Abstract
The idea of exploiting solar radiation pressure for space travel, or solar sailing, is more than a 100 years old, and yet most of the research thus far has considered only a limited number of sail configurations. However solar sails do not have to be inertially-pointing squares, spin-stabilised discs or heliogyros: there is a range of different configurations and concepts that present some advantageous features. This chapter will show and discuss three non-conventional solar sail configurations and their applications. In the first, the sail is complemented by an electric thruster, resulting in a hybrid-propulsion spacecraft which is capable to hover above the Earth’s Poles in a stationary position (pole-sitter). The second concept makes use of a variable-geometry pyramidal sail, naturally pointing towards the sun, to increase or decrease the orbit altitude without the need of propellant or attitude manoeuvres. Finally, the third concept shows that the orbit altitude can also be changed, without active manoeuvres or geometry change, if the sail naturally oscillates synchronously with the orbital motion. The main motivation behind these novel configurations is to overcome some of the engineering limitations of solar sailing; the resulting concepts pose some intriguing orbital and attitude dynamics problems, which will be discussed.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Baig, S., McInnes, C.R.: Artificial three-body equilibria for hybrid low-thrust propulsion. J. Guid. Control Dyn. 31 (6), 1644–1655 (2008). doi:10.2514/1.36125
Battin, R.H.: An Introduction to the Mathematics and Methods of Astrodynamics. AIAA, New York (1999)
Biddy, C., Svitek, T.: LightSail-1 solar sail design and qualification. In: 41st Aerospace Mechanisms Symposium. Jet Propulsion Laboratory, Pasadena (2012)
Borggräfe, A.: Analysis of interplanetary solar sail trajectories with attitude dynamics. MSc, Rheinisch-Westfälische Technische Hochschule Aachen (2011)
Ceriotti, M., McInnes, C.R.: Generation of optimal trajectories for Earth hybrid pole-sitters. J. Guid. Control Dyn. 34 (3), 847–859 (2011a). doi:10.2514/1.50935
Ceriotti, M., McInnes, C.R.: Systems design of a hybrid sail pole-sitter. Adv. Space Res. 48 (11), 1754–1762 (2011b). doi:10.1016/j.asr.2011.02.010
Ceriotti, M., Heiligers, J., McInnes, C.R.: Novel pole-sitter mission concepts for continuous polar remote sensing. In: SPIE Remote Sensing, Edinburgh (2012a). doi:10.1117/12.974604
Ceriotti, M., Diedrich, B.L., McInnes, C.R.: Novel mission concepts for polar coverage: an overview of recent developments and possible future applications. Acta Astronaut. 80, 89–104 (2012b). doi:10.1016/j.actaastro.2012.04.043
Ceriotti, M., Harkness, P.G., McRobb, M.: Variable-geometry solar sailing: the possibilities of the quasi-rhombic pyramid. In: Macdonald, M. (ed.) Advances in Solar Sailing, pp. 899–919. Springer, Berlin/Heidelberg (2014a)
Ceriotti, M., Harkness, P.G., McRobb, M.: Synchronized orbits and oscillations for free altitude control. J. Guid. Control Dyn. 37 (6), 2062–2066 (2014b). doi:10.2514/1.G000253
Ceriotti, M., Heiligers, J., McInnes, C.R.: Trajectory and spacecraft design for a pole-sitter mission. J Spacecr. Rocket. 51 (1), 311–326 (2014c). doi:10.2514/1.A32477
Driver, J.M.: Analysis of an arctic polesitter. J Spacecr. Rocket. 17 (3), 263–269 (1980). doi:10.2514/3.57736
Felicetti, L., Ceriotti, M., Harkness, P.G.: Attitude stability and altitude control of a variable-geometry earth-orbiting solar sail. J. Guid. Control Dyn. (2016). doi: 10.2514/1.G001833
Funase, R., Mori, O., Tsuda, Y., Shirasawa, Y., Saiki, T., Mimasu, Y., Kawaguchi, J.: Attitude control of IKAROS solar sail spacecraft and its flight results. In: 61st International Astronautical Congress (IAC 2010). International Astronautical Federation, Prague (2010)
Funase, R., Shirasawa, Y., Mimasu, Y., Mori, O., Tsuda, Y., Saiki, T., Kawaguchi, J.: On-orbit verification of fuel-free attitude control system for spinning solar sail utilizing solar radiation pressure. Adv. Space Res. (Special issue Solar Sailing) 48 (11), 1740–1746 (2011). doi:10.1016/j.asr.2011.02.022
Heiligers, J., Ceriotti, M., McInnes, C.R., Biggs, J.D.: Displaced geostationary orbit design using hybrid sail propulsion. J. Guid. Control Dyn. 34 (6), 1852–1866 (2011). doi:10.2514/1.53807
Heiligers, J., Ceriotti, M., McInnes, C.R., Biggs, J.D.: Design of optimal Earth pole-sitter transfers using low-thrust propulsion. Acta Astronaut. 79, 253–268 (2012a). doi:10.1016/j.actaastro.2012.04.025
Heiligers, J., Ceriotti, M., McInnes, C.R., Biggs, J.D.: Design of optimal transfers between North and South pole-sitter orbits. In: 22nd AAS/AIAA Space Flight Mechanics Meeting. Univelt, Inc., Charleston (2012b)
Johnson, L., Whorton, M., Heaton, A., Pinson, R., Laue, G., Adams, C.: NanoSail-D: A solar sail demonstration mission. Acta Astronaut. 68 (5–6), 571–575 (2011). doi:10.1016/j.actaastro.2010.02.008
Leipold, M., Götz, M.: Hybrid Photonic/Electric Propulsion. Kayser-Threde GmbH, Munich (2002)
Macdonald, M., McInnes, C.R.: Analytical control laws for planet-centred solar sailing. J. Guid. Control Dyn. 28 (5), 1038–1048 (2005a). doi:10.2514/1.11400
Macdonald, M., McInnes, C.R.: Realistic earth escape strategies for solar sailing. J. Guid. Control Dyn. 28 (2), 315–323(2005b). doi:10.2514/1.5165
Macdonald, M., McInnes, C.R.: Solar sail mission applications and future advancement. In: 2nd International Symposium on Solar Sailing (ISSS 2010), New York (2010)
McInnes, C.R.: Solar Sailing: Technology, Dynamics and Mission Applications. Springer, Berlin (1999)
Mengali, G., Quarta, A.A.: Near-optimal solar-sail orbit-raising from low Earth orbit. J. Spacecr. Rocket. 42 (5), 954–958 (2005). doi:10.2514/1.14184
Mengali, G., Quarta, A.A.: Tradeoff performance of hybrid low-thrust propulsion system. J. Spacecr. Rocket. 44 (6), 1263–1270 (2007a). doi:10.2514/1.30298
Mengali, G., Quarta, A.A.: Trajectory design with hybrid low-thrust propulsion system. J. Guid. Control Dyn. 30 (2), 419–426 (2007b). doi:10.2514/1.22433
Nobari, N.A., Misra, A.K.: Attitude dynamics and control of satellites with fluid ring actuators. J. Guid. Control Dyn. 35 (6), 1855–1864 (2012). doi:10.2514/1.54599
Schaub, H., Junkins, J.L.: Analytical Mechanics of Space Systems, 2nd edn. AIAA, Reston (2009)
Simo, J., McInnes, C.R.: Displaced periodic orbits with low-thrust propulsion. In: 19th AAS/AIAA Space Flight Mechanics Meeting. American Astronautical Society, Savannah (2009)
Stolbunov, V., Ceriotti, M., Colombo, C., McInnes, C.R.: Optimal law for inclination change in an atmosphere through solar sailing. J. Guid. Control Dyn. 36 (5), 1310–1323 (2013). doi:10.2514/1.59931
Wie, B., Murphy, D.: Solar-sail attitude control design for a flight validation mission. J. Spacecr. Rocket. 44 (4), 809–821 (2007). doi:10.2514/1.22996
Yamaguchi, T., Mimasu, Y., Tsuda, Y., Takeuchi, H., Yoshikawa, M.: Estimation of solar radiation pressure force for solar sail navigation. In: 61st International Astronautical Congress (IAC 2010). International Astronautical Federation, Prague (2010)
Acknowledgements
This chapter summarises some of the work done in collaboration with many people, to whom the author is extremely thankful: Colin McInnes and Jeannette Heiligers for the hybrid propulsion (this research was funded by the European Research Council, as part of project 227571 VISIONSPACE); Patrick Harkness and Malcolm McRobb for the oscillating sail; Patrick Harkness, Leonard Felicetti and Malcolm McRobb for the quasi-rhombic pyramid.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Ceriotti, M. (2016). Unconventional Solar Sailing. In: Gómez, G., Masdemont, J. (eds) Astrodynamics Network AstroNet-II. Astrophysics and Space Science Proceedings, vol 44. Springer, Cham. https://doi.org/10.1007/978-3-319-23986-6_4
Download citation
DOI: https://doi.org/10.1007/978-3-319-23986-6_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-23984-2
Online ISBN: 978-3-319-23986-6
eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)