. The 1 and 10 %
homogeneity are defined as the fraction of the coil diameter where
the magnetic field intensity remains, respectively, within 1 and 10 %
of its maximum value.

Coil type Maxwell coil Three-turn SHS

1 % homogeneity 0.22 0.40
10 % homogeneity 0.63 0.68

5.1 Two-turn coil

Let us study the case of the two-turn coil (i.e. one pair of
turns: N = 1). In such a case, the condition to cancel the first
harmonic (k = 2), from Eq. (14), is expressed as

cos(3θ1)= 0, (15)

which obviously leads to θ1 = π/6, namely the Helmholtz
condition for the axisymmetric problem and the saddle coil
condition for the plane geometry (Hoult and Richards, 1976).
On the other hand the Bolinger cosine coil condition (the
turns are equally spaced projected along the diameter) leads
to b = 2R/3. Under this condition the obtained homogeneity
is very poor (see Fig. 7).

5.2 Three-turn coil: comparison with Maxwell coil

The Maxwell coil is a famous homogeneous coil with odd
turns (three turns). This coil is defined by cos(θ )=

√
4/7 (∼

40.89◦) and I/I0 = 49/64, where I0 is the current into the
central coil while I is the current on the lateral coils.

Let us now study the three-turn SHS coil. Thus, we just
have to solve 1+ 2cos(3θ1)= 0, which leads to θ =± 4π

9 +

m 2π
3 , where m is an integer. It is noticeable that the first an-

gle solution (θ = 4π
9 ) leads to a good magnetic field homo-

geneity (the simulation results are not presented here) while
it leads to a very poor efficiency coil because of the reduced
magnitude of the fundamental contribution (namely the term
1+2cos(θ1)= 0). Thus, each solution of θ must be evaluated
with respect to the fundamental magnitude. In this case, the
solution θ = 16π

9 (= 40◦) leads to the higher value of the fun-
damental. Finally, let us compare the three-turn SHS coil to
the Maxwell coil. From numerical simulation, we can extract
the 1 and 10 % homogeneity ranges. First, in the context of
an infinite plane geometry coil (see Table 1), the three-turn
SHS coil exhibits a slightly better 1 and 10 % homogeneity
than the Maxwell one.

Second, in the context of an axisymmetric geometry,
which corresponds to the validity domain of the Maxwell
coil, the 1 and 10 % homogeneity of the SHS, as summarized
by Table 2, are better. Nevertheless, the three-turn SHS coils
exhibit small fluctuations of the magnetic field in the centre
part of the coil (< 1%) while it is rigorously homogeneous
for the Maxwell coil. However, as emphasized by Mispelter

Table 2. Three-turn axisymmetric coil homogeneity: comparison
between the Maxwell and the three-turn SHS coils.

Coil type Maxwell coil three-turn SHS

1 % homogeneity 0.41 0.52
10 % homogeneity 0.68 0.72

Table 3. Four-turn axisymmetric coil homogeneity: comparison be-
tween the Hoult–Deslauriers coil and the four-turn SHS coils.

Coil type Hoult–Deslauriers coil Four-turn SHS

1 % homogeneity 0.56 0.51
10 % homogeneity 0.78 0.77

et al. (2006), the RF MRI coil homogeneity is not extremely
stringent, typically about ±5%.

5.3 Four-turn coil

Let us now study the case of two pairs of turns (i.e. N = 2).
The conditions to cancel the first and second harmonics are

cos(3θ1)+ cos(3θ2)= 0
cos(5θ1)+ cos(5θ2)= 0, (16)

which leads to θ1 = π/15 and θ2 = 4π/15. On the one hand
the Bolinger cosine coil condition is b = 2R/5; its homo-
geneity is slightly improved (with respect to the two-turn
Bolinger coil) but remains still far from the one obtained for
four-turn SHS coil. On the other hand, it is interesting to no-
tice that the Hoult and Deslauriers coil condition (see Hoult
and Deslaurier, 1990) for the axisymmetric problem led to
angles ε = 0.699 and ψ = 1.282 (we report here the angle
notation used in Hoult and Deslauriers’s paper) defined with
respect to the x axis (see Fig. 7), which becomes the follow-
ing in our notation context: ψ ′ = π/2−ψ = 0.288≈ θ1 and
ε′ = π/2− ε = 0.871≈ θ2, which are close to the values we
obtained for the SHS. However a supplementary condition
on the current flowing in each pair of turns (I2/I1 = 0.682)
was also required by the four-coil configuration to achieve
very high homogeneity (suppression of the sixth-order com-
ponent of the Legendre polynomials series decomposition of
the magnetic field) while the SHS coil assumed identical cur-
rent flowing through the conductors (which is easier to reach
in practice). Practically both the 1 and 10 % homogeneity
of the Hoult and Deslauriers coil are slightly better than the
four-turn SHS coil (see Table 3). It suggests that the use of a
supplementary variable (current ratio) to suppress harmonic
is efficient.

www.j-sens-sens-syst.net/5/401/2016/ J. Sens. Sens. Syst., 5, 401–408, 2016
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Table 4. Coil homogeneity efficiency summary (in the plane ge-
ometry): comparison between the Everett–Bolinger coils and SHS
coils.

Bolinger coil Two turns Four turns Six turns

1 % homogeneity 0.1 0.20 0.24
10 % homogeneity 0.36 0.5 0.59

SHS coil Two turns Four turns Six turns

1 % homogeneity 0.33 0.51 0.61
10 % homogeneity 0.58 0.77 0.83

5.4 Six-turn coil

Let us now study the case N = 3. In such a case, the condi-
tion to cancel the harmonics are expressed as

cos(3θ1)+ cos(3θ2)+ cos(3θ3)= 0
cos(5θ1)+ cos(5θ2)+ cos(5θ3)= 0 (17)
cos(7θ1)+ cos(7θ2)+ cos(7θ3)= 0.

The angle solutions (in radians) of Eq. (17) are easily found
by means of a numerical minimization algorithm: [θ1 =

0.2035, θ2 = 0.4537, θ3 = 0.977]. A Newton algorithm (sim-
ilar to the one described in Coillot et al., 2007) was used, but
a genetic algorithm would be best suited for a higher turn
number. On the other hand, the angle position of the con-
ductors of the Everett–Bolinger six-turn coil will be [θEB

1 =

0.143, θEB
2 = 0.443, θEB

3 = 0.796]. Here again, the homo-
geneity of the Everett–Bolinger coil, as depicted in Fig. 7,
is far from the one obtained by the SHS coil. One can notice
that the SHS coil will not obey the Everett cosine coil rule
(even if the last turn position is used as a variable of the b dis-
tance), since the positions on the x axis of the first and second
turns of the six-turn SHS coil (respectively sin(θ1)= 0.202
and sin(θ2)= 0.438) are not at multiple distances (b/2 and
b+ b/2).

All the presented results are mostly qualitative and a quan-
titative study on the homogeneity should be performed to ap-
preciate the benefit of the proposed method. To this aim, on
the one hand we compare, in Fig. 8, the magnetic field pro-
file along y axis for the different coils. On the other hand,
we propose to perform quantitative comparisons by means
of two homogeneity criteria: the 10 % homogeneity criterion
(which is sufficient for RF MRI coil; Mispelter et al., 2006)
and the 1 % criterion (which is well adapted for stringent de-
sign as for the magnetic field calibration devices). Table 4
summarizes the obtained homogeneity for the two types of
coils.

5.5 Generalization of the method for even-turn coil

In the context of an N -turn coil pairs, we will have to deter-
mine theN angles satisfying theN harmonic suppression, as
given by the set of N equations:

Figure 7. Magnetic field homogeneity of the Everett–Bolinger
coil: (a), (c) and (e), respectively, for two, four and six turns. The
SHS coil: (b), (d) and (f), respectively, for two, four and six turns.

Figure 8. Magnetic field homogeneity profile on the x axis, com-
parison between Everett–Bolinger coil and SHS coil for two, four
and six turns.

6Nn=1(cos(3θn))= 0(k = 1)
. . .

6Nn=1(cos((2j − 1)θn))= 0(k = j ) (18)
. . .

6Nn=1(cos((2N − 1)θn))= 0(k =N ).

J. Sens. Sens. Syst., 5, 401–408, 2016 www.j-sens-sens-syst.net/5/401/2016/
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5.6 Generalization of the method for odd-turn coil

In the context of anN -turn coil pairs plus the central conduc-
tor, we will have to determine the N angles satisfying to the
N harmonic suppression, as given by a set of N equations:

1+6Nn=1(cos(3θ3))= 0(k = 1)
. . .

1+6Nn=1(cos((2j − 1)θn))= 0(k = j ) (19)
. . .

1+6Nn=1(cos((2N − 1)θn))= 0(k =N ).

6 Discussion

The proposed method neglects the real size of the conduc-
tor. Thus, the accuracy of the method could be enhanced by
taking into account the real conductor size in the Fourier se-
ries decomposition. Nevertheless, at high frequency, where
skin effect is not negligible, the occurrence of the proximity
effect could affect the current distribution in conductors and
modify the homogeneity. Lastly, the method is also applica-
ble for the odd coil turns case even if we have focused on an
even one. However, it is noticeable that simulation results be-
tween extruded geometry and axisymmetric one are slightly
different.

As an alternative method, we could consider minimizing
all the harmonic contribution, but it seems that the harmonic
by harmonic minimization is much more reliable. The rea-
son probably comes from the fact that the Dirac conductor
is not real and the contribution of the high-order harmonics
is not negligible while, in practice, the high space harmonics
effect should decrease rapidly. The superiority of the Hoult
and Deslauriers coil, using a supplementary variable (namely
the current ratio between coils), could inspire an extension of
the SHS method).

In the context of odd coil, we have seen in a case study
that, at the same time that the harmonics are minimized, we
should maximize the fundamental. So, rigorously, each solu-
tion should satisfy both to the suppression of harmonics and
the maximization of the fundamental.

One could ask what the benefits or disadvantages of an en-
hanced homogeneity would be. Let us consider the case of a
calibration coil. For a given homogeneous volume the radius
of the coil can be reduced. It follows that its mass and cost
will be reduced too. This benefit was pointed out by Everett
and Osemeikhian (1966).

Finally, in the context of MRI coils, the resulting image
homogeneity will depend on (as discussed in Coillot et al.,
2016) the RF coil configuration (emitter, transceiver, or both
emitter and a transceiver), the magnetic field homogeneity
inherent to the coil geometry and the type of running MRI
sequence.

7 Conclusions

The SHS is demonstrated to be an efficient analytic method
to determine the conductor distribution to enhance the coil
homogeneity. It should be noticed that a finite-element-
method software analysis combined to an optimization al-
gorithm could be performed as an alternative method to de-
termine the angle position, at the expense of a strong pro-
gramming effort and a long CPU time. The initial idea of
Everett, for the axisymmetric coil, and Bolinger, for extruded
geometry, to approach the cosine current density distribution
by allocating the conductor along a circle circumference was
luminous. Nevertheless, the intuitive rule they proposed to
build their coils was not really relevant to improving homo-
geneity. The SHS method allows the exact and easy determi-
nation of the position of the conductor even for a high turn
number. That opens up a new perspective in the field of MRI,
especially by revisiting the Bolinger cosine coil.
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