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Preface

This collection supplements the text Linear Algebra.1 It helps students solidify and extend their
understanding of the subject, using the mathematical software Sage .

A major goal of any undergraduate Mathematics program is to move students toward a higher-
level grasp of the subject. At the start they take Calculus classes that relax completeness and
rigor in favor of practicing algorithms, while later courses spend more effort on concepts and
proofs. Linear Algebra fits into this developmental plan. It works to bring students to a deeper
understanding, but it does so by expecting that for them at this point a good bit of calculation
helps the process, by reinforcing the concepts.

Naturally the text uses examples and homework problems that are small and have manageable
numbers— an assignment to by-hand multiply a pair of three by three matrices of small integers
will build intuition, whereas asking students to do the same with twenty by twenty matrices of
ten decimal place numbers would be badgering. However, an instructor can worry that this misses
a chance to enhance students’s understanding through explorations that are not hindered by the
limitations of paper and pencil, or to make the point that the subject is widely applied, because
in realistic examples of applications the computations are usually hard.

Mathematical software can spread the reach of what is reasonable to bigger systems, harder
numbers, and longer computations. This manual extends what students can do in this direction.
Besides helping solidify the understanding of the concepts that students have, an advantage of
learning how to automate work and handle larger jobs is that this is more like what a professional
must do in practice. Another advantage is that students see new ideas, such as runtime growth
measures.

OK then, why not teach straight from the computer?
Our goal is to develop a higher-level understanding of the subject. For that, we keep the focus

on vector spaces and linear maps. The exposition here takes computation to be a tool to develop
that understanding, not the main object.

Some instructors find that their students are best served by sticking to the core material. Other
instructors have students who will benefit from the kind of work that we do here. Because this
manual is a supplement, it allows different teachers to make different choices.

1See hefferon.net/linearalgebra for a PDF that you can freely download, the ancillary materials, and the LATEX source.
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Why Sage?

In Open Source Mathematical Software [Joyner and Stein, 2007],1 the authors argue that the
best way forward for Mathematics is to pay attention to the license of the software that we use.

Suppose Jane is a well-known mathematician who announces she has proved a theorem.
We probably will believe her, but she knows that she will be required to produce a proof if
requested. However, suppose now Jane says a theorem is true based partly on the results of
software. The closest we can reasonably hope to get to a rigorous proof (without new ideas) is
the open inspection and ability to use all the computer code on which the result depends. If
the program is proprietary, this is not possible. We have every right to be distrustful, not only
due to a vague distrust of computers but because even the best programmers regularly make
mistakes.

If one reads the proof of Janes theorem in hopes of extending her ideas or applying them in
a new context, it is limiting to not have access to the inner workings of the software on which
Janes result builds.

Professionals choose their tools by balancing many factors, but this argument is persuasive. Here
we use Sage both because it is very capable and because it is Free, meaning not just that it is
available at no cost but also that the source code is open for inspection by anyone.2

This manual

This manual is Free. See hefferon.net/linearalgebra for the license. In particular, students are free
to download it and instructors are free to redistribute it, such as on an intranet course web site.

Also Free are the software systems that we use to explore the subject, Python and Sage .
Probably users already have them on their operating system but if not then they are available from
www.python.org and www.sagemath.org. Both are powerful and capable software systems that
have been in production use by thousands of professionals for years.

A note on accuracy of the examples: we often show input code for Python and Sage , along
with the computer’s responses. These are not cut and pasted. Instead, as part of generating this
document, we grab the interaction. So what you see should be exact, unless your software version
is very different from mine. This is my Sage.

sage: version()

SageMath version 9.0, Release Date: 2020-01-01

This is my Python.

>>> import sys

>>> print(sys.version)

3.8.10 (default, Jun 2 2021, 10:49:15)

[GCC 9.4.0]

1The full text is at www.ams.org/notices/200710/tx071001279p.pdf. 2See www.gnu.org/philosophy/free-sw.html for
some background and a definition.

hefferon.net/linearalgebra
http://www.python.org
https://www.sagemath.org
www.ams.org/notices/200710/tx071001279p.pdf
www.gnu.org/philosophy/free-sw.html


Reading this manual

Because this supplements the text Linear Algebra, we don’t define the terms or prove the results
here. Instead, a student should work through this material after covering the associated chapter
in the book, using that for reference.

The association between what’s here and the text is: Python and Sage does not depend on
the book, Gausss Method works with Chapter One, Vector Spaces is for Chapter Two, Matrices,
Maps, and Singular Value Decomposition go with Chapter Three, Geometry of Linear Maps
goes best with Chapter Four, and Eigenvalues fits with Chapter Five (it mentions Jordan Form
but only relies on the material up to diagonalization.)
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Python and Sage

Sage is based on Python so we’ll start with that. Python is a popular language1 with a simple
style and powerful libraries. It is often used for scripting, as a glue to bring together separate parts.

This assumes that you already know some programming, so here you will just see enough
Python to get started. For a more comprehensive introduction, work through Python’s excellent
tutorial, Python Team [2021b].

Python basics

Start Python, for instance by giving the command python3 in a terminal. You’ll get a couple of
lines of initial information followed by a prompt, three greater-than characters.

>>>

This is the Python interpreter. If you type Python code and 〈Enter 〉 then the system will read
your code, evaluate it, and print the result. We will see below how to write and run whole programs
but for now we will experiment in the interpreter. When you are done you can leave this prompt
with 〈Ctrl 〉-D.

Try entering these expressions. Python responds with the results shown (double star is expo-
nentiation).

>>> 2 - (-1)

3

>>> 1 + 2*3

7

>>> 2**3

8

Part of Python’s appeal is that simple things tend to be simple. Here is how you print something
to the screen.2

>>> print(1, "plus", 2, "equals", 3)

1 plus 2 equals 3

As in other computer languages, variables give you a named place to keep values. The first line
below puts 1 in the place called i and the second line involves fetching that 1.
1Written by a fan of Monty Python. 2Python comes in two versions. Version 3 is what we use. Version 2 is quite
old but you may still see it, for example if you look in a search engine for code. One difference between the two is
that in version 2 the print statement did not have parentheses.

1
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>>> i = 1

>>> i + 1

2

In some programming languages you must declare the ‘type’ of a variable before you use it; for
instance above you would have to declare that i is an integer before you could set i=1 . In contrast,
Python deduces the type based on what you do to it —above we assigned 1 to it so Python figured
that i must be a place to put an integer. If we change how we use a variable then Python will
refigure; here we change what is kept in x from an integer to a string.
>>> x = 1

>>> x

1

>>> x = 'a'

>>> x

'a'

You can do multiple things on a single line.
>>> first_day, last_day = 0, 365

>>> first_day

0

>>> last_day

365

Python computes the right side, left to right, and then assigns those values to the variables on the
left.

If you do something not allowed then Python complains, signaling its unhappiness by raising
an exception and in the final line giving an error message.
>>> "a'' + 1

File "<stdin>", line 1

"a'' + 1

^

SyntaxError: EOL while scanning string literal

Besides integers, Python gives you real numbers and complex numbers.1

>>> 1/5

0.2

>>> 0.1 + 0.2

0.30000000000000004

>>> (3+2j) - (1-4j)

(2+6j)

As engineers do, Python uses the letter j for the square root of −1, not i as is traditional in
Mathematics. (Although Sage lets you use i.)

Variables can also represent truth values.
1These operations are done with floating points, a system built into your computer’s hardware that models the real
numbers. In the example, the distinction leaks through since the decimal for 0.3 is not perfectly accurate. While
issues brought out floating point representations are fascinating —see Python Team [2021a] and Goldberg [1991]—
we shall ignore them, just to keep the focus on linear algebra.
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>>> yankees_stink = True

>>> yankees_stink

True

You need the initial capital letter: it is True or False , not true or false .
Above we saw a couple of strings consisting of text between quotes. (They just had a single

character, 'a' , but Python doesn’t worry about the difference between a character and a length one
string.) To make a string, you can use either double or single quotes, as long as you use the same
at both ends. Here x and y are double-quoted, which works because each contains an apostrophe,
and the comma and period strings are single-quoted.

>>> x = "I'm Popeye the sailor man"

>>> y = "I yam what I yam and that's all what I yam"

>>> x + ', ' + y + '.'

"I'm Popeye the sailor man, I yam what I yam and that's all what I yam."

The last line shows that + does string concatenation. It also shows that you can mix single-quoted
strings with double-quoted ones.

To get a newline, you can use use slash-n, \n , inside a double-quoted string. If you need a lot of
newlines then put explicit line breaks inside a string marked by three double quotes.

>>> a = """THE ROAD TO WISDOM

...

... The road to wisdom?

... -- Well, it's plain

... and simple to express:

... Err

... and err

... and err again

... but less

... and less

... and less. --Piet Hein"""

The three dots that start the lines after the first is Python’s interpreter prompting you that what
you have typed is not complete, that you’ve started a string but not yet finished it.

A Python dictionary is a finite function, a finite set of pairs 〈key, value〉, subject to the restric-
tion that no key can appear twice. You can use a dictionary as a simple database.

>>> english_words = {'one': 1, 'two': 2, 'three': 3}

>>> english_words['one']

1

>>> english_words['four'] = 4

>>> english_words

{'one': 1, 'two': 2, 'three': 3, 'four': 4}

>>> english_words['two'] = -1

>>> english_words

{'one': 1, 'two': -1, 'three': 3, 'four': 4}
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Dictionaries are central to Python, in part because looking up values in a dictionary is very fast,
due to the way that they are organized internally.

While dictionaries are made of pairs, a Python list is a sequence of single entries.

>>> a = ['alpha', 'beta', 'gamma']

>>> a

['alpha', 'beta', 'gamma']

>>> b = ['delta']

>>> c = []

Lists can contain anything, including other lists.

>>> x = 4

>>> a = ['alpha', [True, x]]

>>> a

['alpha', [True, 4]]

>>> len(a)

2

Get an element from a list by specifying its index, its place in the list, inside square brackets. Lists
indices are zero-based, that is, the initial element of the list is numbered 0.

>>> a = ['alpha', 'beta', 'gamma']

>>> a[0]

'alpha'

>>> a[1]

'beta'

>>> a[0] = 'Alpha'

>>> a[0]

'Alpha'

Count from the back by using negative indices.

>>> a = ['alpha', 'beta', 'gamma']

>>> a[-1]

'gamma'

Specifying two indices separated by a colon gets a slice of the list.

>>> a = ['alpha', 'beta', 'gamma', 'delta']

>>> a[1:3]

['beta', 'gamma']

>>> a[1:-1]

['beta', 'gamma']

>>> a[1:1]

[]

You can lengthen a list.
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>>> c = ['delta']

>>> c.append('epsilon')

>>> c

['delta', 'epsilon']

>>> a = ['beta', 'gamma']

>>> a.insert(0,'alpha')

>>> a+c

['alpha', 'beta', 'gamma', 'delta', 'epsilon']

A tuple is like a list in that it is ordered.
>>> a = ('fee', 'fie', 'foe', 'fum')

>>> a[0]

'fee'

However a tuple is unlike a list in that it is not mutable, it cannot change.
>>> a = ('fee', 'fie', 'foe', 'fum')

>>> a[0] = 'phooey'

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

TypeError: 'tuple' object does not support item assignment

One reason that non-mutability is useful is that tuples can be keys in dictionaries while lists cannot
be keys.
>>> a = ['ke1az', 5418]

>>> b = ('ke1az', 5418)

>>> d = {a: 'active'}

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

TypeError: unhashable type: 'list'

>>> d = {b: 'active'}

>>> d

{('ke1az', 5418): 'active'}

Python has a special value, None , that means something has no sensible value. For instance, if
your program keeps track of a person’s address and includes a variable apartment_num then for a
person who does not live in an apartment you should say apartment_num = None .

Flow of control Python supports the traditional ways of changing the order of statement
execution, with a twist. The twist is that while many languages use braces or some other syntax
to mark a block of code, Python uses indentation. Always indent with four spaces.
>>> x = 4

>>> if (x == 0):

... delta = 1

... else:

... delta = 0

...
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>>> delta

0

Here, Python sets delta to 1 if x equals 0, otherwise Python sets delta to 0.
After delta = 0 you must enter a blank line so that Python knows there is nothing more in

that block. Notice also that double equals, == , means ‘is equal to’. For ‘not equal’, use!= .
Python has two more variants on the if statement. It could have a single branch

>>> x = 0

>>> if (x == 0):

... print("Division by x is not allowed.")

...

Division by x is not allowed.

or it could have more than two branches.
>>> x = 2

>>> if (x == 0):

... sgn = 0

... elif (x > 0):

... sgn = 1

... else:

... sgn = -1

...

>>> sgn

1

Computers excel at iteration, at looping through a sequence of statements. A for loop often
involves a range .
>>> for i in range(4):

... print(i, "squared is", i**2)

...

0 squared is 0

1 squared is 1

2 squared is 4

3 squared is 9

By default the lowest number produced by range is 0, which fits with the fact that list numbering
is zero-based. Change the initial number by calling range with two arguments.
>>> for i in range(1, 4):

... print(i, "cubed is", i**3)

...

1 cubed is 1

2 cubed is 8

3 cubed is 27

The highest number produced by range is one less than its input, so that the highest number given
by range(4) or range(1,4) is 3. This is convenient because it makes the combination of two lists
range(4)+range(4,10) give the same as the single list range(10) .

You can iterate over a list by working with element indices.
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>>> x = [4, 0, 3, 0]

>>> for i in range(len(x)):

... if (x[i] == 0):

... print("item", i, "is zero")

... else:

... print("item", i, "is nonzero")

...

item 0 is nonzero

item 1 is zero

item 2 is nonzero

item 3 is zero

However, an experienced Python person who was not trying to illustrate the range command would
replace for i in range(len(x)) with for c in x because for can iterate over any sequence, not just
a list of numbers. Here is a simple text formatter that fills a line with words until the line would
exceed 40 characters, and then prints that line and starts a new one.

>>> quote = """Victorious warriors win first and then go to war,

... while defeated warriors go to war first and then seek to win.

... --Sun Tzu"""

>>> line, line_length = [], 0

>>> for wd in quote.split():

... if line_length+len(wd) > 40:

... print(" ".join(line))

... line, line_length = [], 0

... line_length = line_length + len(wd) + 1

... line.append(wd)

...

Victorious warriors win first and then

go to war, while defeated warriors go to

war first and then seek to win. --Sun

>>> if line:

... print(" ".join(line))

...

Tzu

Python has lot of string operations. Above, the quote.split() divides the string into separate
words while " ".join(line) makes a string by putting space between the words in the list line .
Thus, the final if line: above ejects any material left over when the for loop is finished.

A for loop is designed to execute a certain number of times. For a loop that runs a number of
times that you don’t know in advance, use while .

>>> n, i = 12, 0

>>> while (n != 1):

... if (n % 2 == 0):

... n = n // 2

... else:
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... n = 3*n + 1

... i = i + 1

... print("after", i, "steps, n=", n)

...

after 1 steps, n= 6

after 2 steps, n= 3

after 3 steps, n= 10

after 4 steps, n= 5

after 5 steps, n= 16

after 6 steps, n= 8

after 7 steps, n= 4

after 8 steps, n= 2

after 9 steps, n= 1

The // operation divides the left integer by the right and then returns the floor.
Exit from a loop immediately with the break command.

>>> for i in range(10):

... if (i == 3):

... break

... print("inside the loop: i is", i)

...

A common loop construct is to perform some action on each list element. Python has a shortcut
for this, called list comprehension.

>>> a = [2**n for n in range(4)]

>>> a

[1, 2, 4, 8]

>>> [i-1 for i in a]

[0, 1, 3, 7]

Functions You can make your own functions. This implements the quadratic formula.1

>>> def quad_formula(a, b, c):

... """Find the roots of a quadratic

... a, b, c real numbers Coefficients, as in ax^2 + bx + c

... """

... discriminant = (b**2 - 4*a*c)**(0.5) # power 0.5 is square root

... r1 = (-1*b-discriminant) / (2.0*a)

... r2 = (-1*b+discriminant) / (2.0*a)

... return (r1, r2)

...

>>> quad_formula(1, -6, 5)

(1.0, 5.0)

>>> quad_formula(1, 2, 1)

(-1.0, -1.0)

1This code is naive, for instance in that it does not address the potential floating point issues.



Section: Python basics Page 9

>>> quad_formula(1, -1, -1)

(-0.6180339887498949, 1.618033988749895)

When you write programs in Python, most of what you write is inside of functions.
Functions always return something; if a function never executes a return then it will return the

value None . They can also contain multiple return statements, for instance one for an if branch
and one for an else .

About comments: the quad_formula function has two kinds of comments. Inside the code, inline
comments start with a hash mark, # (programmers often write comments that take up an entire
line, by starting that line with a hash). The second kind is that after the def line is a triple-quoted
string that briefly describes what the function does and lists its parameters.

At the end of the def line, in parentheses, are the function’s parameters. These take the values
passed into the function by the caller. Functions can also have optional parameters that have a
default value.

>>> def greet(name="Sir or Madam"):

... """Say hello.

... name string Person's name

... """

... print("Hello", name+".")

...

>>> greet("Fred")

Hello Fred.

>>> greet()

Hello Sir or Madam.

Sage heavily uses this feature of Python.

Objects and modules In Mathematics, a structure is a set of things that have associated
operations. For example, a vector space is a set with the operations of addition and scalar multi-
plication. Python is object-oriented, which means that we can similarly bundle together data and
actions (in this context the actions, the functions, are called methods).

>>> class DatabaseRecord(object):

... """Hold information about a person.

... """

... def __init__(self, name, age):

... self.name = name

... self.age = age

... def salutation(self):

... print("Dear", self.name)

...

>>> a = DatabaseRecord("Jim", 62)

>>> a.name

'Jim'

>>> a.age

62
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>>> a.salutation()

Dear Jim

>>> b = DatabaseRecord("Marie", 20)

>>> b.salutation()

Dear Marie

Above, we create two instances of DatabaseRecord , instance a and instance b . To get the age data of
instance a , write a.age . (The self variable can be puzzling. Suppose that at the prompt you type
a.name="James" . Then you’ve used the name a for the instance, so that the computer knows where
to make the change. But inside the class description code there isn’t any fixed instance name.
That is, self refers to the current instance. For example, if you are working with the instance a

then in the salutation the self.name refers to a.name .)
You won’t be writing your own classes here but you will be using ones from the libraries of code

that others have written, including the code for Sage, so you must know how to use classes provided
by other people. A library, a collection of related data, functions, and classes, in this context is
called a module. For instance, Python comes with a math module that you can use.

>>> import math

>>> math.pi

3.141592653589793

>>> math.factorial(5)

120

>>> math.cos(math.pi)

-1.0

The import statement makes the module’s contents available.
Another module does random numbers.

>>> import random

>>> print(random.randint(1,10))

3

>>> print(random.randint(0,100)/100)

0.19

Programs The read-eval-print loop is great for small experiments but for code with more than
a few lines, or for code that you want to keep, you want to put your work in a separate file. Here
we will sketch how to write a stand-alone program.

To write the code, don’t use a word processor. Instead, a text editor has the correct features for
this. Use one with support for Python, including automatic indentation and syntax highlighting,
where the editor colors your code to make it easier to read. There are many excellent editors; one
is Emacs.1

Here is a first example of a Python program. Start your editor, open a new file called month.py,
and enter these lines. (Notice that the first line describes the program in a comment. You may
want to also name the author, the date, and the license for the code. In addition, the triple-quoted
documentation string at the top of the file is a good practice. You should include such a string in
each program.)
1It may come with your operating system or see www.gnu.org/software/emacs.

www.gnu.org/software/emacs
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# month.py

"""Print the number of the current month. """

import datetime

current = datetime.datetime.now() # get a datetime object, call its method

print("The month number is", current.month)

Run it through Python, One way is to open a command line terminal, change to the direc-
tory containing month.py, type python3 month.py , and hit 〈Enter 〉. You should see output like
The month number is 10 .

Next is a small game. (It uses the Python function input that prompts the user and then
collects their response.)

# guessing_game.py

"""guessing_game.py

Guess the number between 1 and 10.

"""

import random

CHOICE = random.randint(1,10)

def test_guess(guess):

"""Decide if the guess is correct and print a message."""

if (guess < CHOICE):

print(" Sorry, your guess is too low")

return False

elif (guess > CHOICE):

print(" Sorry, your guess is too high")

return False

print(" You are right!")

return True

flag = False

while (not flag):

guess = int(input("Guess an integer between 1 and 10: "))

flag = test_guess(guess)

(The int converts the string from input to an integer.) Here is output from running this game.

$ python3 guessing_game.py

Guess an integer between 1 and 10: 3

Sorry, your guess is too low

Guess an integer between 1 and 10: 8

Sorry, your guess is too high

Guess an integer between 1 and 10: 5

You are right!

Note the triple-quoted documentation strings both for the file as a whole and for the function.
Besides being useful to a programmer editing the file, they integrate with Python’s help system.
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Go to the directory containing guessing_game.py and start the Python interpreter. At the >>>

prompt, enter import guessing_game . You will play through a round of the game (there is a way to
avoid this but we will ignore the point). You are now using guessing_game.py as a module. Type
help("guessing_game") . You will see documentation on guessing_game , including these lines (to see
more than one page use the space bar and to quit the viewer use q).

Help on module guessing_game:

NAME

guessing_game - guessing_game.py

DESCRIPTION

Guess the number between 1 and 10.

FUNCTIONS

test_guess(guess)

Decide if the guess is correct and print a message.

Python got this information from the documentation strings. Sage ’s programmers follow this
practice and so you can use help(...) whenever you need more information on Sage ’s routines.

Sage basics

Learning about Sage ’s capabilities is the goal of much of this manual. But Sage is built on Python
and so a brief comparison here makes sense. See [Sage Development Team, 2021a] for a more
broad-based introduction, and be aware of the reference [Sage Development Team, 2021b].

Command line Sage ’s command line is like Python’s but adapted to mathematical work. First
start Sage, for instance by entering sage into a command line window. You get some initial text
and a prompt.

sage:

Leave the prompt with the command exit followed by 〈Enter 〉.
As with Python, you can use the interpreter to experiment.

sage: 2**3

8

sage: 2^3

8

sage: 3*1 + 4*2

11

sage: 5 == 3+3

False

sage: sin(pi/3)

1/2*sqrt(3)
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The second expression shows that Sage adds a convenient shortcut for exponentiation beyond
Python’s 2**3 . The final expression shows that Sage sometimes returns exact results rather than
an approximation. You can still get the approximation; here are three ways.

sage: sin(pi/3).numerical_approx()

0.866025403784439

sage: sin(pi/3).n()

0.866025403784439

sage: n(sin(pi/3), digits=4)

0.8660

The final way shows that there is an option to limit the number of digits that you see.1

Script You can group Sage commands together in a file, to reuse them without having to retype.
Create the file sage_normal.sage, enter this function, and save.

def normal_curve(upper_limit, digits=3):

"""Approximate area under the standard Normal curve from 0 to upper_limit.

upper_limit real Find area from 0 to upperlimit.

"""

mean, stddev = 0.0, 1.0

area = numerical_integral ((1/sqrt(2*pi) * e^(-0.5*((x-mean)/stddev)^2)),

0, upper_limit)

return(numerical_approx(area[0], digits=digits))

Start Sage and bring the contents in with load(...) .

sage: load("normal_curve.sage")

None

sage: normal_curve(1.0)

0.341

Notebook In this manual we will stick to the interpreter. But we’ll mention that another way
to use Sage is in a browser-based graphical interface, inside a Jupyter Notebook, Jupyter Team
[2021]. You can set up worksheets to use alone or with other people, you can easily go back and
edit prior commands, view plots integrated with the text, and many other nice features. To fire it
up, instead of just issuing the sage command, say sage -n jupyter (of course, you must have the
Jupyter software installed).2

1 If you don’t use the option then you see the number of digits matching 53 bits of precision, which is the standard
for floating point numbers. 2If your operating system doesn’t offer it then you can visit https://jupyter.org.

https://jupyter.org




Gauss’s Method

Sage can solve linear systems in a number of ways. It can use a general system solver, and it can
also use solvers specialized for linear systems. We’ll see both.

Systems of equations

To enter a system of equations, you must first enter single equations. So you must start with
variables. We have seen one kind of variable in giving commands like these.

sage: x = 3

sage: 7*x

21

As discussed in the prior chapter, here x is the name of a location in the computer’s memory that
we use to store and retrieve values.

Variables in equations are different; in the equation C = 2π · r the two variables do not
have fixed values, nor are they tied to memory locations. To illustrate the difference, type in
an unassigned variable such as y , and hit 〈Enter 〉. You’ll get an exception whose final line says
NameError: name 'y' is not defined .

To instead use y as a symbolic variable, you must first declare it to the system.

sage: var('y')

y

sage: y

y

sage: 2*y

2*y

Earlier, Sage took x as a location to hold values and so it evaluated 7*x (it got the value 21). But
Sage does not evaluate 2*y because you told it that y is a symbolic variable.

With that, a system of equations is a list.

sage: var('x,y,z')

(x, y, z)

sage: eqns = [x-y+2*z == 4, 2*x+2*y == 12, x-4*z==5]

Two things to note here: you must write double equals == in equations instead of the assignment

15
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operator = , and you must write 2*x instead of 2x . Either mistake will trigger an error message
saying SyntaxError: invalid syntax .

One way to solve this system is with Sage ’s general-purpose solver.

sage: var('x,y,z')

(x, y, z)

sage: eqns = [x-y+2*z == 4, 2*x+2*y == 12, x-4*z==5]

sage: solve(eqns, x, y, z)

[

[x == 5, y == 1, z == 0]

]

That’s pretty good but this solver is quite smart and can go beyond just numbers as answers. Next
we put the parameter a in the right side. Sage solves for x, y, and z in terms of that parameter.

sage: var('x,y,z,a')

(x, y, z, a)

sage: eqns = [x-y+2*z == a, 2*x+2*y == 12, x-4*z==5]

sage: solve(eqns, x, y, z)

[

[x == 2/5*a + 17/5, y == -2/5*a + 13/5, z == 1/10*a - 2/5]

]

Matrices The solve routine is general-purpose but for the special case of linear systems there
are better tools. We’ll say more about matrices and vectors in later chapters but briefly: a Sage
matrix is a list of rows, where each row is a list of numbers. We declare the kind of number at
the start. In the book mostly we think of the entries as being real numbers but the examples
and exercises use rational numbers, which are easier to read. Sage uses QQ for the set of rational
numbers.

sage: M = matrix(QQ, [[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]])

sage: M

[ 1 2 3 4]

[ 5 6 7 8]

[ 9 10 11 12]

sage: M.nrows()

3

sage: M.ncols()

4

sage: M[1,2]

7

As with Python lists, Sage lists are zero-indexed. So M[1,2] asks for the entry in the second row
and third column.

Enter a vector in much the same way.
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sage: v = vector(QQ, [2/3, -1/3, 1/2])

sage: v

(2/3, -1/3, 1/2)

sage: v[1]

-1/3

Sage doesn’t worry about the distinction between row and column vectors. There, v prints with
rounded brackets, unlike matrices that print with square brackets. If you need to be careful about
whether you have a row or column, turn the vector into a matrix.

sage: v = vector(QQ, [1,3,5])

sage: v.row()

[1 3 5]

sage: v.column()

[1]

[3]

[5]

The book often solves linear systems by augmenting a matrix with a vector.

sage: M = matrix(QQ, [[1, 2, 3], [4, 5, 6], [7 ,8, 9]])

sage: v = vector(QQ, [2/3, -1/3, 1/2])

sage: M_prime = M.augment(v)

sage: M_prime

[ 1 2 3 2/3]

[ 4 5 6 -1/3]

[ 7 8 9 1/2]

An optional argument makes Sage show a distinction between the two parts of M′.

sage: M = matrix(QQ, [[1, 2, 3], [4, 5, 6], [7 ,8, 9]])

sage: v = vector(QQ, [2/3, -1/3, 1/2])

sage: M_prime = M.augment(v, subdivide=True)

sage: M_prime

[ 1 2 3| 2/3]

[ 4 5 6|-1/3]

[ 7 8 9| 1/2]

Row operations We can get Sage to do the arithmetic of Gauss’s Method.

sage: M = matrix(QQ, [[0, 2, 1], [2, 0, 4], [2 ,-1/2, 3]])

sage: v = vector(QQ, [2, 1, -1/2])

sage: M_prime = M.augment(v, subdivide=True)

sage: M_prime

[ 0 2 1| 2]

[ 2 0 4| 1]

[ 2 -1/2 3|-1/2]
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Swap the top rows. Remember that list indices start at zero, so the top row is row 0.

sage: M = matrix(QQ, [[0, 2, 1], [2, 0, 4], [2 ,-1/2, 3]])

sage: v = vector(QQ, [2, 1, -1/2])

sage: M_prime = M.augment(v, subdivide=True)

sage: M_prime.swap_rows(0,1)

None

sage: M_prime

[ 2 0 4| 1]

[ 0 2 1| 2]

[ 2 -1/2 3|-1/2]

Next, rescale the top row by multiplying the entries by 1/2.

sage: M_prime.rescale_row(0, 1/2)

None

sage: M_prime

[ 1 0 2| 1/2]

[ 0 2 1| 2]

[ 2 -1/2 3|-1/2]

Replace the bottom row with the result of adding it to −2 times the top row.

sage: M_prime.add_multiple_of_row (2,0,-2)

None

sage: M_prime

[ 1 0 2| 1/2]

[ 0 2 1| 2]

[ 0 -1/2 -1|-3/2]

Finally, replace the bottom row with the result of adding it and 1/4 times the middle row.

sage: M_prime.add_multiple_of_row (2,1,1/4)

None

sage: M_prime

[ 1 0 2| 1/2]

[ 0 2 1| 2]

[ 0 0 -3/4| -1]

Now, by-hand back substitution would give the solution, or we can use Sage ’s solve .

sage: var('x,y,z')

(x, y, z)

sage: eqns=[-3/4*z == -1, 2*y+z == 2, x+2*z == 1/2]

sage: solve(eqns, x, y, z)

[

[x == (-13/6), y == (1/3), z == (4/3)]

]
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The operations above work in-place. That is, they change the matrix M′. Sage has related
commands that leave the starting matrix unchanged, but return the changed matrix.

sage: M = matrix(QQ, [[0, 1, -1], [1, -2, 0], [0 ,-1, 4]])

sage: v = vector(QQ, [0, 1, -2])

sage: M_prime = M.augment(v, subdivide=True)

sage: M_prime

[ 0 1 -1| 0]

[ 1 -2 0| 1]

[ 0 -1 4|-2]

sage: N = M_prime.with_swapped_rows (0,1)

sage: M_prime

[ 0 1 -1| 0]

[ 1 -2 0| 1]

[ 0 -1 4|-2]

sage: N

[ 1 -2 0| 1]

[ 0 1 -1| 0]

[ 0 -1 4|-2]

Here, M′ is unchanged by the routine, while N is the returned changed matrix. The other two
routines of this kind are with_rescaled_rows and with_added_multiple_of_row .

Nonsingular and singular systems The steps that we went through to reduce the matrix
are mechanical. That is, we should be able to automate going from a matrix to its reduced row
echelon form.

sage: M = matrix(QQ, [[1/2, 1, -1], [1, -2, 0], [2 ,-1, 1]])

sage: v = vector(QQ, [0, 1, -2])

sage: M_prime = M.augment(v, subdivide=True)

sage: M_prime.rref()

[ 1 0 0| -4/5]

[ 0 1 0| -9/10]

[ 0 0 1|-13/10]

So we have gotten the answer without Sage ’s solve . Advantages of using methods specialized to
linear systems are that they are faster, and can also be less prone to floating point issues.

In that example, M is nonsingular, because it is square and because when it has been put into
echelon form, every column has a leading variable. The next example has a square matrix that is
singular.

sage: M = matrix(QQ, [[1, 1, 1, 1], [1, 2, 3, 4], [2, 3, 4, 5], [0, 1, 2 ,3]])

sage: v = vector(QQ, [0, 1, 1, 1])

sage: M_prime = M.augment(v, subdivide=True)

sage: M_prime

[1 1 1 1|0]
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[1 2 3 4|1]

[2 3 4 5|1]

[0 1 2 3|1]

sage: M_prime.rref()

[ 1 0 -1 -2|-1]

[ 0 1 2 3| 1]

[ 0 0 0 0| 0]

[ 0 0 0 0| 0]

Recall that if a linear system has a square matrix of coefficients that is singular then there are two
possibilities. The first possibility is above, that in echelon form any row that is all zeros on the left
has an entry on the right that is also zero. This system has infinitely many solutions.

In contrast, with the same starting matrix the example below has a row that is zeros on the
left but is nonzero on the right, and so has no solution.

sage: v = vector(QQ, [0, 1, 2, 1])

sage: M_prime = M.augment(v, subdivide=True)

sage: M_prime.rref()

[ 1 0 -1 -2| 0]

[ 0 1 2 3| 0]

[ 0 0 0 0| 1]

[ 0 0 0 0| 0]

The difference between the possibilities has to do with the relationships among the rows of M
and also with the relationships among the entries of the vector. In the matrix the third row is the
sum of the first two, and the fourth row is the difference of the first two. As to the vectors, in the
first case the vector’s entries have the same relationship — the third entry of the vector is the sum
of the first and the fourth entry is the difference of the first two— while in the second case the
vector’s entries do not have that relationship.

The easy way to ensure that a zero row in the matrix on the left is associated with a zero entry
in the vector on the right is to make the vector have all zeros, that is, to consider the associated
homogeneous system.

sage: v = zero_vector(QQ, 4)

sage: v

(0, 0, 0, 0)

sage: M = matrix(QQ, [[1, 1, 1, 1], [1, 2, 3, 4], [2, 3, 4, 5], [0, 1, 2 ,3]])

sage: M_prime = M.augment(v, subdivide=True)

sage: M_prime

[1 1 1 1|0]

[1 2 3 4|0]

[2 3 4 5|0]

[0 1 2 3|0]

sage: M_prime.rref()

[ 1 0 -1 -2| 0]

[ 0 1 2 3| 0]
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[ 0 0 0 0| 0]

[ 0 0 0 0| 0]

You can get the numbers of the columns having leading entries with the pivots method.

sage: M = matrix(QQ, [[1, 1, 1, 1], [1, 2, 3, 4], [2, 3, 4, 5], [0, 1, 2 ,3]])

sage: v = vector(QQ, [0, 1, 1, 1])

sage: M_prime = M.augment(v, subdivide=True)

sage: M_prime.rref()

[ 1 0 -1 -2|-1]

[ 0 1 2 3| 1]

[ 0 0 0 0| 0]

[ 0 0 0 0| 0]

sage: M_prime.pivots()

(0, 1)

sage: M_prime.nonpivots()

(2, 3, 4)

Parametrization Above we used Sage ’s general purpose solve routine. It may not be the
best way to find the solution of a linear system because specialized tools are likely to be faster and
may be more accurate. But solve does come in handy to give the solution set of a system with
infinitely many solutions, by parametrizing.

To illustrate, below we arrange for a system with infinitely many solutions. We start with a
matrix of coefficients where the top two rows add to the bottom row and adjoin a vector with the
same row relationship. We next find the reduced row echelon form. Then we transcribe the result
to a system of equations and apply solve , in two different ways.

sage: M = matrix(QQ, [[1, 1, 1], [1, 2, 3], [2 , 3, 4]])

sage: v = vector(QQ, [1, 0, 1])

sage: M_prime = M.augment(v, subdivide=True)

sage: M_prime.rref()

[ 1 0 -1| 2]

[ 0 1 2|-1]

[ 0 0 0| 0]

sage: var('x,y,z')

(x, y, z)

sage: eqns = [x+z == 2, y+2*z == -1]

sage: solve(eqns, x, y)

[

[x == -z + 2, y == -2*z - 1]

]

sage: solve(eqns, x, y, z)

[

[x == -r1 + 2, y == -2*r1 - 1, z == r1]

]
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The first of the two solve calls asks to solve only for x and y and so Sage gives the solution in
terms of z. In the second call Sage produces a parameter of its own.

Automation

We finish by giving some Python code for two functions that mimic the steps that a person goes
through in doing Gauss’s Method by hand.

The source file of the script is below. The significance of “by hand” is that the script assumes
that the matrices are small and have rational number entries. That means we don’t have to worry
about floating point issues. In short, this is a toy example that is fine for homework but is not
ready for applications.

Loading and running First here are a few sample calls. Start Sage in the directory containing
the file gauss_method.sage.

sage: load("gauss_method.sage")

sage: M = matrix(QQ, [[1/2, 1, 4], [2, 4, -1], [1, 2, 0]])

sage: v = vector(QQ, [-2, 5, 4])

sage: M_prime = M.augment(v, subdivide=True)

sage: gauss_method(M_prime)

[1/2 1 4| -2]

[ 2 4 -1| 5]

[ 1 2 0| 4]

take -4 times row 1 plus row 2

take -2 times row 1 plus row 3

[1/2 1 4| -2]

[ 0 0 -17| 13]

[ 0 0 -8| 8]

take -8/17 times row 2 plus row 3

[ 1/2 1 4| -2]

[ 0 0 -17| 13]

[ 0 0 0|32/17]

Besides gauss_method, the file also contains a gauss_jordan function to go all the way to reduced
echelon form.

sage: load("gauss_method.sage")

sage: M = matrix(QQ, [[1/2, 1, 4], [2, 4, -1], [1, 2, 0]])

sage: v = vector(QQ, [-2, 5, 4])

sage: M_prime = M.augment(v, subdivide=True)

sage: gauss_jordan(M_prime)

[1/2 1 4| -2]

[ 2 4 -1| 5]

[ 1 2 0| 4]

take -4 times row 1 plus row 2
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take -2 times row 1 plus row 3

[1/2 1 4| -2]

[ 0 0 -17| 13]

[ 0 0 -8| 8]

take -8/17 times row 2 plus row 3

[ 1/2 1 4| -2]

[ 0 0 -17| 13]

[ 0 0 0|32/17]

take 2 times row 1

take -1/17 times row 2

take 17/32 times row 3

[ 1 2 8| -4]

[ 0 0 1|-13/17]

[ 0 0 0| 1]

take 4 times row 3 plus row 1

take 13/17 times row 3 plus row 2

[1 2 8|0]

[0 0 1|0]

[0 0 0|1]

take -8 times row 2 plus row 1

[1 2 0|0]

[0 0 1|0]

[0 0 0|1]

Source of gauss_method.sage These are naive implementations of Gauss’s Method and Gauss-
Jordan reduction.

# Show Gauss's method and Gauss-Jordan reduction steps.

# 2012-Apr-20 Jim Hefferon Public Domain.

# 2019-Nov-09 JH Minor reformatting

# 2021-Sep-22 JH Adjust for Python3

# Naive Gaussian reduction

def gauss_method(M, rescale_leading_entry =False):

"""Describe the reduction to echelon form of the given matrix of

rationals.

M matrix of rationals e.g., M = matrix(QQ, [[..], [..], ..])

rescale_leading_entry =False boolean make leading entries to 1's

Returns: None. Side effects: M is reduced, steps are printed.

Note that this is echelon form, not reduced echelon form, and that

this routine does not end the same way as does M.echelon_form().

"""

num_rows=M.nrows()

num_cols=M.ncols()

print(M)
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col = 0 # all cols before this are already done

for row in range(0,num_rows):

# Do we need to swap in a nonzero entry from below?

while (col < num_cols

and M[row][col] == 0):

for i in M. nonzero_positions_in_column (col):

if i > row:

print(" swap row", row+1, "with row", i+1)

M.swap_rows(row,i)

print(M)

break

else:

col += 1

if col >= num_cols:

break

# Now we are guaranteed M[row][col] != 0

if ( rescale_leading_entry

and M[row][col] != 1):

print(" take", 1/M[row][col], "times row", row+1)

M.rescale_row(row,1/M[row][col])

print(M)

change_flag=False

for changed_row in range(row+1,num_rows):

if M[changed_row][col] != 0:

change_flag=True

factor=-1*M[changed_row][col]/M[row][col]

print(" take", factor, "times row", row+1, "plus row", changed_row+1)

M.add_multiple_of_row(changed_row,row,factor)

if change_flag:

print(M)

col +=1

# Naive Gauss-Jordan reduction

def gauss_jordan(M):

"""Describe the reduction to reduced echelon form of the

given matrix of rationals.

M matrix of rationals e.g., M = matrix(QQ, [[..], [..], ..])

Returns: None. Side effects: M is reduced, steps are printed.

"""

gauss_method(M, rescale_leading_entry =False)

# Get list of leading entries [le in row 0, le in row1, ..]

pivot_list=M.pivots()
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# Rescale leading entries

change_flag=False

for row in range(0,len(pivot_list)):

col=pivot_list[row]

if M[row][col] != 1:

change_flag=True

print(" take",1/M[row][col],"times row",row+1)

M.rescale_row(row,1/M[row][col])

if change_flag:

print(M)

# Pivot

for row in range(len(pivot_list)-1,-1,-1):

col=pivot_list[row]

change_flag=False

for changed_row in range(0,row):

if M[changed_row,col] != 0:

change_flag=True

factor=-1*M[changed_row][col]/M[row][col]

print(" take",factor,"times row",row+1,"plus row",changed_row+1)

M.add_multiple_of_row(changed_row,row,factor)

if change_flag:

print(M)





Vector Spaces

Sage can operate with vector spaces, for example by finding a basis for a space.
In the book’s chapter on vector spaces, the scalars come from the set of real numbers, R. Sage

lets you choose from two models of the real numbers. One is RDF, the computer’s built-in floating
point model of real numbers. The other is RR, which gives arbitrary precision reals. The first model
runs faster and is more widely used in practice so that is what we will use.

Real spaces

Sage lets you create vector spaces. Here is R4.

sage: V = VectorSpace(RDF,4)

sage: V

Vector space of dimension 4 over Real Double Field

You can also create subspaces. Here is a one-dimensional subspace of R4, described as the span of
a set with one vector.

sage: V = VectorSpace(RDF,4)

sage: V

Vector space of dimension 4 over Real Double Field

sage: v1 = vector(RR, [1, 1, -3, 0])

sage: W = V.span([v1])

sage: W

Vector space of degree 4 and dimension 1 over Real Double Field

Basis matrix:

[ 1.0 1.0 -3.0 0.0]

You can ask Sage questions about this subspace, such as testing for membership.

sage: v3 = vector(RDF, [2, 2, -6, 0])

sage: v3 in W

True

sage: v4 = vector(RDF, [1, 0, 0, 5])

sage: v4 in W

False

27
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Another example is R3.

sage: V = VectorSpace(RDF,3)

sage: V

Vector space of dimension 3 over Real Double Field

sage: v1 = vector(RDF, [1, 2, 3])

sage: v1 in V

True

sage: v2 = vector(RDF, [1, 2, 3, 4])

sage: v2 in V

False

We can create a subspace as a span of multiple vectors.

sage: V = VectorSpace(RDF,3)

sage: v1 = vector(RDF, [1, 0, 3])

sage: v2 = vector(RDF, [0, 1, 1])

sage: W = V.span([v1, v2])

sage: W

Vector space of degree 3 and dimension 2 over Real Double Field

Basis matrix:

[1.0 0.0 3.0]

[0.0 1.0 1.0]

sage: v3 = vector(RDF, [1, 1, 4])

sage: v3 in W

True

Basis Sage will retrieve a basis for a vector space or subspace.

sage: V = VectorSpace(RDF,3)

sage: V.basis()

[

(1.0, 0.0, 0.0),

(0.0, 1.0, 0.0),

(0.0, 0.0, 1.0)

]

sage: v1 = vector(RDF, [2, -1, -3])

sage: v2 = vector(RDF, [1, 1, 0])

sage: W = V.span([v1, v2])

sage: W.basis()

[

(1.0, 0.0, -1.0),

(0.0, 1.0, 1.0)

]

Notice that the basis that Sage gives back is not the same as the set of two vectors { v⃗1, v⃗2 } that
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we gave it. To get the new basis, Sage takes the vectors from the spanning set as the rows of a
matrix, brings that matrix to reduced echelon form, and reports the nonzero rows as the basis.
Each matrix has one and only one reduced echelon form, so each subspace of V has one and only
one such basis; this is the canonical basis for the subspace.

Sage shows this basis when you ask for a description of the subspace.

sage: W

Vector space of degree 3 and dimension 2 over Real Double Field

Basis matrix:

[ 1.0 0.0 -1.0]

[ 0.0 1.0 1.0]

Another subspace of R3 is the plane described by the equation x− 2y+ 2z = 0.

W = {

x

y

z

 | x = 2y− 2z } = {

2

1

0

y+

−2

0

1

 z | y, z ∈ R }

Here is that subspace.

sage: V = VectorSpace(RDF,3)

sage: v1 = vector(RDF, [2, 1, 0])

sage: v2 = vector(RDF, [-2, 0, 1])

sage: W = V.span([v1, v2])

sage: W.basis()

[

(1.0, 0.0, -0.5),

(0.0, 1.0, 1.0)

]

If you take that set { v⃗1, v⃗2 } and add a vector v⃗3 that is linearly independent of those two, then
it generates a three dimensional subspace of R3, which is all of R3.

sage: v3 = vector(RDF, [2, 3, 0])

sage: W_prime = V.span([v1, v2, v3])

sage: W_prime.basis()

[

(1.0, 0.0, 0.0),

(0.0, 1.0, 0.0),

(0.0, 0.0, 1.0)

]

If instead you add to the spanning set { v⃗1, v⃗2 } a third vector v⃗3 that is linearly dependent on the
other two then it doesn’t change the span. That is, in this case the subspace spanned by the first
two [⃗v1, v⃗2] equals the span of all three [⃗v1, v⃗2, v⃗3].

sage: W = V.span([v1, v2])

sage: W.basis()
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[

(1.0, 0.0, -0.5),

(0.0, 1.0, 1.0)

]

sage: v3 = vector(RDF, [0, 1, 1])

sage: W_prime = V.span([v1, v2, v3])

sage: W_prime.basis()

[

(1.0, 0.0, -0.5),

(0.0, 1.0, 1.0)

]

If you are keen on using your own basis then Sage will accommodate.

sage: V = VectorSpace(RDF,3)

sage: v1 = vector(RDF, [1, 2, 3])

sage: v2 = vector(RDF, [2, 1, 3])

sage: W = V.span_of_basis([v1, v2])

sage: W.basis()

[

(1.0, 2.0, 3.0),

(2.0, 1.0, 3.0)

]

Equality Sage can compare spaces. Here are two descriptions of the xy-plane inside of R4.

sage: V = VectorSpace(RDF,4)

sage: v1 = vector(RDF, [1, 0, 0, 0])

sage: v2 = vector(RDF, [1, 1, 0, 0])

sage: W12 = V.span([v1, v2])

sage: v3 = vector(RDF, [2, 1, 0, 0])

sage: W13 = V.span([v1, v3])

If both vectors used to make the spanning set W1,2 are members of W1,3 then W1,2 ⊆ W1,3. If in
addition the vectors used to make the spanning set W1,3 are members of W1,2 then the spaces are
equal.

sage: v2 in W13

True

sage: v3 in W12

True

Since both v⃗1, v⃗3 ∈ W1,2 and v⃗1, v⃗2 ∈ W1,3, the two subspaces are equal.
However, the more straightforward way to test equality is to just ask.

sage: W12 == W13

True
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This exercise of the equality operator, == , would be half-hearted without trying it on two spaces
that are unequal.

sage: v4 = vector(RDF, [1, 1, 1, 1])

sage: W14 = V.span([v1, v4])

sage: v2 in W14

False

sage: v4 in W12

False

sage: W12 == W14

False

sage: W12 != W14

True

There is a point here about algorithms. Sage could check for equality of two spans in a number
of ways. One way is to check whether every member of the first spanning set is in the second
space, and whether every member of the second spanning set is in the first space. But Sage does
something different. It checks for equality of spaces just by checking whether they have equal
canonical bases.

sage: W12.basis()

[

(1.0, 0.0, 0.0, 0.0),

(0.0, 1.0, 0.0, 0.0)

]

sage: W14.basis()

[

(1.0, 0.0, 0.0, 0.0),

(0.0, 1.0, 1.0, 1.0)

]

These two algorithms have the same external behavior, in that both decide whether two spaces
are equal. But the algorithms differ internally and the second is faster, in part because Sage can
pre-compute the canonical basis for a space and then use it as many times as desired. Finding the
fastest way to do jobs is an important research area of computing.

Operations Sage can find the intersection of two spaces. Consider these members of R3.

v⃗1 =

1

0

0

 v⃗2 =

0

1

0

 v⃗3 =

0

0

3


Form two spans, the xy-plane W1,2 = [⃗v1, v⃗2] and the yz-plane W2,3 = [⃗v2, v⃗3]. The intersection of
these two is the y-axis.

sage: V = VectorSpace(RDF,3)

sage: v1 = vector(RDF, [1, 0, 0])

sage: v2 = vector(RDF, [0, 1, 0])
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sage: W12 = V.span([v1, v2])

sage: W12.basis()

[

(1.0, 0.0, 0.0),

(0.0, 1.0, 0.0)

]

sage: v3 = vector(RDF, [0, 0, 2])

sage: W23 = V.span([v2, v3])

sage: W23.basis()

[

(0.0, 1.0, 0.0),

(0.0, 0.0, 1.0)

]

sage: W = W12.intersection(W23)

sage: W.basis()

[

(0.0, 1.0, 0.0)

]

If you try to intersect two spaces where the operation makes no sense, such as if you try
to intersect R3 and R4, then Sage gives an error message whose final line contains the string
self and other must have the same ambient space.

Remember that the trivial space { 0⃗ } is the span of the empty set.

sage: V = VectorSpace(RDF,3)

sage: v1, v2 = vector(RDF, [1, 0, 0]), vector(RDF, [0, 1, 0])

sage: W12 = V.span([v1, v2])

sage: v3 = vector(RDF, [1, 1, 1])

sage: W3 = V.span([v3])

sage: W3.basis()

[

(1.0, 1.0, 1.0)

]

sage: W4 = W12.intersection(W3)

sage: W4.basis()

[

]

Sage will also find the sum of spaces, the span of their union.

sage: V = VectorSpace(RDF,3)

sage: v1, v2 = vector(RDF, [1, 0, 0]), vector(RDF, [0, 1, 0])

sage: W12 = V.span([v1, v2])

sage: v3 = vector(RDF, [1, 1, 1])

sage: W3 = V.span([v3])
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sage: W5 = W12 + W3

sage: W5

Vector space of degree 3 and dimension 3 over Real Double Field

Basis matrix:

[1.0 0.0 0.0]

[0.0 1.0 0.0]

[0.0 0.0 1.0]

sage: W5 == V

True

(The text covers the sum of subspaces in an optional section.)

Other spaces

The book has vector spaces that aren’t a subspace of some Rn. To work with them, there are more
sophisticated things that you can do but one straightforward thing is using a real space that is just
like the desired one.1 Consider this subspace of P2.

{a2x
2 + a1x+ a0 | a2 = a0 + a1 } = {(a1 + a0)x

2 + a1x+ a0 | a1, a0 ∈ R }

It is just like this subspace of R3.

{

a1 + a0

a1

a0

 | a1, a0 ∈ R } = {

1

1

0

a1 +

1

0

1

a0 | a1, a0 ∈ R }

sage: V = VectorSpace(RDF,3)

sage: v1 = vector(RDF, [1, 1, 0])

sage: v2 = vector(RDF, [1, 0, 1])

sage: W = V.span([v1, v2])

sage: W.basis()

[

(1.0, 0.0, 1.0),

(0.0, 1.0, -1.0)

]

Similarly you can use Sage to perform computation for this space of 2×2 matrices

{

(
a b

c d

)
| a− b+ c = 0 and b+ d = 0 }

by parametrizing

{

(
a b

c d

)
| a = −c− d and b = −d } = {

(
−1 0

1 0

)
c+

(
−1 −1

0 1

)
d | c, d ∈ R }

1The textbook’s third chapter, Maps Between Spaces, makes “just like” precise.
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and then giving Sage the corresponding real space.

sage: V = VectorSpace(RDF,4)

sage: v1 = vector(RDF, [-1, 0, 1, 0])

sage: v2 = vector(RDF, [-1, -1, 0, 1])

sage: W = V.span([v1, v2])

sage: W.basis()

[

(1.0, -0.0, -1.0, -0.0),

(0.0, 1.0, 1.0, -1.0)

]

That example gets the vectors by reading across the matrix rows. You could instead read down
the columns.

sage: V = VectorSpace(RDF,4)

sage: v1 = vector(RDF, [-1, 1, 0, 0])

sage: v2 = vector(RDF, [-1, 0, -1, 1])

sage: W = V.span([v1, v2])

sage: W.basis()

[

(1.0, 0.0, 1.0, -1.0),

(0.0, 1.0, 1.0, -1.0)

]

There are still other ways to produce a matching space. They look different than each other but
the important things about the spaces, such as dimension, are unaffected by their look. Much more
on this is in the book’s third chapter.



Matrices

Matrix operations such as addition and multiplication are mechanical and therefore are perfectly
suited for a computer.

Constructing matrices

Define a matrix using Sage ’s matrix function. Recall from the section on Gauiss’s Method that it
takes two inputs. First is the set of numbers describing which scalars can form the entries, and
second is those entries, written as lists of rows. Here, for the first input we will use either RDF for
floating point number entries, or CDF for complex number entries a+bi where a and b are floating
points, or we can fall back to the rational numbers, QQ.

sage: A = matrix(RDF, [[1, 2], [3, 4]])

sage: A

[1.0 2.0]

[3.0 4.0]

sage: i = CDF(i)

sage: A = matrix(CDF, [[1+2*i, 3+4*i], [5+6*i, 7+8*i]])

sage: A

[1.0 + 2.0*I 3.0 + 4.0*I]

[5.0 + 6.0*I 7.0 + 8.0*I]

sage: A = matrix(QQ, [[1, 2], [3, 4]])

sage: A

[1 2]

[3 4]

Sage ’s default symbol for the square root of −1 is i. Because i is used for many things in program-
ming, before using it for the complex numbers you should reset it with CDF(i) .

In this chapter, unless we have reason to do otherwise for scalars we will use the rational
numbers, QQ , because rationals are easier to read— 1 is easier than 1.0—and because the text’s
matrices usually have rational entries.

The matrix constructor lets you to specify the number of rows and columns.

sage: B = matrix(QQ, 2, 3, [[1, 1, 1], [2, 2, 2]])

sage: B

35



Page 36 Matrices

[1 1 1]

[2 2 2]

One reason to do this is as a check on what you enter. Here the specified size doesn’t match the
entries because the given matrix has only two rows.

sage: B = matrix(QQ, 3, 3, [[1, 1, 1], [2, 2, 2]])

Sage ’s error says Number of rows does not match up with specified number .
Another time that you want to list the number of rows and columns is when you are doing the

following shortcut to get an identity matrix, putting a 1 in the place of the list of rows.

sage: I = matrix(QQ, 3, 3, 1)

sage: I

[1 0 0]

[0 1 0]

[0 0 1]

Much the same shortcut gets a zero matrix.

sage: Z = matrix(QQ, 2, 2, 0)

sage: Z

[0 0]

[0 0]

The difference between this shortcut and the prior one is that matrix(QQ, 3, 2, 1) gives an error
because an identity matrix must be square. Sage has a command to create an identity matrix that
can’t lead to this error.

sage: I = identity_matrix(3)

sage: I

[1 0 0]

[0 1 0]

[0 0 1]

Sage has many more methods on matrices. For instance, you can transpose the rows to columns
or test if the matrix is symmetric, that is, unchanged by transposition.

sage: A = matrix(QQ, [[1, 2], [3, 4]])

sage: A.transpose()

[1 3]

[2 4]

sage: A.is_symmetric()

False

Still another example is that you can create a matrix by giving a pattern for the entries. Here in
the created matrix the entry ai,j equals the sum i+ j.

sage: A = matrix(QQ, 2, 3, lambda x, y: x+y)

sage: A



Section: Linear combinations Page 37

[0 1 2]

[1 2 3]

One last example: Sage will make a matrix with random entries, here with floating points from 0
to 1.

sage: random_matrix(RDF, 3, min=0, max=1)

[ 0.6037217481210441 0.09904843700474109 0.1281848272259799]

[ 0.1873893932980929 0.6823212453565581 0.7174872173884436]

[ 0.9842827932304326 0.9070107531197819 0.7690508010650767]

(Note the RDF . This is better for us because Sage ’s random_matrix is more straightforward with
floating points entries than with rational entries. The Sage reference has the details.)

Linear combinations

Addition and subtraction of matrices are natural operations.

sage: A = matrix(QQ, [[1, 2], [3, 4]])

sage: B = matrix(QQ, [[1, 1], [2, -2]])

sage: A+B

[2 3]

[5 2]

sage: A-B

[0 1]

[1 6]

Sage knows that adding matrices with different sizes is undefined.

sage: A = matrix(QQ, [[1, 2], [3, 4]])

sage: C = matrix(QQ, [[0, 0, 2], [3, 2, 1]])

sage: A+C

You get an error whose final line contains unsupported operand parent(s) for + . In short, + is not
defined between a 2×2 matrix and a 2×3 matrix.

Scalar multiplication is also natural, so you can have linear combinations.

sage: A = matrix(QQ, [[1, 2], [3, 4]])

sage: B = matrix(QQ, [[1, 1], [2, -2]])

sage: 3*A

[ 3 6]

[ 9 12]

sage: 3*A-4*B

[-1 2]

[ 1 20]
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Multiplication

Matrix-vector product Matrix-vector multiplication works the way that you would guess.

sage: A = matrix(QQ, [[1, 3, 5, 9], [0, 2, 4, 6]])

sage: v = vector(QQ, [1, 2, 3, 4])

sage: A, v

([1 3 5 9]

[0 2 4 6], (1, 2, 3, 4))

sage: A*v

(58, 40)

The 2×4 matrix A multiplies the 4×1 column vector v⃗ with the vector on the right side, as Av⃗.
Trying this vector on the left, as below, gives unsupported operand parent(s) for * .

sage: v*A

Of course, you can multiply with a vector on the left if that vector’s size suits the matrix. Here,
the two-row A works with a two-entry vector.

sage: w = vector(QQ, [3, 5])

sage: w*A

(3, 19, 35, 57)

Matrix-matrix product Sage is happy to multiply matrices.

sage: A = matrix(QQ, [[2, 1], [4, 3]])

sage: B = matrix(QQ, [[5, 6, 7], [8, 9, 10]])

sage: A*B

[18 21 24]

[44 51 58]

Trying B∗A gives unsupported operand parent(s) for '*' since BA is undefined.
Square matrices of the same size have the product defined in either order.

sage: A = matrix(QQ, [[1, 2], [3, 4]])

sage: B = matrix(QQ, [[4, 5], [6, 7]])

sage: A*B

[16 19]

[36 43]

sage: B*A

[19 28]

[27 40]

Note that the two results are different; matrix multiplication is not commutative.

sage: A*B == B*A

False
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In fact, matrix multiplication is very non-commutative in the sense that if you produce two
n×n matrices at random then they almost surely don’t commute. Here we multiply together a
thousand random matrices to see if any commute.

sage: number_commuting = 0

sage: for n in range(1000):

....: A = random_matrix(RDF, 2, min=-1, max=1)

....: B = random_matrix(RDF, 2, min=-1, max=1)

....: if (A*B == B*A):

....: number_commuting = number_commuting + 1

Here is the result.

sage: number_commuting

0

Inverse If A is an n×n nonsingular matrix then its inverse A−1 is the n×n matrix such that
A−1A = AA−1 is the n×n identity matrix. In the book, while we use a formula for do 2×2

inverses, to find larger inverses we write the original matrix next to the identity and then perform
Gauss-Jordan reduction.

sage: A = matrix(QQ, [[1, 3, 1], [2, 1, 0], [4, -1, 0]])

sage: A.is_singular()

False

sage: I = identity_matrix(3)

sage: B = A.augment(I, subdivide=True)

sage: B

[ 1 3 1| 1 0 0]

[ 2 1 0| 0 1 0]

[ 4 -1 0| 0 0 1]

sage: C = B.rref()

sage: C

[ 1 0 0| 0 1/6 1/6]

[ 0 1 0| 0 2/3 -1/3]

[ 0 0 1| 1 -13/6 5/6]

The inverse is on the right. To pull out the inverse, Sage has a matrix_from_columns method on a
matrix instance that takes a list of columns, extracts them, and returns the matrix composed of
those columns.

sage: A_inv = C.matrix_from_columns ([3, 4, 5])

sage: A_inv

[ 0 1/6 1/6]

[ 0 2/3 -1/3]

[ 1 -13/6 5/6]

sage: A_inv*A
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[1 0 0]

[0 1 0]

[0 0 1]

sage: A*A_inv == identity_matrix(3)

True

All this is very awkward, so naturally there is a standalone command.

sage: A = matrix(QQ, [[1, 3, 1], [2, 1, 0], [4, -1, 0]])

sage: A_inv = A.inverse()

sage: A_inv

[ 0 1/6 1/6]

[ 0 2/3 -1/3]

[ 1 -13/6 5/6]

One reason for finding the inverse is to make solving linear systems easier. These three systems

x+ 3y+ z= 4

2x+ y = 4

4x− y = 4

x+ 3y+ z= 2

2x+ y =−1

4x− y = 5

x+ 3y+ z= 1/2

2x+ y = 0

4x− y = 12

have the same matrix of coefficients on the left sides but different right sides. If you calculate the
inverse of that matrix then solving each system requires only a single matrix-vector product.

sage: A = matrix(QQ, [[1, 3, 1], [2, 1, 0], [4, -1, 0]])

sage: A_inv = A.inverse()

sage: v1 = vector(QQ, [4, 4, 4])

sage: v2 = vector(QQ, [2, -1, 5])

sage: v3 = vector(QQ, [1/2, 0, 12])

sage: A_inv*v1

(4/3, 4/3, -4/3)

sage: A_inv*v2

(2/3, -7/3, 25/3)

sage: A_inv*v3

(2, -4, 21/2)

Condition number

For the by-hand linear systems in the text, we find exact solutions. But in applications we use
floating points and so the computation may lose precision because of numerical issues.

Some systems are more subject to this loss than others. The suceptibility of a system’s matrix
of coefficients to this problem is measured by its condition number. This is a positive real number
that estimates worst-case loss of precision.1

1The condition number’s base 10 logarithm is a worst-case estimate of how many digits are lost in solving a linear
system with that matrix of coefficients. So a condition number is large if its base 10 logarithm is greater than or
equal to the number of significant digits of the entries in the matrix.
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More precisely, we start with a linear system Av⃗ = d⃗ and then ask how much an inaccuracy
in d⃗ (perhaps due to some floating point issue or perhaps some measurement limit on the vector’s
entries) can affect the solution v⃗. That is, we are considering A(⃗v + ∆⃗v) = d⃗ + ∆⃗d and asking for
the relationship between ∆⃗d and ∆⃗v. Linearity gives A∆⃗v = ∆⃗d so we are asking: how much is ∆⃗v

affected by ∆⃗d, via the mediation of the matrix A?

Define the 2-norm of a vector to be its length, ‖⃗v‖ =
√

v21 + · · ·+ v2n (there are many norms
but this is the most common).

sage: v = vector(RDF, [1, 2, 3])

sage: v.norm(2)

3.7416573867739413

There is some input vector that A stretches the most, a vector v⃗max where the number M =

‖Av⃗max‖/‖⃗vmax‖ is maximal. There is also a vector that A shrinks the most, a vector v⃗min where
the number m = ‖Av⃗min‖/‖⃗vmin‖ is a minimum (supposing that v⃗min 6= 0⃗).1 The condition number
is the ratio of the two, κ(A) = M/m, except that because a singular matrix maps some nonzero
vectors to zero and so has m = 0, in this case we set κ(A) = ∞.

The definition of M gives ‖d⃗‖ ≤ M‖⃗v‖ and the definition of m gives ‖∆⃗d‖ ≥ m‖∆⃗v‖. Thus
the relative change in the system’s computed solution and the relative change in the system’s right
side compare in this way.

‖∆⃗v‖
‖⃗v‖

≤ κ(A) · ‖∆⃗d‖
‖d⃗‖

That is, the condition number is the worst-case factor by which the relative error is magnified.
Changes in the right side can result in changes in the computed solution that are κ(A) times as
large.

sage: A = matrix(RDF, 3, [[1, 2, 3], [4, 5, 6], [7, 8, 9.001]])

sage: A.condition(2)

101072.26488077441

Matrices that are nearly singular have a higher condition number than those that are far from
singular.

sage: v = []

sage: for i in range(300):

....: A = random_matrix(RDF, 3, min=0, max=100)

....: v.append(A.condition(2))

Now we can get an idea of what is typical.

sage: mean(v), std(v)

(40.908286661714826, 115.37021561052416)

If the condition number is large then we say that the system for the problem is ‘ill-conditioned’,
otherwise we say it is ‘well-conditioned’.

1We discuss these factors more in the next chapter.
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Running time

Large linear algebra problems occur frequently in science and engineering. Since computers are
fast and accurate, they allow us to solve problems that we could not hope to do by hand.

But even with computers, there are limits. One limit on just how large a problem we can do
is how quickly the machine can find the answer. Naturally, problems with larger matrices tend to
take longer to solve. Comparing the size of a problem to the time that an algorithm takes to solve
it is an important way to gauge the usefulness of that algorithm.

The matrix inverse operation is a good illustration. (The entries in these matrices are floating
points because these are the most common in applications.)

sage: A = matrix(RDF, [[1, 3, 1], [2, 1, 0], [4, -1, 0]])

sage: A

[ 1.0 3.0 1.0]

[ 2.0 1.0 0.0]

[ 4.0 -1.0 0.0]

sage: A.is_singular()

False

sage: timeit('A.inverse()')

625 loops, best of 3: 62.7 s per loop

Sage ’s timeit tells you how long an operation takes. It does not report just the time that the CPU
spent but rather how long the operation took if you timed it with a the clock on the wall. It runs
the command a number of times, to mitigate against the computer being slowed down by a disk
write or other interruption. The bottom line says it did three batches of running the command
625 times each and the average time in the fastest batch was 62.7 microseconds.1 That’s fast, but
then A is only 3×3.

And what’s more, A is a particular 3×3 matrix. For an estimate of how long it typically takes,
you could try finding the inverse of a random matrix.

sage: timeit('random_matrix(RDF, 3, min=-1, max=1).inverse()')

625 loops, best of 3: 86 s per loop

sage: timeit('random_matrix(RDF, 3, min=-1, max=1).inverse()')

625 loops, best of 3: 85.8 s per loop

sage: timeit('random_matrix(RDF, 3, min=-1, max=1).inverse()')

625 loops, best of 3: 86.6 s per loop

One issue with this performance data is that we can’t tell how much of the time is spent
generating the random matrix and how much is spent finding the inverse. The code below takes
some sizes, 3×3, 10×10, etc., finds a single random matrix and then gets the time to compute the
inverse of that matrix.

sage: for size in [3, 10, 25, 50, 75, 100, 150, 200]:

....: print("size = "+str(size))

....: M = random_matrix(RR, size, min=-1, max=1)

....: timeit('M.inverse()')

....:

1This machine identifies as: Intel(R) Core(TM) i7-6820HQ CPU @ 2.70GHz.
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size = 3

625 loops, best of 3: 55 s per loop

size = 10

625 loops, best of 3: 548 s per loop

size = 25

125 loops, best of 3: 6.79 ms per loop

size = 50

5 loops, best of 3: 53 ms per loop

size = 75

5 loops, best of 3: 177 ms per loop

size = 100

5 loops, best of 3: 419 ms per loop

size = 150

5 loops, best of 3: 1.41 s per loop

size = 200

5 loops, best of 3: 3.4 s per loop

Some of those times are in microseconds, some are in milliseconds, and some are in seconds. A
microsecond is one-millionth of a second, 0.000 001 seconds. A millisecond is a thousandth of a
second, 0.001 seconds. This table is consistently in seconds.

size seconds
3 0.000 055
10 0.000 548
25 0.006 79
50 0.053
75 0.177
100 0.419
150 1.41
200 3.4

The time grows faster than the size. For instance, doubling the size from 25 to 50 increases the time
by more than two: 0.053/0.00679 is about 7.8. Similarly, increasing the size four-fold from 50 to 200

causes the time to increase by much more than a factor of four: 3.4/0.053 ≈ 64.15. And going from
a problem size of 10 to a size of 100 increases the time taken by a factor of 0.419/0.000 548 ≈ 764.60.

Get a graph by giving Sage the data as a list of pairs.1

sage: d = [(3, 0.000055), (10, 0.000548), (25, 0.00679),

....: (50, 0.053), (75, 0.177), (100, 0.419),

....: (150, 1.41), (200, 3.4)]

sage: g = scatter_plot(d)

sage: g.save("graphics/mat001.pdf")

None

1The graphics in this manual are generated using more drawing options than appear in the output block. For
instance, the scatter plot here came from g = scatter_plot(d, markersize=10, facecolor='#b9b9ff') and was saved in
a file with g.save("graphics/mat001.pdf", figsize=[2.25,1.5], axes_pad=0.05, fontsize=7) . We shall omit much of this
decoration code as clutter.
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(If you enter scatter_plot(d) at the prompt, that is, without saving it as g, then Sage will pop up
a window with the graphic.)

50 100 150 200

0.5
1

1.5
2

2.5
3

3.5

The graph dramatizes that the ratio time/size is not constant since the data clearly does not lie
on a line.

Here is some more data. A caution if you are trying this yourself: to generate this data, timeit

took so long that the computer had to be left to run overnight.

sage: for size in [500, 750, 1000]:

....: print "size=",size

....: M = random_matrix(RR, size, min=-1, max=1)

....: timeit('M.inverse()')

....:

size= 500

5 loops, best of 3: 51.4 s per loop

size= 750

5 loops, best of 3: 172 s per loop

size= 1000

5 loops, best of 3: 406 s per loop

Again the table is a neater way to present the data.

size seconds
500 51.4
750 172.
1000 406.

Get a graph by tacking the new data onto the existing data.

sage: d = [(3, 0.000055), (10, 0.000548), (25, 0.00679),

....: (50, 0.053), (75, 0.177), (100, 0.419),

....: (150, 1.41), (200, 3.4)]

sage: d = d + [(500, 51.4), (750, 172), (1000, 406)]

sage: g = scatter_plot(d)

sage: g.save("graphics/mat002.pdf")

None
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(Note that the two graphs have different scales; if the graph on this page had the same vertical
scale as the one on the prior page then it would extend far off the top of the paper.) So a practical
limit to the size of a problem that we can solve with the matrix inverse operation comes from the
fact that the graph above is not a line — the time required grows much faster than the size.

A major effort in Computer Science is to find fast algorithms to do practical tasks. Many
people are working on tasks in Linear Algebra in particular, such as finding the inverse of a matrix,
because they are so common in applications.





Maps

We’ve used Sage to define vector spaces. Next we explore functions between vector spaces.
As we’ve done earlier, although we think of the vector spaces as having real number scalars,

here we shall define matrices with rational number entries, just because they illustrate the points
perfectly well and are easier to read.

Linear functions

Sage can work with functions.

t(

(
a

b

)
) =

(
a+ 2b

a+ 2b

)

sage: a, b = var('a, b')

sage: t_symbolic(a, b) = [a+2*b, a+2*b]

sage: t_symbolic

(a, b) |--> (a + 2*b, a + 2*b)

sage: t_symbolic(1,3)

(7, 7)

Sage can find a scalar multiple of a function, or add two functions.

sage: t_symbolic(a, b) = [a+2*b, a+2*b]

sage: f_symbolic = 3 * t_symbolic

sage: f_symbolic

(a, b) |--> (3*a + 6*b, 3*a + 6*b)

sage: f_symbolic(4, 2)

(24, 24)

sage: s_symbolic(a,b) = [a+b, a-b]

sage: g_symbolic = s_symbolic + t_symbolic

sage: g_symbolic

(a, b) |--> (2*a + 3*b, 2*a + b)

sage: g_symbolic(1, 5)

(17, 7)

Sage can also find the composition of two functions.

47
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sage: s_symbolic * f_symbolic

(a, b) |--> 3*(a + 2*b)*(a + b) + 3*(a + 2*b)*(a - b)

sage: s_symbolic * f_symbolic (1,2)

(a, b) |--> 30*a

We used the oddball names, t_symbolic , s_symbolic , etc., because these are not functions in
that we have not specified a domain and codomain; rather they are prototypes for functions. We
can use one to produce a function, a linear function t : R2 → R2.

sage: a, b = var('a, b')

sage: t_symbolic(a, b) = [a+2*b, a+2*b]

sage: t = linear_transformation (QQ^2, QQ^2, t_symbolic)

Sage uses the term ‘linear transformation’ for any linear map at all, which is a common usage,
while the book restricts it to only maps where the domain and codomain are equal.

With the transformation t we expect this

t(

(
1

3

)
) =

(
7

7

)
and Sage delivers.

sage: v = vector(QQ, [1, 3])

sage: t(v)

(7, 7)

Left/right

By default, Sage represents linear maps differently than the book does. An example explains it
best. Consider again the transformation t : R2 → R2.

t(

(
a

b

)
) =

(
a+ 2b

a+ 2b

)
To represent it with respect to B,D ⊂ R2, we can use the canonical bases B = E2, D = E2. We find
the effect of t on the elements of B and represent the results with respect to D.(

1

0

)
t7−→ (

1

1

)
gives RepD(

(
1

1

)
) =

(
1

1

) (
0

1

)
t7−→ (

2

2

)
gives RepD(

(
2

2

)
) =

(
2

2

)
Thus the book gets this matrix.

RepB,D(t) =

(
1 2

1 2

)
However, Sage shows a different one.

sage: t_symbolic(a, b) = [a+2*b, a+2*b]

sage: t = linear_transformation (QQ^2, QQ^2, t_symbolic) # see discussion of 'side' below
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sage: t

Vector space morphism represented by the matrix:

[1 1]

[2 2]

Domain: Vector space of dimension 2 over Rational Field

Codomain: Vector space of dimension 2 over Rational Field

What’s happening?
Remember that the point of representations is to use the matrix representation of t and the

vector representation of v⃗ to compute the vector representation of t(⃗v). The book writes

RepB,D(t)RepB(⃗v) = RepD(t(⃗v))

with the vector on the right of the matrix. But Sage by default takes the representation vector on
the left. Obviously the difference is cosmetic — the translation is that, compared to the book’s Tv⃗,
Sage ’s default is v⃗T TT —and that’s why Sage ’s matrix is the transpose of the book’s matrix.

To have Sage conform to the book’s convention we will do two things: define the map with the
option side='right' , and show its matrix with the same option.

sage: t_symbolic(a, b) = [a+2*b, a+2*b]

sage: t = linear_transformation (QQ^2, QQ^2, t_symbolic, side='right')

sage: t.matrix(side='right')

[1 2]

[1 2]

Defining a linear map

We will describe two ways to define a linear map.

Symbolically We’ve already introduced defining a map by formula.

sage: a, b = var('a, b')

sage: h_symbolic(a, b) = [a+b, a-b, b]

sage: h_symbolic

(a, b) |--> (a + b, a - b, b)

sage: h = linear_transformation (QQ^2, QQ^3, h_symbolic, side='right')

sage: h.matrix(side='right')

[ 1 1]

[ 1 -1]

[ 0 1]

Evaluating this function on a member of the domain gives a member of the codomain.

sage: v = vector(QQ, [1, 3])

sage: h(v)

(4, -2, 3)
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If the vector isn’t a member of the domain

sage: v1 = vector(QQ, [1,2,3,4])

sage: h(v1)

then Sage gives a long traceback error message, but as usual the final line is the most informative
since it contains: Type Error:(1, 2, 3, 4) fails to convert into the map's domain .

Sage can find the null space and range space, using the terms ‘kernel’ and ‘image’.

sage: h.kernel()

Vector space of degree 2 and dimension 0 over Rational Field

Basis matrix:

[]

sage: h.image()

Vector space of degree 3 and dimension 2 over Rational Field

Basis matrix:

[ 1 0 1/2]

[ 0 1 -1/2]

Sage has found that the null space is the trivial subspace of the domain, N (h) = { 0⃗ }. This is a
0-dimensional subspace so Sage reports that its basis is empty. Sage found that the range space
R(h) is 2-dimensional, and gives its basis.

Because the null space is trivial, the map is one-to-one. Because the range space is 2-dimensional
while the codomain is 3-dimensional, the map is not onto. Note that these findings fit with the
theorem that the dimension of the null space plus the dimension of the range space, which are 0

and 2, equals the dimension of the domain.
As another example, consider this function.

sage: t_symbolic(a, b) = [a+2*b, a+2*b]

sage: t_symbolic

(a, b) |--> (a + 2*b, a + 2*b)

sage: t = linear_transformation (QQ^2, QQ^2, t_symbolic, side='right')

This is not one-to-one since there are two inputs that map to the same output.

sage: t(vector(QQ, [2, 0]))

(2, 2)

sage: t(vector(QQ, [0, 1]))

(2, 2)

Another way to tell that the map is not one-to-one is compute that N (t) is not 0-dimensional.

sage: t.kernel()

Vector space of degree 2 and dimension 1 over Rational Field

Basis matrix:

[ 1 -1/2]

Before looking at this map’s range space, we know that the dimension of that range must be 1

because the dimensions of the null space and range space add to the dimension of the domain.
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Sage confirms.

sage: t.image()

Vector space of degree 2 and dimension 1 over Rational Field

Basis matrix:

[1 1]

Via matrices The other way that we can define a linear map is with a matrix.

sage: M = matrix(QQ, [[1, 2], [3, 4], [5, 6]])

sage: M

[1 2]

[3 4]

[5 6]

sage: m = linear_transformation (M, side='right')

Because the matrix has rational entries, Sage takes the domain and codomain to be Q2 and Q3.
Again: by default Sage prefers the representation where the vector multiplies from the left so we
specify side='right' .

sage: m

Vector space morphism represented by the matrix:

[1 3 5]

[2 4 6]

Domain: Vector space of dimension 2 over Rational Field

Codomain: Vector space of dimension 3 over Rational Field

Although we defined the linear map m with side='right' , the matrix that Sage would show by
default is for side='left' . To get the representation fitting the text, ask for it explicitly.

sage: m.matrix(side='right')

[1 2]

[3 4]

[5 6]

When defined in this way, Sage takes the linear map to be the one represented by the matrix
with respect to the standard basis.

sage: m = linear_transformation (M, side='right')

sage: v = vector(QQ, [7, 8])

sage: v

(7, 8)

sage: m(v)

(23, 53, 83)

(If you left side='right' out of the definition of the linear map and then multiplied by the two-
element vector then you would get an error message complaining that the vector is not in the map’s
3-dimensional domain.)
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Although the maps below are defined in two ways, Sage can mix them together.

sage: M = matrix(QQ, [[1, 2], [3, 4], [5, 6]])

sage: m = linear_transformation (M, side='right')

sage: n_symbolic(a, b) = [a+2*b, 3*a+4*b, 5*a+6*b]

sage: n = linear_transformation (QQ^2, QQ^3, n_symbolic, side='right')

sage: m == n

True

And, you can ask the same questions of linear maps created from matrices that we asked of linear
maps created from symbolic functions.

sage: M = matrix(QQ, [[1, 2], [3, 4], [5, 6]])

sage: m = linear_transformation (M, side='right')

sage: m.kernel()

Vector space of degree 2 and dimension 0 over Rational Field

Basis matrix:

[]

You can also define a map by starting with a matrix that represents the map with respect
to nonstandard bases. Here we define nonstandard bases for both the domain and codomain,
B = 〈β⃗1, β⃗2〉 and D = 〈⃗δ1, δ⃗2〉.

sage: M = matrix(QQ, [[1, 2], [3, 4]])

sage: beta_1 = vector(QQ, [1, -1])

sage: beta_2 = vector(QQ, [1, 1])

sage: domain_basis = [beta_1, beta_2]

sage: D = (QQ^2).subspace_with_basis(domain_basis)

sage: delta_1 = vector(QQ, [2, 0])

sage: delta_2 = vector(QQ, [0, 3])

sage: codomain_basis = [delta_1, delta_2]

sage: C = (QQ^2).subspace_with_basis(codomain_basis)

sage: m = linear_transformation (D, C, M, side='right')

sage: m.matrix(side='right')

[1 2]

[3 4]

sage: m(vector(QQ, [1, 0]))

(3, 21/2)

Sage has calculated that(
1

0

)
= (1/2)

(
1

−1

)
+ (1/2)

(
1

1

)
so RepB(

(
1

0

)
) =

(
1/2

1/2

)
and used it to compute the image vector.(

1 2

3 4

)(
1/2

1/2

)
=

(
3/2

7/2

)
= RepD(m(⃗v)) so m(⃗v) = (3/2)

(
2

0

)
+ (7/2)

(
0

3

)
=

(
3

21/2

)
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Operations

Fix some vector space domain D and codomain C and consider the set of all linear transformations
between them. This collection has some natural operations, including addition and scalar multi-
plication. Earlier we saw that Sage can work with these operations as well as composition, and we
close by showing the effect that they have on the representations.

Addition and scalar multiplication Recall that matrix addition is defined so that the
representation of the sum of two linear transformations is the matrix sum of the representatives.
Sage can illustrate.

sage: M = matrix(QQ, [[1, 2], [3, 4]])

sage: m = linear_transformation (QQ^2, QQ^2, M, side='right')

sage: N = matrix(QQ, [[5, -1], [0, 7]])

sage: n = linear_transformation (QQ^2, QQ^2, N, side='right')

sage: m.matrix(side='right')

[1 2]

[3 4]

sage: n.matrix(side='right')

[ 5 -1]

[ 0 7]

sage: (m+n).matrix(side='right')

[ 6 1]

[ 3 11]

The parentheses in the final line are there because if we enter m+n.matrix(side='right') then Sage
tries to combine the linear map m with the matrix n.matrix(side='right') .

Similarly, scalar multiplication of a linear map is reflected in the scalar multiplication of the
matrix.

sage: M = matrix(QQ, [[1, 2], [3, 4]])

sage: m = linear_transformation (QQ^2, QQ^2, M, side='right')

sage: (3*m).matrix(side='right')

[ 3 6]

[ 9 12]

sage: (m*3).matrix(side='right')

[ 3 6]

[ 9 12]

Composition The composition of linear maps gives rise to matrix multiplication. Sage uses
the * symbol to denote composition of linear maps.

sage: M = matrix(QQ, [[1, 2], [3, 4]])

sage: m = linear_transformation (QQ^2, QQ^2, M, side='right')

sage: N = matrix(QQ, [[5, -1], [0, 7]])

sage: n = linear_transformation (QQ^2, QQ^2, N, side='right')
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sage: M*N

[ 5 13]

[15 25]

As the book emphasizes, the point of matrix multiplication is that it represents linear map
composition.

sage: (m*n).matrix(side='right')

[ 5 13]

[15 25]



Singular Value Decomposition

We will picture how some linear transformations t : R2 → R2 act (we use R2 because the pictures
are easy). We will then extend the ideas to higher dimensions, and give a practical consequence.

Drawing the action

A defining property of linear maps is that h(r · v⃗) = r · h(⃗v). Recall that a line through the origin
in Rn has the form {r · v⃗ | r ∈ R } for some v⃗ 6= 0⃗. Thus the scalar multiplication property imposes
a uniformity condition on a linear map: its action on any line through the origin is determined by
its action on any one of the nonzero vectors in that line.

For instance, consider the line y = 2x in the plane

{r ·
(
1

2

)
| r ∈ R }

and consider the transformation t : R2 → R2 that is represented by this matrix.

RepE2,E2(t) =

(
1 2

3 4

)

If you pick a domain vector v⃗ then computing the effect of t is easy.

v⃗ =

(
1

2

)
t7−→ (

5

11

)

The prior paragraph notes that on 2⃗v the map has twice the effect, on 3⃗v it has three times the
effect, etc. (

2

4

)
t7−→ (

10

22

) (
3

6

)
t7−→ (

15

33

) (
r

2r

)
t7−→ (

5r

11r

)
So, to picture a map’s action on the whole plane, we will fix one nonzero vector v⃗ from each

line through the origin and show where the transformation takes it. The natural set containing
one point from each line through the origin is the upper half unit circle, shown here (the colors are
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explained below).

U = { v⃗ =

(
cos(t)

sin(t)

)
| 0 ≤ t < π }

-1.5 -1 -0.5 0.5 1 1.5
-0.5

0.5

1

1.5

To have exactly one representative of the x axis, the point (1, 0) is included in that set but (−1, 0)

is not.
The first transformation that we will illustrate is simple.

(
x

y

)
t7−→ (

2x

y

)

The code below loads plot_action.sage to get access to plot_circle_action(a,b,c,d) . This divides
the input upper half circle into a number of parts, the red one, the orange one, etc., and then it
multiplies points on those curved segments by this matrix

(
a b

c d

)

(for this first transformation we take a = 1, b = 0, c = 0, and d = 2). Finally it connects those
output segments to get an output curve, where the output segments are colored red, orange, etc.
The listing of the full source of plot_action.sage is at the end of this chapter.

To show before and after pictures, the code first plots the circle unchanged, that is, under the
effect of the identity map, and then plots the result of applying the transformation.

sage: load("plot_action.sage")

None

sage: q = plot_circle_action (1,0,0,1)

sage: q.set_axes_range(-2, 2, -1, 2)

None

sage: q.save("graphics/svd001a.pdf")

None

sage: p = plot_circle_action (2,0,0,1)

sage: p.set_axes_range(-2, 2, -1, 2)

None

sage: p.save("graphics/svd001b.pdf")

None

Here are the before and after pictures. The colors are there to show the association —to show
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which points on the left are mapped to which points on the right.

-2 -1.5 -1 -0.5 0.5 1 1.5 2

-1

-0.5

0.5

1

1.5

2

(
2 0
0 1

)
7−→

-2 -1.5 -1 -0.5 0.5 1 1.5 2

-1

-0.5

0.5

1

1.5

2

The effect of this map is to stretch things in the x direction by a factor of two.
We next show the action of the map (

x

y

)
7→ (

−x

3y

)
that triples the y component and also multiplies the x component by −1.1

sage: q = plot_circle_action (1,0,0,1)

sage: q.set_axes_range(-2, 2, -1.25, 3.25)

None

sage: q.save("graphics/svd002a.pdf")

None

sage: p = plot_circle_action (-1,0,0,3)

sage: p.set_axes_range(-2, 2, -1.25, 3.25)

None

sage: p.save("graphics/svd002b.pdf")

None

-2 -1 1 2
-1

1

2

3

(
−1 0
0 3

)
7−→

-2 -1 1 2
-1

1

2

3

Tripling the y component is easy to understand. As for taking the negative of the x component,
this is where the colors are especially useful. On the input circle, when you move counterclockwise,
the colors go from red to orange, to green, blue, indigo, and then violet. But the output does the
opposite: moving counterclockwise it passes from violet to red. This transformation changes the
orientation, or ‘sense’, of the curve.
1As in other chapters, some of the graphics are drawn using some options that are not shown. In this case, the two
p.save(...) commands have the ticks_integer=True option. Not showing these options just reduces clutter that isn’t
linear algebra.
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The next transformation is rotation by π/4 radians, clockwise.(
x

y

)
7→ (

cos(−π/4) · x− sin(−π/4) · y
sin(−π/4) · x+ cos(−π/4) · y

)

sage: q = plot_circle_action (1,0,0,1)

sage: q.set_axes_range(-1.5, 1.5, -1, 1.5)

None

sage: q.save("graphics/svd003a.pdf")

None

sage: p = plot_circle_action(cos(-pi/4),-sin(-pi/4),sin(-pi/4),cos(-pi/4))

sage: p.set_axes_range(-1.5, 1.5, -1, 1.5)

None

sage: p.save("graphics/svd003b.pdf")

None

-1.5 -1 -0.5 0.5 1 1.5

-1

-0.5

0.5

1

1.5

(
cos(−π/4) − sin(−π/4)
sin(−π/4) cos(−π/4)

)
7−→

-1.5 -1 -0.5 0.5 1 1.5

-1

-0.5

0.5

1

1.5

The next transformation is a shear.1(
x

y

)
7→ (

x+ 2y

y

)
Because of the first output component’s 2y, input vectors with y’s of large absolute value have
their first component affected more than do input vectors near the x-axis.

sage: q = plot_circle_action (1,0,0,1)

sage: q.set_axes_range(-1.5, 2.5, -.25, 1.25)

None

sage: q.save("graphics/svd004a.pdf")

None

sage: p = plot_circle_action (1,2,0,1)

sage: p.set_axes_range(-1.5, 2.5, -.25, 1.25)

None

sage: p.save("graphics/svd004b.pdf")

None

1A shear is the motion of two parts of a body where they slide relative to each other in a direction parallel to their
plane of contact. Make a stack of newpapers and lean against them. The papers will slide parallel to each other,
with the top ones sliding the furthest.
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-1 1 2

1

2 (
1 2
0 1

)
7−→

-1 1 2

1

2

Next is a shear where it is the output’s second component that is is affected, here by the input’s
distance from the x-axis. (

x

y

)
7→ (

x

(1/2)x+ y

)

sage: q = plot_circle_action (1,0,0,1)

sage: q.set_axes_range (-1.25, 1.25, -0.75, 1.5)

None

sage: q.save("graphics/svd005a.pdf")

None

sage: p = plot_circle_action (1,0,1/2,1)

sage: p.set_axes_range (-1.25, 1.25, -0.75, 1.5)

None

sage: p.save("graphics/svd005b.pdf")

None

-1 -0.5 0.5 1
-0.5

0.5

1

1.5

(
1 0

1/2 1

)
7−→

-1 -0.5 0.5 1
-0.5

0.5

1

1.5

And here is a generic map.

sage: q = plot_circle_action (1,0,0,1)

sage: q.set_axes_range(-2, 4, -3, 6)

None

sage: q.save("graphics/svd006a.pdf")

None

sage: p = plot_circle_action (1,2,3,4)

sage: p.set_axes_range(-2, 4, -3, 6)

None

sage: p.save("graphics/svd006b.pdf")

None
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-2 -1 1 2 3 4
-2

2

4

6

(
1 2
3 4

)
7−→

-2 -1 1 2 3 4
-2

2

4

6

Besides rotating and shearing, it also changes orientation.

SVD

In those pictures the image of the half circle is a half ellipse, and consequently the image of the full
circle is an ellipse. Recall that in R2 an ellipse has a major axis, the longer one, and a minor axis.1

Write σ1 for the length of the semi-major axis, the distance from the center to the furthest-away
point on the ellipse, and write σ2 for the length of the semi-minor axis.

sage: plot.options['axes_pad'] = 0.5

sage: plot.options['fontsize'] = 4

sage: plot.options['aspect_ratio'] = 1

sage: sigma_1=3

sage: sigma_2=1

sage: E = ellipse((0,0), sigma_1, sigma_2)

sage: E.save("graphics/svd100.pdf")

None

-3 -2 -1 1 2 3
-1

1

The two axes are orthogonal. Above, the major axis is on the x-axis while the minor is on the
y-axis.

Under any linear map t : Rn → Rm, the unit sphere maps to a hyperellipse. This is a version of
the Singular Value Decomposition of matrices: for any linear map t : Rn → Rm, there are bases
B = 〈β⃗1, . . . , β⃗n〉 for the domain and D = 〈⃗δ1, . . . , δ⃗m〉 for the codomain such that t(β⃗i) = σiδ⃗i, for
i ≤ n. The scalars σi are called singular values. The next section sketches a proof but we first
illustrate this result by using an example matrix. Sage will find the two bases B and D and will
picture how the vectors β⃗i are mapped to the σiδ⃗i.
1If the two axes have the same length, then the ellipse is a circle. If one axis has length zero then the ellipse is a line
segment and if both have length zero then it is a point.
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So consider again the generic matrix. Here is its action again, now shown on a full circle.

sage: load("plot_action.sage")

None

sage: q = plot_circle_action (1,0,0,1,full_circle=True)

sage: q.set_axes_range(-3, 3, -5, 5)

None

sage: q.save("graphics/svd101a.pdf")

None

sage: p = plot_circle_action (1,2,3,4,full_circle=True)

sage: p.set_axes_range(-3, 3, -5, 5)

None

sage: p.save("graphics/svd101b.pdf")

None

-3 -2 -1 1 2 3

-4

-2

2

4

(
1 2
3 4

)
7−→

-3 -2 -1 1 2 3

-4

-2

2

4

(∗)

Sage will find the SVD of this example matrix.

sage: M = matrix(RDF, [[1, 2], [3, 4]])

sage: U,Sigma,V = M.SVD()

sage: U

[-0.40455358483375703 -0.9145142956773042]

[ -0.9145142956773045 0.4045535848337568]

sage: Sigma

[ 5.464985704219043 0.0]

[ 0.0 0.3659661906262574]

sage: V

[-0.5760484367663209 0.8174155604703631]

[-0.8174155604703631 -0.5760484367663209]

sage: U*Sigma*(V.transpose())

[1.0000000000000009 2.0]

[ 3.000000000000001 4.0]

The Singular Value Decomposition has M as the product of three matrices, UΣVT. The basis
vectors β⃗1, β⃗2, δ⃗1, and δ⃗2 are the columns of U and V. The singular values are the diagonal entries
of Σ.

We can get Sage to plot the effect of the transformation on the basis vectors for the domain so
that we can compare those with the basis vectors for the codomain.
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sage: M = matrix(RDF, [[1, 2], [3, 4]])

sage: U,Sigma,V = M.SVD()

sage: beta_1 = vector(RDF, [U[0][0], U[1][0]])

sage: beta_2 = vector(RDF, [U[0][1], U[1][1]])

sage: delta_1 = vector(RDF, [V[0][0], V[1][0]])

sage: delta_2 = vector(RDF, [V[0][1], V[1][1]])

sage: C = circle((0,0), 1)

sage: P = C + plot(beta_1) + plot(beta_2)

sage: P.save("graphics/svd102a.pdf")

None

sage: image_color=Color(1,0.5,0.5) # color for t(beta_1), t(beta_2)

sage: Q = C + plot(beta_1*M, width=3)

sage: Q = Q + plot(delta_1,width=1.4)

sage: Q = Q + plot(beta_2*M,width=3)

sage: Q = Q + plot(delta_2,width=1.4)

sage: Q.save("graphics/svd102b.pdf")

None

Below, on the left, the domain’s basis are the blue β⃗’s. On the right, the codomain’s basis are
the blue δ⃗’s. Also on the right, in light red, are the images of the β⃗’s. The diagonal entries of
Σ describe the relationships: the red vector t(β⃗1) is about 5.5 times δ⃗1 while t(β⃗2) is about 0.4

times δ⃗2.

-1 1

-1

1

β⃗1

β⃗2

(
1 2
3 4

)
7−→

-3 -2 -1 1

-4

-3

-2

-1

1

δ⃗1
δ⃗2

(∗∗)

The two bases are orthonormal, comprised of unit vectors that are orthogonal. Note also, by
comparing with the diagram above labeled (∗), that long red vector is the semi-major axis while
its short red vector is the semi-minor axis.
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Proof sketch

Consider an n×n matrix T that is nonsingular. Let t : Rn → Rn be the nonsingular transformation
represented by T with respect to the standard bases. We will argue that there are scalars σ0,
. . . σn and bases B = 〈β⃗1, . . . , β⃗n〉 and D = 〈⃗δ1, . . . , δ⃗n〉 for the domain and codomain such that
t(β⃗i) = σiδ⃗i.

1

Recall Calculus I’s Extreme Value Theorem: for a continuous function f : R → R, if a subset
D ⊂ R of the domain is closed and bounded then its image f(D) = {f(d) | d ∈ D } is also closed
and bounded (see Wikipedia [2012]). A generalization gives that because the unit sphere in Rn is
closed and bounded then its image under t is closed and bounded. Although we won’t prove this,
the image is a hyperellipse so we will call it that.

Because this hyperellipse is closed and bounded, it has a point furthest from the origin (if there
is more than one then just pick one). Let w⃗ be the vector extending from the origin to that furthest
point. The nonsingular map t is invertible so there is one and only one member of the unit sphere
v⃗ such that f(⃗v) = w⃗. Let P be the hyperplane tangent to the sphere at the endpoint of v⃗. Let Q be
the image of P under t. Since t is one-to-one, Q intersects its ellipsoid only at w⃗ (if it intersected in
two places then the inverse image of those two would be two places on P that intersect the sphere).

Consider sliding P along the vector v⃗, to the origin. This makes clear that P is the subspace of Rn

consisting of vectors perpendicular to v⃗ (these elements of P have their entire bodies in P, unlike
the pictured vector v⃗, which just touches P with its endpoint). This subspace has dimension n− 1,
so it is a hyperplane. We will argue in the next paragraph that similarly Q consists of vectors
perpendicular to w⃗. With that, we can complete an argument by induction: we start constructing
the bases B and D by taking β⃗1 to be v⃗, taking σ1 to be the length |w⃗|, and taking δ⃗1 to be w⃗/|w⃗|.
Then induction proceeds by taking the restriction of t to P.

So consider Q. Since t is nonsingular, Q is an n− 1 dimensional subspace of Rn, a hyperplane.
The hyperplane that touches the ellipsoid only at w⃗ is unique since if there were another then
its inverse image under t would be a second hyperplane, besides P, that touches the sphere only
at v⃗, which is impossible (since it is a sphere). To see that Q is the subspace perpendicular to w⃗,
consider a sphere in the codomain centered at the origin whose radius is the length |w⃗|. This sphere
has a plane tangent at the endpoint of w⃗ that is perpendicular to w⃗. Because w⃗ ends at a point
on the ellipsoid furthest from the origin, the ellipsoid is entirely contained in this sphere, so its
tangent plane, that is, the tangent plane of the ellisoid, touches that ellipsoid only at w⃗. Therefore
this tangent plane is Q. That ends the argument.

1This argument, from Blank et al. [1989], is a sketch because it uses results that many readers have seen in a form not
as strong as needed for the full proof, and because it relies on material from the book that is optional. In addition,
we’ll consider only the case of a nonsingular matrix. This gives the main idea, which is the point of a sketch.
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Matrix factorization

We can express those geometric ideas in an algebraic form (for a proof, see Trefethen and Bau
[1997]).

The singular value decomposition of an m×n matrix A is a factorization, A = UΣVT. The
m×n matrix Σ is all zeroes except for diagonal entries, the singular values, σ1 ≥ σ2 ≥ · · · ≥ σr > 0

where r is the rank of A. The m×m matrix U and the n×n matrix V are unitary, meaning that
their columns form an orthogonal basis of unit vectors, called the left and right singular vectors
for A.

sage: M = matrix(RDF, [[0, 1, 2], [3, 4, 5]])

sage: U,Sigma,V = M.SVD()

sage: U

[-0.2747211278973781 -0.9615239476408235]

[-0.9615239476408234 0.2747211278973778]

sage: Sigma

[7.3484692283495345 0.0 0.0]

[ 0.0 0.9999999999999994 0.0]

sage: V

[-0.3925405078644311 0.8241633836921343 0.40824829046386296]

[-0.5607721540920443 0.137360563948689 -0.8164965809277261]

[-0.7290038003196575 -0.5494422557947561 0.4082482904638631]

The number of singular values is the row rank of the matrix. Here Sage gets a σ2 that is not quite
1 because of numerical issues.

We can simplify the product UΣVT. Consider the case where all three matrices are 2×2.(
u1,1 u1,2

u2,1 u2,2

)(
σ1 0

0 σ2

)(
v1,1 v1,2

v2,1 v2,2

)
=

(
u1,1 u1,2

u2,1 u2,2

)[(
σ1 0

0 0

)
+

(
0 0

0 σ2

)](
v1,1 v1,2

v2,1 v2,2

)
= σ1

(
u1,1 u1,2

u2,1 u2,2

)(
1 0

0 0

)(
v1,1 v1,2

v2,1 v2,2

)
+ σ2

(
u1,1 u1,2

u2,1 u2,2

)(
0 0

0 1

)(
v1,1 v1,2

v2,1 v2,2

)
In the first term, right multiplication by the 1, 1 unit matrix picks out the first column of U,

and left multiplication by the 1, 1 unit matrix picks out first row of V so those are the only parts
that remain after the product. In short, we get this.(

u1,1 u1,2

u2,1 u2,2

)(
1 0

0 0

)(
v1,1 v2,1

v1,2 v2,2

)
=

(
u1,1v1,1 u1,1v2,1

u2,1v1,1 u2,1v2,1

)
=

(
u1,1

u2,1

)
(v1,1 v2,1) = u⃗1v⃗

T
1

The second term simplifies in the same way.(
u1,1 u1,2

u2,1 u2,2

)(
0 0

0 1

)(
v1,1 v2,1

v1,2 v2,2

)
=

(
u1,2v1,2 u1,2v2,2

u2,2v1,2 u2,2v2,2

)
= u⃗2v⃗

T
2

Thus, equation (∗∗∗) simplifies to UΣVT = σ1 · u⃗1v⃗
T
1 + σ2 · u⃗2v⃗

T
2 . Cases other than 2×2 work the

same way.
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Application: data compression

Suppose that a matrix is n×n. To work with it— for example, to store it in a computer’s memory
or to transmit it over the Internet— we must work with n2-many floating points. For instance, if
n = 500 then it has 5002 = 250 000 floats. That’s a lot of data. We will show a way to reduce it.

We’ve just seen how to write the matrix as a sum, M = σ1 · u⃗1v⃗
T
1 + σ2 · u⃗2v⃗

T
2 + · · · , where the

vectors have unit length and the scalars decrease, σ1 ≥ σ2 ≥ · · · 0. But that is not yet the savings,
because each term in that sum requires n floating points for u⃗i, another n for v⃗i, and one more
for σi. So if n = 500 that’s 500 · (2 · 500 + 1) = 500 500 floats, about twice the size of the original
matrix.

But the sum form does have an advantage, namely that the scalars decrease. If we throw out
a lot of the terms and keep only a few with the largest σ’s, say the first 50 of them, then we get a
big savings: 50 · (2 · 50+ 1) = 5 050 floats, which is about 2% of the storage size of the full matrix.

In short, if you have data as a matrix then you can hope to compress it by converting to the
summation formula and dropping terms with small σ’s. The question, though, is whether you lose
too much information.

The answer is that you can retain a lot. We will illustrate with image compression. This is
The Great Wave off Kanagawa by Hokusai, ca 1830, Wikipedia [2019].1 It depicts an rogue wave
threatening three boats off what is today Yokohama, with Mount Fuji in the background.

The image compression code we will use is in img_squeeze.sage , listed at the end of the chapter.
It breaks the picture into three matrices, for the red data, the green data, and the blue data. We
want to see how badly the image degrades for various cutoffs. The code below sets the cutoff at
retaining only the terms with the top 10% of singular values. For this image, that is 92 singular

1The image file is generously made freely available by The Art Institute of Chicago.
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values retained. The code gives us some insight into their size by printing the ones for the red
matrix (but we’ve edited out most of them).

sage: load("img_squeeze.sage")

sage: img_squeeze("pix/greatwave.png", "pix/greatwave_squeezed.png", 0.10)

image has 1497 rows and 922 columns

sigma_RD 0 =192773.40

sigma_RD 1 =26258.04

sigma_RD 2 =20055.53

sigma_RD 3 =16881.59

sigma_RD 4 =13394.80

sigma_RD 5 =12875.31

sigma_RD 6 =11064.42

sigma_RD 7 =10250.95

:

sigma_RD 92 =2240.98

(For contrast, the eight smallest singular values are 11.22, 10.80, 9.00, 8.26, 8.08, 7.29, 6.55, and
5.88.) Below is the compressed result.

This picture shows loss. The colors are not as good, the edges are not sharp, and there are artifacts,
including vertical lines extending from the writing in the upper left. Basically, Fiji has gotten fuzzy.
But certainly the image is entirely recognizable — not bad for omiting 90 percent of the summands.

Every additional term in the summation adds to the storage and transmission requirements by
about 2n floats. The above cutoff of 0.10 needs only two percent of the storage and transmission
requirements of the original image’s full matrix, although its quality may not be acceptable. That
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is, selecting a cutoff parameter is an engineering decision where on a fidelity versus resource-
consumption continuum you choose a value appropriate for your application.

Setting the cutoff parameter to 0.20 can make the output image hard to tell from the original.
Below is the picture of Suzy from this manual’s cover. On the left is the original image and on the
right it is squeezed using a parameter value of 0.20 (both are shown at 40% of their full size).

(The top singular value is 291533.51. The twenty percent cutoff is 129.23. The smallest of the 1739

singular values is 3.36.) The picture on the left is 4 megabytes, while the right is 3.4.

Source of plot_action.sage

The plot_circle_action routine takes the four entries of the 2×2 matrix and returns a list of two
graphics, showing the input and the output. Other parameters are the number of colors and a flag
giving whether to plot a full circle or just the top half circle.

The driver routine computes the list of colors and calls a helper color_circle_list , given below,
which returns a list of graphics. Finally, the routine plots those graphics (the += adds the picture
on the left to the one on the right).

def plot_circle_action(a, b, c, d, n = 12, full_circle = False):

"""Show the action of the matrix with entries a, b, c, d on half

of the unit circle, broken into a number of colors.

a, b, c, d reals Entries are upper left, ur, ll, lr.

n = 12 positive integer Number of colors.

full_circle=False boolean Show whole circle, or top half

"""

colors = rainbow(n)

G = Graphics() # holds graph parts until they are to be shown
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for g_part in color_circle_list(a,b,c,d,colors,full_circle):

G += g_part

return plot(G)

The helper routine does the heavy lifting. There are two globals. The variable CIRCLE_THICKNESS

sets the thickness of the pen that draws the plotted curve, in points (a printer’s unit, which are
1/72 inch). Similarly DOT_SIZE sets the size of the small empty circle (also in inches). This routine
produces a parametrized curve (x(t), y(t)) and uses Sage ’s parametric_plot function to yield the
resulting graphic.

DOT_SIZE = .02

CIRCLE_THICKNESS = 2

def color_circle_list(a, b, c, d, colors, full_circle=False):

"""Return list of graph instances for the action of a 2x2 matrix on

half of the unit circle. That circle is broken into chunks each

colored a different color.

a, b, c, d reals entries of the matrix ul, ur, ll, lr

colors list of rgb tuples; len of this list is how many chunks

full_circle=False Show a full circle instead

"""

r = []

if full_circle:

p = 2*pi

else:

p = pi

t = var('t')

n = len(colors)

for i in range(n):

color = colors[i]

x(t) = a*cos(t)+b*sin(t)

y(t) = c*cos(t)+d*sin(t)

g = parametric_plot((x(t), y(t)),

(t, p*i/n, p*(i+1)/n),

color = color, thickness=CIRCLE_THICKNESS)

r.append(g)

r.append(circle((x(p*i/n), y(p*i/n)), DOT_SIZE, color=color))

if not(full_circle): # show (x,y)=(-1,0) is omitted

r.append(circle((x(pi), y(pi)), 2*DOT_SIZE, color='black',

fill = 'true'))

r.append(circle((x(pi), y(pi)), DOT_SIZE, color='white',

fill = 'true'))

return r

If this routine is plotting the upper half circle then it adds the small empty circle at the end to
show that the image of (−1, 0) is not part of the graph.
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Source of img_squeeze.sage

We use the Python Image Library for reading and writing the graphic.

from PIL import Image

The function img_squeeze takes three arguments: the names of the two files, and the cutoff real
number between 0 and 1 that gives the percentage of the singular values to retain in the sum.

def img_squeeze(fn_in, fn_out, percent):

"""Squeeze an image using Singular Value Decomposition.

fn_in, fn_out string name of file

percent real in 0..1 Fraction of singular values to use

"""

This function first brings the input data to a format where each pixel is a triple (red, green,blue)
of integers that range from 0 to 255. It uses those numbers to build three Python arrays rd , gr ,
and bl , which then initialize the three Sage matrices RD , GR , and BL .

img = Image.open(fn_in)

img = img.convert("RGB")

rows, cols = img.size

dim_bound = min(rows, cols) # for non-square images

cutoff = int(round(percent*dim_bound,0))

print("image has", rows, "rows and", cols, "columns")

# Gather data into three arrays, then give to Sage's matrix()

rd, gr, bl = [], [], []

for row in range(rows):

for a in [rd, gr, bl]:

a.append([])

for col in range(cols):

r, g, b = img.getpixel((int(row), int(col)))

rd[row].append(r)

gr[row].append(g)

bl[row].append(b)

RD, GR, BL = matrix(RDF, rd), matrix(RDF, gr), matrix(RDF, bl)

The next step finds the Singular Value Decomposition of those three. Out of curiosity, we have
a look at the eight largest singular values in the red matrix, the singular value where we make the
cutoff, and the eight smallest.

# Get the SVDs

U_RD,Sigma_RD,V_RD = RD.SVD()

U_GR,Sigma_GR,V_GR = GR.SVD()

U_BL,Sigma_BL,V_BL = BL.SVD()

# Have a look

for i in range(8):

print("sigma_RD",i, "=%0.2f" % Sigma_RD[i][i])

print(" :") # vdots
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print("sigma_RD",cutoff,"=%0.2f" % Sigma_RD[cutoff][cutoff])

print(" :") # vdots

for i in range(dim_bound-8, dim_bound):

print(" at bottom: sigma_RD", i, "=%0.2f" % Sigma_RD[i][i])

Finally, for each matrix we compute the sum σ1 · u⃗1v⃗
T
1 + σ2 · u⃗2v⃗

T
2 + · · · , up through the cutoff

index.

# Compute sigma_1 u_1 v_1^trans+ ..

a=[]

for i in range(rows):

a.append([])

for j in range(cols):

a[i].append(0)

A_RD, A_GR, A_BL = matrix(RDF, a), matrix(RDF, a), matrix(RDF, a)

for i in range(cutoff):

sigma_i = Sigma_RD[i][i]

u_i = matrix(RDF, U_RD.column(i).column())

v_i = matrix(RDF, V_RD.column(i).column().transpose())

A_RD = copy(A_RD) + sigma_i*u_i*v_i

sigma_i = Sigma_GR[i][i]

u_i = matrix(RDF, U_GR.column(i).column())

v_i = matrix(RDF, V_GR.column(i).column().transpose())

A_GR = copy(A_GR) + sigma_i*u_i*v_i

sigma_i = Sigma_BL[i][i]

u_i = matrix(RDF, U_BL.column(i).column())

v_i = matrix(RDF, V_BL.column(i).column().transpose())

A_BL = copy(A_BL) + sigma_i*u_i*v_i

To finish, we put the data in the PNG format and save it to disk.

# Make a new image

img_squoze = Image.new("RGB", img.size)

for row in range(rows):

for col in range(cols):

p = (int(A_RD[row][col]),

int(A_GR[row][col]),

int(A_BL[row][col]))

img_squoze.putpixel((row,col), p)

img_squoze.save(fn_out)

(This part of the routine takes a long time, a number of seconds, in part because the code is
intended to be easy to read rather than fast to run.)



Geometry of Linear Maps

To show the geometric effect of linear transformations, we will picture the actions of plane transfor-
mations on the unit square. We show the plane, R2, because it fits on the paper, but the principles
extend to higher-dimensional spaces Rn.

Lines map to lines

The prior chapter points out that the condition h(r · v⃗) = r · h(⃗v) in the definition of linear map
means that these maps send lines through the origin to lines through the origin. What about
lines not through the origin? Fix a linear map h : Rd → Rc. A line in the domain has the form
ℓ = {m⃗ · s+ b⃗ | s ∈ R } for m⃗, b⃗ ∈ Rd (if m⃗ = 0⃗ then the line is degenerate). Its image

h(ℓ) = {h(m⃗ · s+ b⃗) | s ∈ R } = {h(m⃗) · s+ h(b⃗) | s ∈ R }

is a line in the codomain. So a linear map sends any line, through the origin or not, to another
line.

For example, consider the transformation t : R2 → R2 that rotates vectors counterclockwise by
π/6 radians.

RepE2,E2(t) =

(
cos(π/6) − sin(π/6)

sin(π/6) cos(π/6)

)
=

(√
3/2 −1/2

1/2
√
3/2

)
And consider the line y = 3x+ 2.

ℓ = {

(
x

y

)
=

(
1

3

)
· s+

(
0

2

)
| s ∈ R }

Under the action of t,(√
3/2 −1/2

1/2
√
3/2

)(
1

3

)
=

(
(
√
3− 3)/2

(1+ 3
√
3)/2

) (√
3/2 −1/2

1/2
√
3/2

)(
0

2

)
=

(
−1√
3

)
that line becomes this set.

t(ℓ) = {

(
x

y

)
=

(
(
√
3− 3)/2

(1+ 3
√
3)/2

)
· s+

(
−1√
3

)
| s ∈ R }

Here is the code and the input and output plots.1

1As in earlier chapters, we’ve omitted some of the code that sets the font size, etc.
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sage: s = var('s')

sage: ell = parametric_plot((s, 3*s+2), (s, -10, 10))

sage: d = circle((0,2), 0.1, rgbcolor=(1,0,0))

sage: ell = ell+d

sage: ell.save("graphics/geo000a.pdf")

None

sage: t_x(s) = ((sqrt(3)-3)/2)*s-1

sage: t_y(s) = ((1+3*sqrt(3))/2)*s+sqrt(3)

sage: t_ell = parametric_plot((t_x(s), t_y(s)), (s, -10, 10))

sage: d = circle((-1,sqrt(3)), 0.1, rgbcolor=(1,0,0))

sage: t_ell = t_ell+d

sage: t_ell.save("graphics/geo000b.pdf")

None

-4 -3 -2 -1 1 2 3 4

-4
-3
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-1
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3
4

t
−−−→

-4 -3 -2 -1 1 2 3 4

-4
-3
-2
-1

1
2
3
4

The map t is rotation by π/6 radians, but that can be hard to see. One example, shown with red
dots, is that the vector that ends at (0, 2) is rotated to the vector that ends at (−1,

√
3).

The unit square

The prior chapter illustrated the effect of plane transformations t : R2 → R2 by applying them to
the unit circle. In this chapter we use the unit square. The observation that linear maps send lines
to lines makes the code for this easy: we start with the four corners of the input square, compute
the effect of the transformation on those to make four output corners, and then connect those four
with line segments, getting a parallelogram. (The equations above show that lines with the same
direction vector m⃗ map to lines with the same direction vector t(m⃗), that is, parallel lines map to
parallel lines.)

So, our method will be to start with the unit square. Note the colors; they will play the same
role here as they did earlier.

sage: load("plot_action.sage")

None

sage: p = plot_square_action (1,0,0,1) # identity matrix

sage: p.save("graphics/geo100.pdf")

None
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0.5 1 1.5

0.5

1

1.5

The plot_square_action(a,b,c,d) routine applies to that unit square the transformation represented
with respect to the standard basis by the matrix with entries a, b, c, and d. (The source code is
at the end of the chapter.) (

a b

c d

)(
x

y

)
=

(
ax+ by

cx+ dy

)
This pictures of the effect of the generic matrix.

sage: load("plot_action.sage")

None

sage: q = plot_square_action (1,0,0,1)

sage: q.set_axes_range(-1, 4, -1, 7)

None

sage: q.save("graphics/geo101a.pdf")

None

sage: p = plot_square_action (1,2,3,4)

sage: p.set_axes_range(-1, 4, -1, 7)

None

sage: p.save("graphics/geo101b.pdf")

None

-1 1 2 3 4-1

1
2
3
4
5
6
7

(
1 2
3 4

)
−−−−→

-1 1 2 3 4-1

1
2
3
4
5
6
7

As described above, it transforms the input square into an output parallelogram.
The colors show another effect of the transformations, beyond shape-changing. Taking the colors

in their natural order of red, orange, green, and blue, the domain square has a counterclockwise
orientation. But the codomain’s figure is clockwise. So the colors illustrate that this transformation
reverses orientation (sometimes called ‘sense’).
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We can hope to understand complex behavior by building up from an understanding of simple
behavior. So we start by looking at the same example transformation as in the prior chapter, the
one that doubles the first component.

sage: load("plot_action.sage")

None

sage: q = plot_square_action (1,0,0,1)

sage: q.set_axes_range(-1, 3, -1, 2)

None

sage: q.save("graphics/geo102a.pdf")

None

sage: p = plot_square_action (2,0,0,1)

sage: p.set_axes_range(-1, 3, -1, 2)

None

sage: p.save("graphics/geo102b.pdf")

None

-1 1 2 3

-1

1

2

(
2 0
0 1

)
−−−−→

-1 1 2 3

-1

1

2

(∗)

Linear maps send the zero vector to the zero vector, and the input square is anchored at the origin,
so the output shape is also anchored at the origin. But it has been stretched horizontally— it has
the same orientation as the starting square, but twice the area.

That example illustrates that the behavior associated with diagonal matrices is simple. For
instance, tripling the x coordinate gives you a similar shape with three times the area of the
starting one. What if you take −1 times the x-coordinate?

sage: load("plot_action.sage")

None

sage: q = plot_square_action (1,0,0,1)

sage: q.set_axes_range(-2, 2, -1, 2)

None

sage: q.save("graphics/geo103a.pdf")

None

sage: p = plot_square_action (-1,0,0,1)

sage: p.set_axes_range(-2, 2, -1, 2)

None

sage: p.save("graphics/geo103b.pdf")

None
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(
−1 0
0 1

)
−−−−−→

-2 -1 1 2

-1

1

2

(∗∗)

It changes the orientation.
We say that the shape on the left above has an oriented area of −1. The motivation for taking

the area with a sign is continuity: imagine starting with the right-hand figure from the example
before this one, the diagram labeled (∗), and sliding the orange side in from the right, from 2 to 1,
to 0 and then to −1. The area falls from 2 to 1, to 0, and so we naturally to assign the figure
above an area measure of −1. The prefix ‘oriented’ is just there to distinguish this measure from
the grade school meaning of area. The grade school version of area is the absolute value of the
oriented area.

The next transformation combines action in two axes, tripling the y components and multiply-
ing x components by −1.

sage: load("plot_action.sage")

None

sage: q = plot_square_action (1,0,0,1)

sage: q.set_axes_range(-2, 2, -1, 4)

None

sage: q.save("graphics/geo104a.pdf")

None

sage: p = plot_square_action (-1,0,0,3)

sage: p.set_axes_range(-2, 2, -1, 4)

None

sage: p.save("graphics/geo104b.pdf")

None
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(
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)
−−−−−→
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4

The colors show that this transformation also changes the orientation, so the new shape has an
oriented area of −3.

What if we change the orientation twice?
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sage: load("plot_action.sage")

None

sage: q = plot_square_action (1,0,0,1)

sage: q.set_axes_range(-3, 2, -4, 2)

None

sage: q.save("graphics/geo105a.pdf")

None

sage: p = plot_square_action (-2,0,0,-3)

sage: p.set_axes_range(-3, 2, -4, 2)

None

sage: p.save("graphics/geo105b.pdf")

None

The before and after plots

-3 -2 -1 1 2

-4
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2

(
−2 0
0 −3

)
−−−−−−→ -3 -2 -1 1 2

-4

-3

-2

-1

1

2

show that on the right the colors come in the same order as they did in the original shape’s
counterclockwise red, orange, green, and then blue. That is, reversing orientation twice brings you
back to the original orientation. The new shape has an oriented area of 6.

Next consider the effect of putting off-diagonal entries in the matrix.

sage: load("plot_action.sage")

None

sage: q = plot_square_action (1,0,0,1)

sage: q.set_axes_range(-1, 3, -1, 2)

None

sage: q.save("graphics/geo106a.pdf")

None

sage: p = plot_square_action (1,0,2,1)

sage: p.set_axes_range(-1, 3, -1, 2)

None

sage: p.save("graphics/geo106b.pdf")

None
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-1 1 2 3

-1

1

2

(
1 2
0 1

)
−−−−→

-1 1 2 3

-1

1

2

This transformation is a shear. The output sides are not at right angles, although still opposite
sides are parallel. The action (

1 2

0 1

)(
x

y

)
=

(
x+ 2y

y

)
means that a starting vector with a y component of 1 gets shifted right by 2 while a starting vector
with a y component of 2 is shifted right by 4, etc. That is, vectors are shifted depending on how
far they are above or below the x-axis. The output shape has a base of 1 with a height of 1, and
the orientation is preserved, so its oriented area is 1.

Putting a nonzero value in the other off-diagonal entry of the matrix, the lower left, has the
same effect except that it shears parallel to the y-axis.

sage: load("plot_action.sage")

None

sage: q = plot_square_action (1,0,0,1)

sage: q.set_axes_range(-1, 3, -3, 2)

None

sage: q.save("graphics/geo107a.pdf")

None

sage: p = plot_square_action (1,0,-2,1)

sage: p.set_axes_range(-1, 3, -3, 2)

None

sage: p.save("graphics/geo107b.pdf")

None
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2

(
1 0
−2 1

)
−−−−−→ -1 1 2 3
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The action above (
x

y

)
7→ (

x

−2x+ y

)
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means that vectors are shifted depending on how far they are from the x axis. For instance, an
input vector with an x component of 1 is shifted by −2 while if the x component is 2 then it is
shifted by −4. The oriented area of the output shape is 1.

Determinants

The book geometrically interprets the conditions in the definition of a determinant function. It
shows that, in going from the before picture to the after, these transformation matrices change the
oriented area of the input region by a factor that is the determinant of the matrix. In diagram (∗)
above, the matrix has determinant 2 and it doubles the oriented area. In diagram (∗∗), the matrix
multiplies the oriented area by −1.

One advantage of starting these before/after pictures with a unit square is that because the
input has area 1, as a result the oriented area of the output shape equals the determinant of the
matrix.

For instance, the matrix (
1 2

2 4

)
is singular so it has determinant 0.

sage: load("plot_action.sage")

None

sage: q = plot_square_action (1,0,0,1)

sage: q.set_axes_range(-1, 4, -1, 6)

None

sage: q.save("graphics/geo200a.pdf")

None

sage: p = plot_square_action (1,2,2,4)

sage: p.set_axes_range(-1, 4, -1, 4)

None

sage: p.save("graphics/geo200b.pdf")

None

-1 1 2 3 4-1

1
2
3
4
5
6

(
1 2
2 4

)
−−−−→

-1 1 2 3 4-1

1
2
3
4
5
6

The output shape has an area of zero.
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Turing’s factorization, PA=LDU

We will now see how the action of any matrix can be decomposed into the actions shown above.
This will give us a complete geometric description of any linear map, that is, you can understand
the effect of any transformation by breaking down into a sequence of steps that are simple.

Recall that we can do the row operations of Gauss’s Method with matrix multiplication. For
instance, multiplication from the left by this matrix has the effect of the row operation 2ρ1 + ρ2.1 0 0

2 1 0

0 0 1

 3 1 4

−6 1 −8

0 −3 2

 =

3 1 4

0 3 0

0 −3 2


As described in the book, the elementary reduction matrices come in the three types. For a

matrix H, do row scaling rρi with Mi(r)H, swap rows ρi ↔ ρj with Pi,jH, and add a multiple of
one row to another kρi + ρj with Ci,j(k)H. These three arise from applying a row operation to an
identity matrix:

I
rρi
−→ Mi(r) I

ρi↔ρj
−→ Pi,j I

kρi+ρj
−→ Ci,j(k)

(where r 6= 0 and i 6= j). For instance, the prior paragraph used the 3×3 matrix C1,2(2). We will
focus on transformations, so we will take all of these matrices to be the same-size and square.

Continuing the Gauss’s Method reduction started in the matrix equation above, use C2,3(1) to
perform ρ2 + ρ3, producing echelon form.1 0 0

0 1 0

0 1 1

1 0 0

2 1 0

0 0 1

 ·

 3 1 4

−6 1 −8

0 −3 2

 =

3 1 4

0 3 0

0 0 2


Observe that if the starting matrix is such that you don’t need any row swapping then you

can stick with the operations kρi + ρj where j > i. The elementary matrices that perform those
operations are called lower triangular since all of their nonzero entries are in the lower left.
(Matrices with all of their nonzero entries in the upper right are upper triangular.)

We can go further. Next use a diagonal matrix to make the leading entries of the nonzero rows
of the echelon form matrix into 1’s.1/3 0 0

0 1/3 0

0 0 1/2

1 0 0

0 1 0

0 1 1

1 0 0

2 1 0

0 0 1

 ·

 3 1 4

−6 1 −8

0 −3 2

 =

1 1/3 4/3

0 1 0

0 0 1

 (∗)

Finally, use column operations to go all the way to a block partial identity matrix. Here is right-
multiplication on the right-hand side of (∗) to add −1/3 times the first column to the second
column. 1 1/3 4/3

0 1 0

0 0 1

 ·

1 −1/3 0

0 1 0

0 0 1

 =

1 0 4/3

0 1 0

0 0 1


Finally, adding −4/3 times the first column to the third column leaves an identity matrix.1 1/3 4/3

0 1 0

0 0 1

 ·

1 −1/3 0

0 1 0

0 0 1

1 0 −4/3

0 1 0

0 0 1

 =

1 0 0

0 1 0

0 0 1

 (∗∗)
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In summary, if you start with a matrix A that does not require any row swaps then you get
this matrix equation.

D0 · Ls · · ·L2L1 ·A ·U1U2 · · ·Ur = I

Here I is a partial identity matrix, D0 is a diagonal matrix, the Li are lower-triangular row combi-
nation matrices, and the Uj are upper-triangular column combination matrices.

All of the row operations can be undone (for instance, 2ρ1+ρ2 is undone with −2ρ1+ρ2), Thus
each of those lower triangular matrices has an inverse. Likewise, each upper-triangular matrix has
an inverse. That means we can do the algebra to move everything but A to the left side of the
equation. Therefore, if you don’t need any swaps in a Gauss-Jordan reduction of a matrix A then
you get a factorization of the starting matrix

A = L−1
1 · · ·L−1

s ·D ·U−1
r · · ·U−1

1

where D is the product of D−1
0 and the partial identity I, which is clearly a diagonal matrix.

To tidy up the swap issue, you can pre-swap: before factoring the starting matrix, first swap
its rows with a permutation matrix P.

P ·A = L−1
s · · ·L−1

1 ·D ·U−1
r · · ·U−1

1 (∗∗∗)

Now for the coup de gras. The inverse of a lower triangular matrix is a lower triangular matrix
and the product of lower triangular matrices is lower triangular, so you can combine all the L−1

i ’s
in (∗∗∗) into one lower triangular L. Likewise, you can combine all the U−1

i ’s into a single upper
triangular U. Thus, any matrix factors as PA = LDU.

We illustrate with the generic 2×2 transformation of R2 represented with respect to the standard
basis in this way.

T =

(
1 2

3 4

)
Gauss’s Method is straightforward.(

1 2

3 4

)
−3ρ1+ρ2
−→ (

1 2

0 −2

)
−(1/2)ρ2
−→ (

1 2

0 1

)
−2χ1+χ2
−→ (

1 0

0 1

)
(We write χi for the columns.) This is the associated factorization.(

1 2

3 4

)
=

(
1 0

3 1

)(
1 0

0 −2

)(
1 2

0 1

)
The product checks out.

sage: L = matrix(QQ, [[1, 0], [3, 1]])

sage: D = matrix(QQ, [[1, 0], [0, -2]])

sage: U = matrix(QQ, [[1, 2], [0, 1]])

sage: L*D*U

[1 2]

[3 4]
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We got into this to understand the geometric effect of the generic transformation.(
1 2

3 4

)(
x

y

)

sage: load("plot_action.sage")

None

sage: q = plot_square_action (1,0,0,1)

sage: q.set_axes_range(-2, 4, -1, 7)

None

sage: q.save("graphics/geo300a.pdf")

None

sage: p = plot_square_action (1,2,3,4)

sage: p.set_axes_range(-2, 4, -1, 7)

None

sage: p.save("graphics/geo300b.pdf")

None

-2 -1 1 2 3 4-1
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7

(
1 2
3 4

)
−−−−→

-2 -1 1 2 3 4-1

1
2
3
4
5
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7

Expand it using the above LDU factorization.(
1 2

3 4

)(
x

y

)
=

(
1 0

3 1

)(
1 0

0 −2

)(
1 2

0 1

)(
x

y

)
We will first look at the effect of each of U, D, and L separately. We will then look at their
cumulative effect: the action of U, then of DU, and finally of LDU.

The matrix applied first, the rightmost matrix U, is a skew parallel to the x-axis.

sage: load("plot_action.sage")

None

sage: q = plot_square_action (1,0,0,1)

sage: q.set_axes_range(-2, 4, -2.25, 4.25)

None

sage: q.save("graphics/geo303a.pdf")

None

sage: p = plot_square_action (1,2,0,1)

sage: p.set_axes_range(-2, 4, -2.25, 4.25)

None
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sage: p.save("graphics/geo303b.pdf")

None
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The second matrix D rescales and changes the orientation.

sage: load("plot_action.sage")

None

sage: q = plot_square_action (1,0,0,1)

sage: q.set_axes_range(-2, 4, -2.25, 4.25)

None

sage: q.save("graphics/geo302a.pdf")

None

sage: p = plot_square_action (1,0,0,-2)

sage: p.set_axes_range(-2, 4, -2.25, 4.25)

None

sage: p.save("graphics/geo302b.pdf")

None
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)
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The leftmost matrix, L, is a skew parallel to the y-axis.

sage: q = plot_square_action (1,0,0,1)

sage: q.set_axes_range(-2, 4, -2.25, 4.25)

None

sage: q.save("graphics/geo301a.pdf")

None

sage: p = plot_square_action (1,0,3,1)

sage: p.set_axes_range(-2, 4, -2.25, 4.25)

None
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sage: p.save("graphics/geo301b.pdf")

None
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)
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The lower-triangular and upper-triangular matrices do not change orientation. Any orientation
changing in LDU happens via diagonal entries that are negative. (Note that if a matrix requires
row swaps, PA = LDU, then the situation is more subtle. Each row swap toggles the orientation,
from counterclockwise to clockwise, or from clockwise to counterclockwise. Thus if the permutation
matrix requires an odd number of swaps then it changes the orientation, but with an even number
of swaps it leaves the orientation the same.)

We finish our study of LDU by considering the cumulative effect. Consider in order the actions
of U, then DU, and then LDU. For example, here is the cumulative effect of the maps on the unit
square’s upper right corner. (

1

1

)
U7−→ (

3

1

)
D7−→ (

3

−2

)
L7−→ (

3

7

)
Here are the drawings for the entire square. Again we see a skew parallel to the x-axis, followed by
a rescaling and change of orientation, followed by a skew parallel to the y-axis.

sage: L = matrix(QQ, [[1, 0], [3, 1]])

sage: D = matrix(QQ, [[1, 0], [0, -2]])

sage: U = matrix(QQ, [[1, 2], [0, 1]])

sage: DU = D*U

sage: LDU = L*DU

sage: load("plot_action.sage")

None

sage: p = plot_square_action (1,0,0,1)

sage: p.set_axes_range(-4, 4, -2, 7)

None

sage: p.save("graphics/geo304a.pdf")

None

sage: p = plot_square_action(U[0][0], U[0][1], U[1][0], U[1][1])

sage: p.set_axes_range(-4, 4, -2, 7)

None

sage: p.save("graphics/geo304b.pdf")

None

sage: p = plot_square_action(DU[0][0], DU[0][1], DU[1][0], DU[1][1])
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sage: p.set_axes_range(-4, 4, -2, 7)

None

sage: p.save("graphics/geo304c.pdf")

None

sage: p = plot_square_action(LDU[0][0], LDU[0][1], LDU[1][0],LDU[1][1])

sage: p.set_axes_range(-4, 4, -2, 7)

None

sage: p.save("graphics/geo304d.pdf")

None
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Source of plot_action.sage

The plot_square_action routine takes the four entries of the 2×2 matrix and returns a list of
graphics.

def plot_square_action(a, b, c, d):
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"""Show the action of the matrix with entries a, b, c, d on half

of the unit circle, as the circle and the output curve, broken into

colors.

a, b, c, d reals Entries are upper left, ur, ll, lr.

"""

colors = ['red', 'orange', 'green', 'blue']

G = Graphics() # hold graph parts until they are to be shown

for g_part in color_square_list(a,b,c,d,colors):

G += g_part

p = plot(G)

return p

Most of the work is done by the helper color_square_list .

SQUARE_THICKNESS = 1.75 # How thick to draw the curves

ZORDER = 5 # Draw the graph over the axes

def color_square_list(a, b, c, d, colors):

"""Return list of graph instances for the action of a 2x2 matrix

on a unit square. That square is broken into sides, each colored a

different color.

a, b, c, d reals entries of the matrix

colors list of rgb tuples; len of this list is at least four

"""

r = []

t = var('t')

# Four sides, ccw around square from origin

r.append(parametric_plot((a*t, c*t), (t, 0, 1),

color = colors[0], zorder=ZORDER,

thickness = SQUARE_THICKNESS))

r.append(parametric_plot((a+b*t, c+d*t), (t, 0, 1),

color = colors[1], zorder=ZORDER,

thickness = SQUARE_THICKNESS))

r.append(parametric_plot((a*(1-t)+b, c*(1-t)+d), (t, 0, 1),

color = colors[2], zorder=ZORDER,

thickness = SQUARE_THICKNESS))

r.append(parametric_plot((b*(1-t), d*(1-t)), (t, 0, 1),

color = colors[3], zorder=ZORDER,

thickness = SQUARE_THICKNESS))

# Dots make a cleaner join between edges

r.append(circle((a, c), DOT_SIZE,

color = colors[0], zorder = 2*ZORDER,

thickness = SQUARE_THICKNESS *1.25, fill = True))

r.append(circle((a+b, c+d), DOT_SIZE,

color = colors[1], zorder = 2*ZORDER+1,

thickness = SQUARE_THICKNESS *1.25, fill = True))

r.append(circle((b, d), DOT_SIZE,
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color = colors[2], zorder = ZORDER+1,

thickness = SQUARE_THICKNESS *1.25, fill = True))

r.append(circle((0, 0), DOT_SIZE,

color = colors[3], zorder = ZORDER+1,

thickness = SQUARE_THICKNESS *1.25, fill = True))

return r

There are two technical points that bear explanation. The ZORDER determines the order in which
Sage plots things and here we want the unit square to be plotted after the axes, so its colors will
be visible. Also, the way line segments butt against each other is ugly so we cover that with a dot.



Eigenvalues

In the chapter on Singular Value Decomposition, we considered the factor by which transformations
resize vectors and found the maximum resizing factors, the singular values. In this chapter we return
to plotting the image of the unit circle to consider another geometric effect, the amount by which
vectors are rotated.

Turning

Recall that a linear map has the same effect on all vectors that lie on the same line through the
origin. So we can see its action by plotting what it does to one point on each such line, using the
routine plot_circle_action .1

sage: load("plot_action.sage")

None

sage: q = plot_circle_action (1,0,0,1)

sage: q.save("graphics/eigen000a.pdf")

None

sage: p = plot_circle_action (2,0,2,2)

sage: p.save("graphics/eigen000b.pdf")

None
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On the left, proceeding counterclockwise, the curve begins with red at (x, y) = (1, 0). On the right
plot it begins with red at (1, 2). Here are the before and after vectors for that red point.

1As in earlier chapters, these plots are drawn using some options that are not shown. For the full list, see this
manual’s source.
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sage: load("plot_action.sage")

None

sage: p = plot_before_after_action (2,0,2,2, [(1,0)], ['red'])

sage: p.set_axes_range(-0.5, 2, -0.5, 2)

None

sage: p.save("graphics/eigen001.pdf", ticks=([1,2],[1,2]))

None

The action of the matrix

(
2 0

2 2

)(
1

0

)
=

(
2

2

)
1 2

1

2

is to both resize and rotate.

sage: v = vector(RR, [1,0])

sage: M = matrix(RR, [[2, 0], [2, 2]])

sage: w = M*v

sage: v.norm(), w.norm()

(1.00000000000000, 2.82842712474619)

sage: angle_in_rads = arccos(w*v/(w.norm()*v.norm()))

sage: angle_in_rads

0.785398163397448

However, with other vectors this map will resize and rotate by other amounts. That is, the action
is not uniform; as we move across the upper half circle from (1, 0) to (−1, 0) the effect of the map
varies. Here is the effect of the transformation on the point (cos(π/6), sin(π/6)).

sage: v = vector(RR, [cos(pi/6),sin(pi/6)])

sage: w = M*v

sage: v.norm(), w.norm()

(1.00000000000000, 3.23482636553150)

sage: angle_in_rads = arccos(w*v/(w.norm()*v.norm()))

sage: angle_in_rads

0.482170608511459

sage: load("plot_action.sage")

None

sage: p = plot_before_after_action (2,0,2,2, [(1,0), (cos(pi/6),sin(pi/6))], rainbow(12))

sage: p.set_axes_range(-0.5, 2, -0.5, 2.65)

None

sage: p.save("graphics/eigen001a.pdf", ticks=([1,2],[1,2]))

None
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This shows again the before-and-after on the red input (1, 0), and then overlays the same effect on
the orange input (cos(π/6), sin(π/6)).

1 2

1

2

The orange output is not rotated from the input as much (it is also slightly longer).
Sage will compute for us the rotations of the vectors. At the end of this chapter is the source

for a routine plot_color_angles that inputs the entries of a transformation and applies that map
to vectors in the half circle, computes the angles by which those vectors are rotated, and draws a
graph. That graph colors the output vectors, making a visual match.

sage: p = plot_color_angles (2,0,2,2)

sage: p.set_axes_range(0,pi,0,pi)

None

sage: p.save("graphics/eigen003.pdf")

None

The transformation for this graph is the map represented by
(
2 0
2 2

)
with respect to the standard

basis.
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Its most interesting point is where the output angle is 0, where the graph hits the horizontal axis
This happens at the input angle π/2. This is a input vector that the transformation does not turn
at all— it is resized but not rotated. On the input/output diagram on page 87, it is the green
input vector lying on the y-axis, whose associated green output also lies on the y-axis.

Generic matrix We can do the same analysis for our usual generic 2×2 matrix.

sage: q = plot_circle_action (1,0,0,1)

sage: q.set_axes_range(-2, 2, -4, 5)

None
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sage: q.save("graphics/eigen100a.pdf")

None

sage: p = plot_circle_action (1,2,3,4)

sage: p.set_axes_range(-2, 2, -4, 5)

None

sage: p.save("graphics/eigen100b.pdf")

None
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This graphs the angle between the each input vector and its associated output vector.

sage: p = plot_color_angles (1,2,3,4)

sage: p.set_axes_range(0,pi,-1*pi,pi)

None

sage: p.save("graphics/eigen101.pdf", tick_formatter=[pi,pi])

None
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(∗)

This graph has two interesting points: where y = 0, and where y = π (and y = −π). In both
places, the vector is resized but not turned. In the second case, where the vector is turned by an
angle of π (or −π), the input vector is on the same line through the origin as the output but the
transformation rescales it by a negative number.

A vectors that is purely resized by a transformation t is an eigenvector for t (we disallow
the zero vector as an eigenvector, as it is trivially resized by every transformation). The amount
by which the eigenvector is resized is the associated eigenvalue. For an eigenvalue λ, the set of
vectors associated with that rescaling factor is an eigenspace. Sage will compute the eigenspaces
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of a matrix.1

sage: M = matrix(RDF, [[1, 2], [3, 4]])

sage: evs = M.eigenvectors_right()

sage: evs

[(-0.3722813232690143, [(-0.8245648401323938, 0.5657674649689923)], 1), (5.372281323269014,

[(-0.4159735579192842, -0.9093767091321241) ], 1)]

sage: evs[0]

(-0.3722813232690143, [(-0.8245648401323938, 0.5657674649689923) ], 1)

sage: v0 = vector(RDF, evs[0][1][0])

sage: v0.norm()

1.0

sage: evs[1]

(5.372281323269014, [(-0.4159735579192842, -0.9093767091321241) ], 1)

sage: v1 = vector(RDF, evs[1][1][0])

sage: v1.norm()

1.0

That shows a list with two elements, one for each eigenvalue. The first, evs[0] , has to do with
the eigenvalue λ1 ≈ −0.37 and says that the associated eigenspace has a basis consisting of the
single unit vector with endpoint approximately (−0.82, 0.57).2 The second element, evs[1] , is
for λ2 ≈ 5.37 and says that its eigenspace has a basis consisting of the single vector with endpoint
around (−0.42,−0.91).

Sage will tell us which of those vectors is which on the graph labeled (∗).

sage: M = matrix(RDF, [[1, 2], [3, 4]])

sage: evs = M.eigenvectors_right()

sage: v = vector(RDF, evs[0][1][0])

sage: angle_v = atan2(v[1], v[0])

sage: (angle_v/pi).n(digits=4)

0.8086

(Remember that the n() function gives the numerical value of the argument.) So the angle is
something like (4/5)π, and thus the eigenspace listed first is the one associated with the right-hand
of the two interesting points in (∗), the vector that is turned by an angle of π. That dovetails with
the observation that the eigenvalue is a negative number because both say that the transformation’s
action in passing from the domain to the codomain is to turn the vector around.

Sage can draw before and after pictures for the two eigenvectors.

sage: M = matrix(RDF, [[1, 2], [3, 4]])

sage: evs = M.eigenvectors_right()

sage: p1 = plot_before_after_action (1,2,3,4, [evs[0][1][0]], ['red'])

sage: p2 = plot_before_after_action (1,2,3,4, [evs[1][1][0]], ['blue'])

1Whether we are taking multiplication by vectors to come from the right, Mv⃗, or from the left, v⃗M, a matrix has the
same eigenvalues. But the eigenvectors may be different. The Sage operation eigenvectors_right covers the book’s
standard Mv⃗ = λ⃗v case and eigenvectors_left covers the other. 2The trailing 1 is the geometric multiplicity of this
eigenvalue, the dimension of the nullspace of t − λ1 · id. We won’t use this information.
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sage: p = p1+p2+circle((0,0), 1, edgecolor='black')

sage: p.set_axes_range(-3, 1, -5, 1)

None

sage: p.save("graphics/eigen102.pdf")

None

This picture has two pairs of before and after vectors, one in blue and the other in red (each before
vector is a unit vector). Again we see that the after vector is scaled from the before vector, in the
blue case by the positive factor λ2 ≈ 5.37 and in the red case by the negative factor λ1 ≈ −0.37.
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Plane rotation We know the 2×2 matrix that rotates all vectors counterclockwise.(
cosθ − sinθ

sinθ cosθ

)
Here is its action on the upper half circle with θ = π/3.

sage: load("plot_action.sage")

None

sage: q = plot_circle_action (1,0,0,1)

sage: q.set_axes_range(-2, 2, -2, 2)

None

sage: q.save("graphics/eigen200a.pdf")

None

sage: p = plot_circle_action(cos(pi/3),-sin(pi/3),sin(pi/3),cos(pi/3))

sage: p.set_axes_range(-2, 2, -2, 2)

None

sage: p.save("graphics/eigen200b.pdf")

None
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This map turns every input vector by π/3 radians so its input/output angle graph has no interesting
points.

sage: load("plot_action.sage")

None

sage: p = plot_color_angles(cos(pi/3),-sin(pi/3),sin(pi/3),cos(pi/3))

sage: p.set_axes_range(0,pi,-0.25*pi,pi)

None

sage: p.save("graphics/eigen201.pdf", tick_formatter=[pi,pi])

None

1
6
π 1

3
π 1

2
π 7

11
π 4

5
π π

−1
6
π

1
6
π

1
3
π

1
2
π

7
11
π

4
5
π

π

This transformation has no real number eigenvalues.

Matrix polynomials

Sage can find characteristic and minimal polynomials of a matrix.

sage: M = matrix(RDF, [[1, 2], [3, 4]])

sage: poly = M.charpoly()

sage: poly.factor()

(x - 5.372281323269014) * (x + 0.3722813232690143)

sage: poly.roots()

[(-0.3722813232690143, 1), (5.372281323269014, 1)]

Of course, the eigenvalues are the roots.
Recall that the characteristic polynomial and minimal polynomial can differ only when the

characteristic polynomial has repeated roots.
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sage: M = matrix(RDF, [[2, 2, 3], [0, 4, -1], [0, 0, 2]])

sage: M.charpoly()

x^3 - 8.0*x^2 + 20.0*x - 16.0

sage: M.minpoly()

x^3 - 8.0*x^2 + 20.0*x - 16.0

sage: M.charpoly().factor()

(x - 4.0) * (x^2 - 3.9999999999999987*x + 4.000000000000001)

sage: M.minpoly().factor()

(x - 4.0) * (x^2 - 3.9999999999999987*x + 4.000000000000001)

Sage has trouble here telling whether 2 is a repeated root, because of floating point numerical
issues. Doing an exact calculation using rational numbers resolves the question.

sage: M = matrix(QQ, [[2, 2, 3], [0, 4, -1], [0, 0, 2]])

sage: M.charpoly()

x^3 - 8*x^2 + 20*x - 16

sage: M.minpoly()

x^3 - 8*x^2 + 20*x - 16

sage: M.charpoly().factor()

(x - 4) * (x - 2)^2

sage: M.minpoly().factor()

(x - 4) * (x - 2)^2

The rotation matrix has no real number eigenvalues but it does have complex eigenvalues.

sage: R = matrix(RDF, [[cos(pi/3), -sin(pi/3)], [sin(pi/3), cos(pi/3)]])

sage: R.minpoly()

x^2 - x + 1.0

sage: R.eigenvalues()

[0.5 + 0.8660254037844388*I, 0.5 - 0.8660254037844388*I]

sage: R.eigenvectors_right()

[(0.5 + 0.8660254037844388*I, [(-0.7071067811865475* I, -0.7071067811865476) ], 1), (0.5 -

0.8660254037844388*I, [(0.7071067811865475* I, -0.7071067811865476) ], 1)]

Diagonalization and Jordan form

Sage will tell us if two matrices are similar.

sage: S = matrix(QQ, [[2, -3], [1, -1]])

sage: T = matrix(QQ, [[0, -1], [1, 1]])

sage: S.is_similar(T)

True

sage: U = matrix(QQ, [[1, 2], [3, 4]])

sage: S.is_similar(U)

False
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We can determine if a matrix is diagonalizable.

sage: M = matrix(QQ, [[4, -2], [1, 1]])

sage: M.is_diagonalizable()

True

To diagonalize the matrix, put it in Jordan form. (Even if you haven’t covered this matrix form,
the command is simple.)

sage: M = matrix(QQ, [[2, -2, 2], [0, 1, 1], [-4, 8, 3]])

sage: M.jordan_form()

[3|0|0]

[-+-+-]

[0|2|0]

[-+-+-]

[0|0|1]

Note the -+-+- lines that break the matrix into its component horizontal blocks. Likewise, there
are vertical lines.

Sage will also find the transformation matrix, the nonsingular P that can convert between the
given matrix M and the matrix D of the desired form, with M = PDP−1.

sage: M = matrix(QQ, [[2, -2, 2], [0, 1, 1], [-4, 8, 3]])

sage: JF, P = M.jordan_form(transformation=True)

sage: JF

[3|0|0]

[-+-+-]

[0|2|0]

[-+-+-]

[0|0|1]

sage: P

[ 1 1 1]

[1/2 4/9 1/2]

[ 1 4/9 0]

sage: P^(-1)

[ -4 8 1]

[ 9 -18 0]

[ -4 10 -1]

sage: P*JF*P^(-1)

[ 2 -2 2]

[ 0 1 1]

[-4 8 3]
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Source of plot_color_angles

This routine gathers graphic instances and returns the plot of that list. The default is to plot a
thousand points.

"""Show the action of the matrix with entries a, b, c, d on half

of the unit circle, broken into a number of colors.

a, b, c, d reals Entries are upper left, ur, ll, lr.

num_points=1000 Number of points along half circle to plot

"""

colors = rainbow(6)

G = Graphics() # holds graph parts until they are to be shown

for g_part in color_angles_list(a,b,c,d,num_points,colors):

G += g_part

return plot(G)

Source of color_angles_list

This finds the angles for the effect of the transformation on the vectors, and draws a scatter plot of
those points. It draws them in the color of the input vector. The TICKS constant gives the places
where the axes are labeled.

TICKS = ([0,pi/4,pi/2,3*pi/4,pi], [0,pi/2,pi])

def color_angles_list(a, b, c, d, num_pts, colors):

"""Return list of graph instances for the action of a 2x2 matrix on

half of the unit circle. That circle is broken into chunks each

colored a different color.

a, b, c, d reals entries of the matrix ul, ur, ll, lr

colors list of rgb tuples; len of this list is how many chunks

(Terribly inefficient; runs through scatter_points many times)

"""

r = []

num_colors = len(colors)

for i in range(num_colors):

color = colors[i]

points = find_angles(a,b,c,d,num_pts,

lower_limit=i*pi/num_colors,

upper_limit=(i+1)*pi/num_colors)

g = scatter_plot(points,facecolor=color,edgecolor=color,

markersize=MARKERSIZE,ticks=TICKS)

r.append(g)

return r
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Source of find_angles

This routine uses a formula for the angle between two vectors that always gives a positive value,
that is, it is the angle without orientation. That suits the purpose here, which is to use the graph
to roughly locate places where the action of the matrix does not turn the vector.

"""Apply the matrix to points around the upper half circle, and

return the angle between the input and output vectors.

a, b, c, d reals Upper left, ur, ll, lr of matrix.

num_pts positive integer number of points

lower_limit=0, upper_limit=pi ignore angles outside these limits

"""

if lower_limit is None:

lower_limit=0

if upper_limit is None:

upper_limit=pi

r = []

M = Matrix(RDF, [[a, b], [c, d]])

for i in range(num_pts):

t = i*pi/num_pts

if ((t<lower_limit) or (t>upper_limit)):

continue

pt = (cos(t), sin(t))

v = vector(RDF, pt)

w = M*v

try:

dot = v[0]*w[0] + v[1]*w[1] # dot product

det = v[0]*w[1] - v[1]*w[0] # determinant

angle = atan2(det, dot) # atan2(y, x) or atan2(sin, cos)

except:

angle = None

r.append((t,angle))

return r

Source of plot_before_after_action

The only perhaps unexpected point in this routine and its helper routine is that if the vector is
not mapped very far

EPSILON = 0.25

then the helper routine does not show an arrow but instead shows a circle.

BA_THICKNESS = 1.5

def before_after_list(a, b, c, d, pts, colors=None):

"""Show the action of the matrix with entries a, b, c, d on the
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points by showning the vector before and after in the same color.

a, b, c, d reals Upper left, ur, ll, lr or matrix.

pts list of pairs of reals

colors = None list of colors

"""

r = []

for dex, pt in enumerate(pts):

x, y = pt

v = vector(RDF, pt)

M = matrix(RDF, [[a, b], [c, d]])

f_x, f_y = M*v

if colors:

color = colors[dex]

else:

color = 'lightgray'

if ((abs(x-f_x) < EPSILON) and (abs(y-f_y) < EPSILON)):

r.append(circle(pt, DOT_SIZE, color=color,

thickness=BA_THICKNESS))

else:

r.append(arrow((0,0), (x,y), color=color,

width=BA_THICKNESS, arrowsize=2*BA_THICKNESS))

r.append(arrow((0,0), (f_x,f_y), color=color,

width=BA_THICKNESS, arrowsize=2*BA_THICKNESS))

return r

def plot_before_after_action (a, b, c, d, pts, colors=None):

"""Show the action of the matrix with entries a, b, c, d on the

points.

a, b, c, d reals Upper left, ur, ll, lr or matrix.

pt_list list of pairs of reals; the before pts to show

"""

if colors is None:

colors = ["gray",]*len(pts)

G = Graphics()

for ba in before_after_list(a,b,c,d,pts,colors=colors):

G += ba

p = plot(G)

return p
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