Skip to main content
Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

Production and decay of the Higgs boson in association with top quarks

  • Regular Article - Theoretical Physics
  • Open access
  • Published: 25 February 2022
  • Volume 2022, article number 196, (2022)
  • Cite this article
Download PDF

You have full access to this open access article

Journal of High Energy Physics Aims and scope Submit manuscript
Production and decay of the Higgs boson in association with top quarks
Download PDF
  • Daniel Stremmer1 &
  • Malgorzata Worek  ORCID: orcid.org/0000-0002-6495-91361 
  • 441 Accesses

  • 15 Citations

  • 1 Altmetric

  • Explore all metrics

A preprint version of the article is available at arXiv.

Abstract

We report on the calculation of the next-lo-leading order QCD corrections to Higgs boson production and decay in association with top quarks. We consider leptonic decays of top quarks leading to the hadronic process pp → e+νeμ−\( \overline{\nu} \)μb\( \overline{b} \)H(H → X) at the LHC with \( \sqrt{s} \) = 13 TeV. All resonant as well as non-resonant Feynman diagrams, interferences and off-shell effects are included for the top quark and W gauge boson. Decays of the Higgs boson, on the other hand, are included in the narrow-width approximation. Specifically, we consider Higgs boson decays into b\( \overline{b} \), τ+τ−, γγ and e+e−e+e−. Numerical results are given at the integrated and differential fiducial level for various factorisation and renormalisation scale choices and different PDF sets. We study the main theoretical uncertainties that are associated with neglected higher order terms in the perturbative expansion and with different parametrisations of the PDFs. Furthermore, we examine the size of the off-shell effects by an explicit comparison to the calculation in the full narrow-width approximation. Finally, the impact of the contributions induced by the bottom-quark parton density is investigated.

Article PDF

Download to read the full article text

Similar content being viewed by others

Higgs boson production in association with massive bottom quarks at NNLO+PS

Article Open access 11 April 2025

Associated production of a Higgs boson decaying into bottom quarks and a weak vector boson decaying leptonically at NNLO in QCD

Article Open access 03 October 2019

Higgs boson pair production and decay at NLO in QCD: the \( b\overline{b}\gamma \gamma \) final state

Article Open access 02 April 2024
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].

  2. CMS collaboration, Observation of a New Boson at a Mass of 125 GeV with the CMS Experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].

  3. LHC Higgs Cross Section Working Group, Handbook of LHC Higgs Cross Sections: 4. Deciphering the Nature of the Higgs Sector, arXiv:1610.07922 [INSPIRE].

  4. ATLAS collaboration, Observation of Higgs boson production in association with a top quark pair at the LHC with the ATLAS detector, Phys. Lett. B 784 (2018) 173 [arXiv:1806.00425] [INSPIRE].

  5. CMS collaboration, Observation of \( t\overline{t}H \) production, Phys. Rev. Lett. 120 (2018) 231801 [arXiv:1804.02610] [INSPIRE].

  6. CMS collaboration, Measurements of \( t\overline{t}H \) Production and the CP Structure of the Yukawa Interaction between the Higgs Boson and Top Quark in the Diphoton Decay Channel, Phys. Rev. Lett. 125 (2020) 061801 [arXiv:2003.10866] [INSPIRE].

  7. ATLAS collaboration, CP Properties of Higgs Boson Interactions with Top Quarks in the \( t\overline{t}H \) and tH Processes Using H → γγ with the ATLAS Detector, Phys. Rev. Lett. 125 (2020) 061802 [arXiv:2004.04545] [INSPIRE].

  8. CMS collaboration, Measurement of the Higgs boson production rate in association with top quarks in final states with electrons, muons, and hadronically decaying tau leptons at \( \sqrt{s} \) = 13 TeV, Eur. Phys. J. C 81 (2021) 378 [arXiv:2011.03652] [INSPIRE].

  9. ATLAS collaboration, Search for the standard model Higgs boson produced in association with top quarks and decaying into a \( b\overline{b} \) pair in pp collisions at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, Phys. Rev. D 97 (2018) 072016 [arXiv:1712.08895] [INSPIRE].

  10. CMS collaboration, Search for \( t\overline{t}H \) production in the H → \( b\overline{b} \) decay channel with leptonic \( t\overline{t} \) decays in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, JHEP 03 (2019) 026 [arXiv:1804.03682] [INSPIRE].

  11. W. Beenakker, S. Dittmaier, M. Krämer, B. Plumper, M. Spira and P.M. Zerwas, Higgs radiation off top quarks at the Tevatron and the LHC, Phys. Rev. Lett. 87 (2001) 201805 [hep-ph/0107081] [INSPIRE].

  12. W. Beenakker, S. Dittmaier, M. Krämer, B. Plumper, M. Spira and P.M. Zerwas, NLO QCD corrections to \( t\overline{t}H \) production in hadron collisions, Nucl. Phys. B 653 (2003) 151 [hep-ph/0211352] [INSPIRE].

  13. L. Reina and S. Dawson, Next-to-leading order results for \( t\overline{t}h \) production at the Tevatron, Phys. Rev. Lett. 87 (2001) 201804 [hep-ph/0107101] [INSPIRE].

  14. S. Dawson, L.H. Orr, L. Reina and D. Wackeroth, Associated top quark Higgs boson production at the LHC, Phys. Rev. D 67 (2003) 071503 [hep-ph/0211438] [INSPIRE].

  15. S. Dawson, C. Jackson, L.H. Orr, L. Reina and D. Wackeroth, Associated Higgs production with top quarks at the large hadron collider: NLO QCD corrections, Phys. Rev. D 68 (2003) 034022 [hep-ph/0305087] [INSPIRE].

  16. S. Frixione, V. Hirschi, D. Pagani, H.S. Shao and M. Zaro, Weak corrections to Higgs hadroproduction in association with a top-quark pair, JHEP 09 (2014) 065 [arXiv:1407.0823] [INSPIRE].

    Article  ADS  Google Scholar 

  17. Y. Zhang, W.-G. Ma, R.-Y. Zhang, C. Chen and L. Guo, QCD NLO and EW NLO corrections to \( t\overline{t}H \) production with top quark decays at hadron collider, Phys. Lett. B 738 (2014) 1 [arXiv:1407.1110] [INSPIRE].

    Article  ADS  Google Scholar 

  18. S. Frixione, V. Hirschi, D. Pagani, H.S. Shao and M. Zaro, Electroweak and QCD corrections to top-pair hadroproduction in association with heavy bosons, JHEP 06 (2015) 184 [arXiv:1504.03446] [INSPIRE].

    Article  ADS  Google Scholar 

  19. R. Frederix, S. Frixione, V. Hirschi, D. Pagani, H.S. Shao and M. Zaro, The automation of next-to-leading order electroweak calculations, JHEP 07 (2018) 185 [Erratum JHEP 11 (2021) 085] [arXiv:1804.10017] [INSPIRE].

  20. A. Kulesza, L. Motyka, T. Stebel and V. Theeuwes, Soft gluon resummation for associated \( t\overline{t}H \) production at the LHC, JHEP 03 (2016) 065 [arXiv:1509.02780] [INSPIRE].

    Article  ADS  Google Scholar 

  21. A. Broggio, A. Ferroglia, B.D. Pecjak, A. Signer and L.L. Yang, Associated production of a top pair and a Higgs boson beyond NLO, JHEP 03 (2016) 124 [arXiv:1510.01914] [INSPIRE].

    Article  ADS  Google Scholar 

  22. A. Broggio, A. Ferroglia, B.D. Pecjak and L.L. Yang, NNLL resummation for the associated production of a top pair and a Higgs boson at the LHC, JHEP 02 (2017) 126 [arXiv:1611.00049] [INSPIRE].

    Article  ADS  Google Scholar 

  23. A. Kulesza, L. Motyka, T. Stebel and V. Theeuwes, Associated \( t\overline{t}H \) production at the LHC: Theoretical predictions at NLO + NNLL accuracy, Phys. Rev. D 97 (2018) 114007 [arXiv:1704.03363] [INSPIRE].

  24. A. Broggio, A. Ferroglia, R. Frederix, D. Pagani, B.D. Pecjak and I. Tsinikos, Top-quark pair hadroproduction in association with a heavy boson at NLO + NNLL including EW corrections, JHEP 08 (2019) 039 [arXiv:1907.04343] [INSPIRE].

    Article  ADS  Google Scholar 

  25. A. Kulesza, L. Motyka, D. Schwartländer, T. Stebel and V. Theeuwes, Associated top quark pair production with a heavy boson: differential cross sections at NLO + NNLL accuracy, Eur. Phys. J. C 80 (2020) 428 [arXiv:2001.03031] [INSPIRE].

    Article  ADS  Google Scholar 

  26. R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, R. Pittau and P. Torrielli, Scalar and pseudoscalar Higgs production in association with a top-antitop pair, Phys. Lett. B 701 (2011) 427 [arXiv:1104.5613] [INSPIRE].

    Article  ADS  Google Scholar 

  27. M.V. Garzelli, A. Kardos, C.G. Papadopoulos and Z. Trócsányi, Standard Model Higgs boson production in association with a top anti-top pair at NLO with parton showering, Europhys. Lett. 96 (2011) 11001 [arXiv:1108.0387] [INSPIRE].

    Article  ADS  Google Scholar 

  28. H.B. Hartanto, B. Jager, L. Reina and D. Wackeroth, Higgs boson production in association with top quarks in the POWHEG BOX, Phys. Rev. D 91 (2015) 094003 [arXiv:1501.04498] [INSPIRE].

  29. F. Maltoni, D. Pagani and I. Tsinikos, Associated production of a top-quark pair with vector bosons at NLO in QCD: impact on \( t\overline{t}H \) searches at the LHC, JHEP 02 (2016) 113 [arXiv:1507.05640] [INSPIRE].

  30. A. Bredenstein, A. Denner, S. Dittmaier and M.M. Weber, Precise predictions for the Higgs-boson decay H → WW/ZZ → 4 leptons, Phys. Rev. D 74 (2006) 013004 [hep-ph/0604011] [INSPIRE].

  31. N. Kauer and G. Passarino, Inadequacy of zero-width approximation for a light Higgs boson signal, JHEP 08 (2012) 116 [arXiv:1206.4803] [INSPIRE].

    Article  ADS  Google Scholar 

  32. F. Caola and K. Melnikov, Constraining the Higgs boson width with ZZ production at the LHC, Phys. Rev. D 88 (2013) 054024 [arXiv:1307.4935] [INSPIRE].

  33. A. Denner and R. Feger, NLO QCD corrections to off-shell top-antitop production with leptonic decays in association with a Higgs boson at the LHC, JHEP 11 (2015) 209 [arXiv:1506.07448] [INSPIRE].

    Article  ADS  Google Scholar 

  34. A. Denner, J.-N. Lang, M. Pellen and S. Uccirati, Higgs production in association with off-shell top-antitop pairs at NLO EW and QCD at the LHC, JHEP 02 (2017) 053 [arXiv:1612.07138] [INSPIRE].

    Article  ADS  Google Scholar 

  35. R.V. Harlander, S.Y. Klein and M. Lipp, FeynGame, Comput. Phys. Commun. 256 (2020) 107465 [arXiv:2003.00896] [INSPIRE].

  36. A. Denner, S. Dittmaier, M. Roth and D. Wackeroth, Predictions for all processes e+e− → 4 fermions + γ, Nucl. Phys. B 560 (1999) 33 [hep-ph/9904472] [INSPIRE].

  37. A. Denner, S. Dittmaier, M. Roth and L.H. Wieders, Electroweak corrections to charged-current e+e− → 4 fermion processes: Technical details and further results, Nucl. Phys. B 724 (2005) 247 [Erratum ibid. 854 (2012) 504] [hep-ph/0505042] [INSPIRE].

  38. G. Bevilacqua, M. Czakon, A. van Hameren, C.G. Papadopoulos and M. Worek, Complete off-shell effects in top quark pair hadroproduction with leptonic decay at next-to-leading order, JHEP 02 (2011) 083 [arXiv:1012.4230] [INSPIRE].

    Article  ADS  Google Scholar 

  39. A. Denner, S. Dittmaier, S. Kallweit and S. Pozzorini, NLO QCD corrections to off-shell top-antitop production with leptonic decays at hadron colliders, JHEP 10 (2012) 110 [arXiv:1207.5018] [INSPIRE].

    Article  ADS  Google Scholar 

  40. P. Draggiotis, R.H.P. Kleiss and C.G. Papadopoulos, On the computation of multigluon amplitudes, Phys. Lett. B 439 (1998) 157 [hep-ph/9807207] [INSPIRE].

  41. P.D. Draggiotis, R.H.P. Kleiss and C.G. Papadopoulos, Multijet production in hadron collisions, Eur. Phys. J. C 24 (2002) 447 [hep-ph/0202201] [INSPIRE].

  42. C.G. Papadopoulos and M. Worek, Multi-parton cross sections at hadron colliders, Eur. Phys. J. C 50 (2007) 843 [hep-ph/0512150] [INSPIRE].

  43. M. Czakon, C.G. Papadopoulos and M. Worek, Polarizing the Dipoles, JHEP 08 (2009) 085 [arXiv:0905.0883] [INSPIRE].

    Article  ADS  Google Scholar 

  44. A. Kanaki and C.G. Papadopoulos, HELAC: A Package to compute electroweak helicity amplitudes, Comput. Phys. Commun. 132 (2000) 306 [hep-ph/0002082] [INSPIRE].

  45. C.G. Papadopoulos, PHEGAS: A Phase space generator for automatic cross-section computation, Comput. Phys. Commun. 137 (2001) 247 [hep-ph/0007335] [INSPIRE].

  46. A. Cafarella, C.G. Papadopoulos and M. Worek, Helac-Phegas: A Generator for all parton level processes, Comput. Phys. Commun. 180 (2009) 1941 [arXiv:0710.2427] [INSPIRE].

    Article  ADS  Google Scholar 

  47. A. van Hameren, PARNI for importance sampling and density estimation, Acta Phys. Pol. B 40 (2009) 259 [arXiv:0710.2448] [INSPIRE].

    ADS  Google Scholar 

  48. A. van Hameren, Kaleu: A General-Purpose Parton-Level Phase Space Generator, arXiv:1003.4953 [INSPIRE].

  49. A. van Hameren, C.G. Papadopoulos and R. Pittau, Automated one-loop calculations: A Proof of concept, JHEP 09 (2009) 106 [arXiv:0903.4665] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  50. G. Ossola, C.G. Papadopoulos and R. Pittau, Reducing full one-loop amplitudes to scalar integrals at the integrand level, Nucl. Phys. B 763 (2007) 147 [hep-ph/0609007] [INSPIRE].

  51. G. Ossola, C.G. Papadopoulos and R. Pittau, CutTools: A Program implementing the OPP reduction method to compute one-loop amplitudes, JHEP 03 (2008) 042 [arXiv:0711.3596] [INSPIRE].

    Article  ADS  Google Scholar 

  52. A. van Hameren, OneLOop: For the evaluation of one-loop scalar functions, Comput. Phys. Commun. 182 (2011) 2427 [arXiv:1007.4716] [INSPIRE].

    Article  ADS  Google Scholar 

  53. G. Bevilacqua et al., HELAC-NLO, Comput. Phys. Commun. 184 (2013) 986 [arXiv:1110.1499] [INSPIRE].

    Article  ADS  Google Scholar 

  54. V. Hirschi, R. Frederix, S. Frixione, M.V. Garzelli, F. Maltoni and R. Pittau, Automation of one-loop QCD corrections, JHEP 05 (2011) 044 [arXiv:1103.0621] [INSPIRE].

    Article  ADS  Google Scholar 

  55. J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].

    Article  ADS  Google Scholar 

  56. G. Bevilacqua, H.B. Hartanto, M. Kraus, T. Weber and M. Worek, Hard Photons in Hadroproduction of Top Quarks with Realistic Final States, JHEP 10 (2018) 158 [arXiv:1803.09916] [INSPIRE].

    Article  ADS  Google Scholar 

  57. G. Bevilacqua, H.B. Hartanto, M. Kraus, T. Weber and M. Worek, Towards constraining Dark Matter at the LHC: Higher order QCD predictions for \( t\overline{t} \) + Z(Z → νℓ\( \overline{\nu} \)ℓ), JHEP 11 (2019) 001 [arXiv:1907.09359] [INSPIRE].

  58. G. Bevilacqua, H.-Y. Bi, H.B. Hartanto, M. Kraus and M. Worek, The simplest of them all: \( t\overline{t}W \)± at NLO accuracy in QCD, JHEP 08 (2020) 043 [arXiv:2005.09427] [INSPIRE].

  59. S. Catani and M.H. Seymour, A General algorithm for calculating jet cross-sections in NLO QCD, Nucl. Phys. B 485 (1997) 291 [Erratum ibid. 510 (1998) 503] [hep-ph/9605323] [INSPIRE].

  60. S. Catani, S. Dittmaier, M.H. Seymour and Z. Trócsányi, The Dipole formalism for next-to-leading order QCD calculations with massive partons, Nucl. Phys. B 627 (2002) 189 [hep-ph/0201036] [INSPIRE].

  61. G. Bevilacqua, M. Czakon, M. Kubocz and M. Worek, Complete Nagy-Soper subtraction for next-to-leading order calculations in QCD, JHEP 10 (2013) 204 [arXiv:1308.5605] [INSPIRE].

    Article  ADS  Google Scholar 

  62. G. Bevilacqua, M. Czakon, C.G. Papadopoulos, R. Pittau and M. Worek, Assault on the NLO Wishlist: pp → \( t\overline{t}b\overline{b} \), JHEP 09 (2009) 109 [arXiv:0907.4723] [INSPIRE].

  63. Z. Nagy and Z. Trócsányi, Next-to-leading order calculation of four jet observables in electron positron annihilation, Phys. Rev. D 59 (1999) 014020 [Erratum ibid. 62 (2000) 099902] [hep-ph/9806317] [INSPIRE].

  64. Z. Nagy, Next-to-leading order calculation of three jet observables in hadron hadron collision, Phys. Rev. D 68 (2003) 094002 [hep-ph/0307268] [INSPIRE].

  65. M. Czakon, H.B. Hartanto, M. Kraus and M. Worek, Matching the Nagy-Soper parton shower at next-to-leading order, JHEP 06 (2015) 033 [arXiv:1502.00925] [INSPIRE].

    Article  ADS  Google Scholar 

  66. G. Bevilacqua, H.B. Hartanto, M. Kraus, T. Weber and M. Worek, Off-shell vs. on-shell modelling of top quarks in photon associated production, JHEP 03 (2020) 154 [arXiv:1912.09999] [INSPIRE].

  67. J. Alwall et al., A Standard format for Les Houches event files, Comput. Phys. Commun. 176 (2007) 300 [hep-ph/0609017] [INSPIRE].

  68. G. Bevilacqua, H.B. Hartanto, M. Kraus and M. Worek, Off-shell Top Quarks with One Jet at the LHC: A comprehensive analysis at NLO QCD, JHEP 11 (2016) 098 [arXiv:1609.01659] [INSPIRE].

    Article  ADS  Google Scholar 

  69. Z. Bern et al., Ntuples for NLO Events at Hadron Colliders, Comput. Phys. Commun. 185 (2014) 1443 [arXiv:1310.7439] [INSPIRE].

    Article  ADS  Google Scholar 

  70. S. Plätzer, RAMBO on diet, arXiv:1308.2922 [INSPIRE].

  71. M. Spira, A. Djouadi, D. Graudenz and P.M. Zerwas, Higgs boson production at the LHC, Nucl. Phys. B 453 (1995) 17 [hep-ph/9504378] [INSPIRE].

  72. M. Spira, Higgs Boson Production and Decay at Hadron Colliders, Prog. Part. Nucl. Phys. 95 (2017) 98 [arXiv:1612.07651] [INSPIRE].

    Article  ADS  Google Scholar 

  73. M.A. Shifman, A.I. Vainshtein, M.B. Voloshin and V.I. Zakharov, Low-Energy Theorems for Higgs Boson Couplings to Photons, Sov. J. Nucl. Phys. 30 (1979) 711 [Yad. Fiz. 30 (1979) 1368] [INSPIRE].

  74. W.J. Marciano, C. Zhang and S. Willenbrock, Higgs Decay to Two Photons, Phys. Rev. D 85 (2012) 013002 [arXiv:1109.5304] [INSPIRE].

  75. H.-L. Lai et al., New parton distributions for collider physics, Phys. Rev. D 82 (2010) 074024 [arXiv:1007.2241] [INSPIRE].

  76. NNPDF collaboration, Parton distributions from high-precision collider data, Eur. Phys. J. C 77 (2017) 663 [arXiv:1706.00428] [INSPIRE].

  77. T.-J. Hou et al., New CTEQ global analysis of quantum chromodynamics with high-precision data from the LHC, Phys. Rev. D 103 (2021) 014013 [arXiv:1912.10053] [INSPIRE].

  78. S. Bailey, T. Cridge, L.A. Harland-Lang, A.D. Martin and R.S. Thorne, Parton distributions from LHC, HERA, Tevatron and fixed target data: MSHT20 PDFs, Eur. Phys. J. C 81 (2021) 341 [arXiv:2012.04684] [INSPIRE].

    Article  ADS  Google Scholar 

  79. A. Buckley et al., LHAPDF6: parton density access in the LHC precision era, Eur. Phys. J. C 75 (2015) 132 [arXiv:1412.7420] [INSPIRE].

    Article  ADS  Google Scholar 

  80. D.Y. Bardin, A. Leike, T. Riemann and M. Sachwitz, Energy Dependent Width Effects in e+e− Annihilation Near the Z Boson Pole, Phys. Lett. B 206 (1988) 539 [INSPIRE].

  81. M. Jezabek and J.H. Kühn, QCD Corrections to Semileptonic Decays of Heavy Quarks, Nucl. Phys. B 314 (1989) 1 [INSPIRE].

  82. M. Cacciari, G.P. Salam and G. Soyez, The anti-kt jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [INSPIRE].

    Article  ADS  Google Scholar 

  83. A. Djouadi, J. Kalinowski and M. Spira, HDECAY: A Program for Higgs boson decays in the standard model and its supersymmetric extension, Comput. Phys. Commun. 108 (1998) 56 [hep-ph/9704448] [INSPIRE].

  84. A. Djouadi, J. Kalinowski, M. Muehlleitner and M. Spira, HDECAY: Twenty++ years after, Comput. Phys. Commun. 238 (2019) 214 [arXiv:1801.09506] [INSPIRE].

    Article  ADS  Google Scholar 

  85. R.V. Harlander and W.B. Kilgore, Higgs boson production in bottom quark fusion at next-to-next-to leading order, Phys. Rev. D 68 (2003) 013001 [hep-ph/0304035] [INSPIRE].

  86. S. Frixione, Isolated photons in perturbative QCD, Phys. Lett. B 429 (1998) 369 [hep-ph/9801442] [INSPIRE].

  87. R. Gauld, A. Gehrmann-De Ridder, E.W.N. Glover, A. Huss and I. Majer, Associated production of a Higgs boson decaying into bottom quarks and a weak vector boson decaying leptonically at NNLO in QCD, JHEP 10 (2019) 002 [arXiv:1907.05836] [INSPIRE].

  88. A. Rohatgi, Webplotdigitizer, version 4.5 (2021).

  89. NNPDF collaboration, Parton distributions for the LHC Run II, JHEP 04 (2015) 040 [arXiv:1410.8849] [INSPIRE].

  90. S. Dulat et al., New parton distribution functions from a global analysis of quantum chromodynamics, Phys. Rev. D 93 (2016) 033006 [arXiv:1506.07443] [INSPIRE].

  91. L.A. Harland-Lang, A.D. Martin, P. Motylinski and R.S. Thorne, Parton distributions in the LHC era: MMHT 2014 PDFs, Eur. Phys. J. C 75 (2015) 204 [arXiv:1412.3989] [INSPIRE].

    Article  ADS  Google Scholar 

  92. M. Czakon, A. Mitov and R. Poncelet, NNLO QCD corrections to leptonic observables in top-quark pair production and decay, JHEP 05 (2021) 212 [arXiv:2008.11133] [INSPIRE].

    Article  ADS  Google Scholar 

  93. V.S. Fadin, V.A. Khoze and A.D. Martin, How suppressed are the radiative interference effects in heavy instable particle production?, Phys. Lett. B 320 (1994) 141 [hep-ph/9309234] [INSPIRE].

  94. G. Bevilacqua, H.-Y. Bi, H.B. Hartanto, M. Kraus, M. Lupattelli and M. Worek, \( t\overline{t}b\overline{b} \) at the LHC: on the size of corrections and b-jet definitions, JHEP 08 (2021) 008 [arXiv:2105.08404] [INSPIRE].

Download references

Author information

Authors and Affiliations

  1. Institute for Theoretical Particle Physics and Cosmology, RWTH Aachen University, D-52056, Aachen, Germany

    Daniel Stremmer & Malgorzata Worek

Authors
  1. Daniel Stremmer
    View author publications

    You can also search for this author inPubMed Google Scholar

  2. Malgorzata Worek
    View author publications

    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence to Malgorzata Worek.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2111.01427

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stremmer, D., Worek, M. Production and decay of the Higgs boson in association with top quarks. J. High Energ. Phys. 2022, 196 (2022). https://doi.org/10.1007/JHEP02(2022)196

Download citation

  • Received: 09 November 2021

  • Revised: 27 January 2022

  • Accepted: 07 February 2022

  • Published: 25 February 2022

  • DOI: https://doi.org/10.1007/JHEP02(2022)196

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • NLO Computations
  • QCD Phenomenology
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our brands

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Discover
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Legal notice
  • Cancel contracts here

Not affiliated

Springer Nature

© 2025 Springer Nature