Skip to main content

On Implication Operators

  • Conference paper
  • First Online:
Aggregation Functions in Theory and in Practice (AGOP 2017)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 581))

Included in the following conference series:

  • 647 Accesses

Abstract

Distributivity properties play an important role in fuzzy research. Based on the solution of the autodistributivity functional equations, we give a characterisation of two types of distributivity of fuzzy implication. Based on the mean disjunctive operator, the mean implication operator is introduced. Using the Pliant operators -where all operators have a common generator function- we show that some weakened properties of the fuzzy mean implications are valid. In the propositions we use the fixed point of the negation as a threshold. Finally, the generalized modus ponens is examined in this framework.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aczel, J.: Lectures on Functional Equations and Their Applications, vol. 19 (1966)

    Google Scholar 

  2. Baczyński, M., Jayaram, B.: Fuzzy Implications. Springer, Berlin (2008)

    MATH  Google Scholar 

  3. Bertoluzza, C.: On the distributivity between t-norm and t-conorms. In: Proceedings of the 2nd IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 1993), San Francisco, USA, pp. 140–147, March 1993 (1993)

    Google Scholar 

  4. Bertoluzza, C., Doldi, V.: On distributivity between t-norms and t-conors. Fuzzy Sets Syst. 142, 85–104 (2004)

    Article  MATH  Google Scholar 

  5. Carbonell, M., Mas, M., Suner, J., Torrens, J.: On distributivity and modularity in De Morgan triplets. Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 4, 351–368 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  6. Dombi, J.: DeMorgan systems with an infinitely many negations in the strict monotone operator case. Inf. Sci. 181(8), 1440–1453 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dombi, J.: Modifiers based on connectives. In: Eleventh International Conference on Fuzzy Set Theory and Applications, p. 1 (2012)

    Google Scholar 

  8. Dombi, J., System, P.O., Fodor, J., Ryszard, K., Araujo, C.P.S.: Recent Advances in Intelligent Engineering Systems, pp. 31–58. Springer, Berlin (2012)

    Book  Google Scholar 

  9. Dombi, J.: On a certain class of aggregative operators. Inf. Sci. 245, 313–328 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dombi, J.: Unary operators. In: Advances in Applied, Pure Mathematics: Proceedings of the International Conference on Pure Matematics, Apllied Mathematics, Computational Methods (PMAMCM), pp. 91–97 (2014)

    Google Scholar 

  11. Dombi, J.: On consistent operator systems. In: Baczynski, M., De Baets, B., Mesiar, R. (eds.) Proceedings of the 8th International Summer School on Aggregation Operators (AGOP), Katowice, Poland, pp. 31–32 (2015)

    Google Scholar 

  12. Fodor, J., Roubens, M.: Fuzzy Preference Modelling and Multicriteria Decision Suppert. Kluwer Academic Publishers, Dordrecht (1994)

    Book  MATH  Google Scholar 

  13. Klement, E.P., Mesiar, R., Pap, E.: Triangular Norms. Kluwer, Dordecht (2000)

    Book  MATH  Google Scholar 

  14. Mas, M., Mayor, G., Torrens, J.: The distributivity condition for uninorms and t-operators. Fuzzy Sets Syst. 128, 209–225 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  15. Reiser, R.H.S., Bedregal, B., Baczyński, M.: Aggregating fuzzy implications. Inf. Sci. 253, 126–146 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ruiz, D., Torrens, J.: Distributive idempotent uninorms. Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 11, 413–428 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  17. Trillas, E., Alsina, C.: On the law \([p\wedge q\rightarrow r]=[(p\rightarrow r)\vee (q\rightarrow r)]\) in fuzzy logic. IEEE Trans. Fuzzy Syst. 10(1), 84–88 (2002)

    Article  Google Scholar 

  18. Trillas, E., Alsina, C.: Short note: on a conditional-conjunctive law with fuzzy sets. Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 21(1), 1–8 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to József Dombi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Dombi, J. (2018). On Implication Operators. In: Torra, V., Mesiar, R., Baets, B. (eds) Aggregation Functions in Theory and in Practice. AGOP 2017. Advances in Intelligent Systems and Computing, vol 581. Springer, Cham. https://doi.org/10.1007/978-3-319-59306-7_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59306-7_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59305-0

  • Online ISBN: 978-3-319-59306-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics