Skip to main content
Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

Bosonization based on Clifford algebras and its gauge theoretic interpretation

  • Regular Article - Theoretical Physics
  • Open access
  • Published: 18 December 2020
  • Volume 2020, article number 118, (2020)
  • Cite this article
Download PDF

You have full access to this open access article

Journal of High Energy Physics Aims and scope Submit manuscript
Bosonization based on Clifford algebras and its gauge theoretic interpretation
Download PDF
  • A. Bochniak  ORCID: orcid.org/0000-0001-7856-04521 &
  • B. Ruba  ORCID: orcid.org/0000-0002-7086-45041 
  • 483 Accesses

  • 9 Citations

  • 1 Altmetric

  • Explore all metrics

A preprint version of the article is available at arXiv.

Abstract

We study the properties of a bosonization procedure based on Clifford algebra valued degrees of freedom, valid for spaces of any dimension. We present its interpretation in terms of fermions in presence of ℤ2 gauge fields satisfying a modified Gauss’ law, resembling Chern-Simons-like theories. Our bosonization prescription involves constraints, which are interpreted as a flatness condition for the gauge field. Solution of the constraints is presented for toroidal geometries of dimension two. Duality between our model and (d − 1)- form ℤ2 gauge theory is derived, which elucidates the relation between the approach taken here with another bosonization map proposed recently.

Article PDF

Download to read the full article text

Similar content being viewed by others

A master bosonization duality

Article Open access 09 January 2018

Bosonization, duality, and the C-theorem in the non-abelian Thirring model

Article Open access 24 July 2023

Three dimensional bosonization from supersymmetry

Article Open access 04 November 2015
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. P. Jordan and E.P. Wigner, Über das Paulische Äquivalenzverbot, Z. Phys. 47 (1928) 631 [INSPIRE].

    Article  ADS  Google Scholar 

  2. E. Witten, Non-abelian bosonization in two dimensions, Commun. Math. Phys. 92 (1984) 455 [INSPIRE].

    Article  ADS  Google Scholar 

  3. D. Sénéchal, An Introduction to Bosonization, in Theoretical Methods for Strongly Correlated Electrons, D. Sénéchal, A.M. Tremblay and C. Bourbonnais eds., CRM Series in Mathematical Physics, Springer (2004).

    Book  Google Scholar 

  4. T.D. Schultz, D.C. Mattis and E.H. Lieb, Two-Dimensional Ising Model as a Soluble Problem of Many Fermions, Rev. Mod. Phys. 36 (1964) 856 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  5. S. Mandal and N. Surendran, Exactly solvable Kitaev model in three dimensions, Phys. Rev. B 79 (2009) 024426.

  6. A.O. Gogolin, A.A. Nersesyan and A.M. Tsvelik, Bosonization and Strongly Correlated Systems, Cambridge University Press (1998).

  7. A. Kapustin and R. Thorngren, Fermionic SPT phases in higher dimensions and bosonization, JHEP 10 (2017) 080 [arXiv:1701.08264] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  8. J. Condella and C.E. Detar, Potts flux tube model at nonzero chemical potential, Phys. Rev. D 61 (2000) 074023 [hep-lat/9910028] [INSPIRE].

    Article  ADS  Google Scholar 

  9. Y. Delgado, C. Gattringer and A. Schmidt, Solving the sign problem of two flavor scalar electrodynamics at finite chemical potential, PoS LATTICE2013 (2014) 147 [arXiv:1311.1966] [INSPIRE].

  10. C. Gattringer, T. Kloiber and V. Sazanov, Solving the sign problems of the massless lattice Schwinger model with a dual formulation, Nucl. Phys. B 879 (2015) 732.

    Article  ADS  Google Scholar 

  11. A.Yu. Kitaev, Fault-tolerant quantum computation by anyons, Annals Phys. 303 (2003) 2 [quant-ph/9707021] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  12. A. Kitaev and C. Laumann, Topological phases and quantum computation, arXiv:0904.2771.

  13. Y.-A. Chen, A. Kapustin and Ð. Radičević, Exact bosonization in two spatial dimensions and a new class of lattice gauge theories, Annals Phys. 393 (2018) 234 [arXiv:1711.00515] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  14. Y.-A. Chen and A. Kapustin, Bosonization in three spatial dimensions and a 2-form gauge theory, Phys. Rev. B 100 (2019) 245127 [arXiv:1807.07081] [INSPIRE].

    Article  ADS  Google Scholar 

  15. J. Wosiek, A local representation for fermions on a lattice, Acta Phys. Polon. B 13 (1982) 543 [INSPIRE].

    Google Scholar 

  16. C.P. Burgess, C.A. Lütken and F. Quevedo, Bosonization in higher dimensions, Phys. Lett. B 336 (1994) 18 [hep-th/9407078] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  17. P. Kopietz, Bosonization of Interacting Fermions in Arbitrary Dimensions, Springer (1997).

  18. S.B. Bravyi and A.Yu. Kitaev, Fermionic Quantum Computation, Annals Phys. 298 (2002) 210.

    Article  ADS  MathSciNet  Google Scholar 

  19. R.C. Ball, Fermions without Fermion Fields, Phys. Rev. Lett. 95 (2005) 176407 [cond-mat/0409485] [INSPIRE].

    Article  ADS  Google Scholar 

  20. F. Verstraete and J.I. Cirac, Mapping local Hamiltonians of fermions to local Hamiltonians of spins, J. Stat. Mech. 2005 (2005) P09012.

  21. E. Fradkin, Jordan-Wigner transformation for quantum-spin systems in two dimensions and fractional statistics, Phys. Rev. B 63 (1989) 322.

    ADS  MathSciNet  Google Scholar 

  22. A. Karch and D. Tong, Particle-Vortex Duality from 3D Bosonization, Phys. Rev. X 6 (2016) 031043 [arXiv:1606.01893] [INSPIRE].

    Google Scholar 

  23. E. Zohar and J.I. Cirac, Eliminating fermionic matter fields in lattice gauge theories, Phys. Rev. B 98 (2018) 075119 [arXiv:1805.05347] [INSPIRE].

    Article  ADS  Google Scholar 

  24. A. Karch, D. Tong and C. Turner, A web of 2d dualities: ℤ2 gauge fields and Arf invariants, SciPost Phys. 7 (2019) 007 [arXiv:1902.05550] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  25. R. Thorngren, Anomalies and Bosonization, Commun. Math. Phys. 378 (2020) 1775 [arXiv:1810.04414] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  26. T. Senthil, D.T. Son, C. Wang and C. Xu, Duality between (2 + 1)d quantum critical points, Phys. Rept. 827 (2019) 1 [arXiv:1810.05174] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  27. N. Seiberg, T. Senthil, C. Wang and E. Witten, A duality web in 2 + 1 dimensions and condensed matter physics, Annals Phys. 374 (2016) 395 [arXiv:1606.01989] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  28. A.M. Szczerba, Spins and fermions on arbitrary lattices, Commun. Math. Phys. 98 (1985) 513 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  29. A. Bochniak, B. Ruba, J. Wosiek and A. Wyrzykowski, Constraints of kinematic bosonization in two and higher dimensions, Phys. Rev. D 102 (2020) 114502 [arXiv:2004.00988] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  30. R. Dijkgraaf and E. Witten, Topological gauge theories and group cohomology, Commun. Math. Phys. 129 (1990) 393 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  31. D.S. Freed and F. Quinn, Chern-Simons theory with finite gauge group, Commun. Math. Phys. 156 (1993) 435 [hep-th/9111004] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  32. Y. Wan, J.C. Wang and H. He, Twisted gauge theory model of topological phases in three dimensions, Phys. Rev. B 92 (2015) 045101 [arXiv:1409.3216] [INSPIRE].

    Article  ADS  Google Scholar 

  33. F. Wilczek, Magnetic Flux, Angular Momentum, and Statistics, Phys. Rev. Lett. 48 (1982) 1144 [INSPIRE].

    Article  ADS  Google Scholar 

  34. Y.-A. Chen, Exact bosonization in arbitrary dimensions, Phys. Rev. Res. 2 (2020) 033527 [arXiv:1911.00017] [INSPIRE].

    Article  Google Scholar 

  35. H.A. Kramers and G.H. Wannier, Statistics of the Two-Dimensional Ferromagnet. Part I, Phys. Rev. 60 (1941) 252 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  36. A. Hatcher, Algebraic Topology, Cambridge University Press (2002).

  37. J.L. Gross and J. Yellen, Handbook of Graph Theory, CRC Press (2003).

  38. J.A. Beachy, Introductory Lectures on Rings and Modules, Cambridge University Press (1999).

  39. D. Gaiotto, A. Kapustin, N. Seiberg and B. Willett, Generalized global symmetries, JHEP 02 (2015) 172 [arXiv:1412.5148] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  40. F.J. Wegner, Duality in Generalized Ising Models and Phase Transitions Without Local Order Parameters, J. Math. Phys. 12 (1971) 2259 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  41. J.B. Kogut, An introduction to lattice gauge theory and spin systems, Rev. Mod. Phys. 51 (1979) 659 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  42. S. Halperin and D. Toledo, Stiefel-Whitney homology classes, Annals Math. 96 (1972) 511.

    Article  MathSciNet  Google Scholar 

  43. D. Gaiotto and A. Kapustin, Spin TQFTs and fermionic phases of matter, Int. J. Mod. Phys. A 31 (2016) 1645044 [arXiv:1505.05856] [INSPIRE].

    Article  ADS  Google Scholar 

  44. N.E. Steenrod, Products of Cocycles and Extensions of Mappings, Annals Math. 48 (1947) 290.

    Article  MathSciNet  Google Scholar 

  45. Ð. Radičević, Spin Structures and Exact Dualities in Low Dimensions, arXiv:1809.07757 [INSPIRE].

  46. Z.-C. Gu and X.-G. Wen, Symmetry-protected topological orders for interacting fermions: Fermionic topological nonlinear σ models and a special group supercohomology theory, Phys. Rev. B 90 (2014) 115141 [arXiv:1201.2648] [INSPIRE].

    Article  ADS  Google Scholar 

  47. A. Weil, Sur certains groupes d’opérateurs unitaires, Acta Math. 111 (1964) 143.

    Article  MathSciNet  Google Scholar 

  48. L. Blasco, Paires duales réductives en caractéristique 2, Mém. Soc. Math. Fr. 52 (1993) 1.

    MATH  Google Scholar 

  49. W. Scharlau, Quadratic and Hermitian forms, Grundlehren der Mathematischen Wissenschaften (Fundamental Principles of Mathematical Sciences), vol. 270, Springer-Verlag, Berlin (1985) [DOI].

  50. R.L. Griess Jr., Automorphisms of extraspecial groups and nonvanishing degree 2 cohomology, Pac. J. Math. 48 (1973) 403.

    Article  Google Scholar 

  51. A.A. Kirillov, Elements of the theory of representations, Springer-Verlag (1976).

  52. S.M. Bhattacharjee, M. Mj and A. Bandyopadhyay eds., Topology and Condensed Matter Physics, Springer Singapore (2017).

Download references

Author information

Authors and Affiliations

  1. Institute of Theoretical Physics, Jagiellonian University in Kraków, prof. Łojasiewicza 11, 30-348, Kraków, Poland

    A. Bochniak & B. Ruba

Authors
  1. A. Bochniak
    View author publications

    You can also search for this author inPubMed Google Scholar

  2. B. Ruba
    View author publications

    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence to A. Bochniak.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2003.06905

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bochniak, A., Ruba, B. Bosonization based on Clifford algebras and its gauge theoretic interpretation. J. High Energ. Phys. 2020, 118 (2020). https://doi.org/10.1007/JHEP12(2020)118

Download citation

  • Received: 13 April 2020

  • Revised: 03 November 2020

  • Accepted: 06 November 2020

  • Published: 18 December 2020

  • DOI: https://doi.org/10.1007/JHEP12(2020)118

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Gauge Symmetry
  • Lattice Quantum Field Theory
  • Topological States of Matter
  • Chern-Simons Theories
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our brands

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Discover
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Legal notice
  • Cancel contracts here

Not affiliated

Springer Nature

© 2025 Springer Nature