Abstract
This paper studies the feasibility of using the magneto plasma sail (MPS) as an exotic propellantless propulsion system for spacecraft formation reconfiguration around a heliocentric elliptic displaced orbit (HEDO). We assume that each spacecraft is equipped with superconducting current-carrying coil and predict the obtained thrust obtained due to magnetostatic interaction between the solar wind and the artificial magnetic cavity, the latter being generated by the spacecraft with a superconductive current-carrying coil. Since the interaction causes the solar wind flow to lose its momentum, the corresponding repulsive force is exerted on the coil to accelerate the magnetic sail spacecraft in the direction opposite to the Sun. Next, the mathematical model of relative motion for magneto plasma sail formation around the HEDO is established, and the performance requirements for maintaining an elliptic displaced orbit are given. A novel fixed-time nonsingular fast terminal sliding mode controller is developed to deal with external disturbances. Simulation results illustrate the superiority of the proposed control algorithm.

































Similar content being viewed by others
Data Availability
The experimental data used to support the findings of this study are available from the corresponding author upon request.
References
Andrews, D., Love, S.: Applications of magnetic sails. Acta Astronaut. 26(8–10), 643–651 (1992). https://doi.org/10.1016/0094-5765(92)90154-B
Andrews, D., Zubrin, R.: Magnetic sails and interstellar travel. J. Br. Interplanet. Soc. 43, 265–272 (1990). https://doi.org/10.2514/6.1989-2441
Ashida, Y.: Study on propulsive characteristics of magnetic sail and magneto plasma sail by plasma particle simulations. Kyoto University (2014a)
Ashida, Y., Funaki, I., Yamakawa, H., et al.: Two-dimensional particle-in-cell simulation of magnetic sails. J. Propuls. Power 30(1), 233–245 (2014b). https://doi.org/10.2514/1.B34692
Baoyin, H., McInnes, C.R.: Solar sail orbits at artificial Sun–Earth libration points. J. Guid. Control Dyn. 28(6), 1328–1331 (2005). https://doi.org/10.2514/1.14598
Bassetto, M., Mengali, G., Quarta, A.A.: Thrust and torque vector characteristics of axially-symmetric E-sail. Acta Astronaut. 146, 134–143 (2018). https://doi.org/10.1016/j.actaastro.2018.02.035
Bassetto, M., Quarta, A.A., Mengali, G.: Magnetic sail-based displaced non-Keplerian orbits. Aerosp. Sci. Technol. 92, 363–372 (2019). https://doi.org/10.1016/j.ast.2019.06.018
Bookless, J., McInnes, C.: Dynamics and control of displaced periodic orbits using solar-sail propulsion. J. Guid. Control Dyn. 29(3), 527–537 (2006). https://doi.org/10.2514/1.15655
Ceriotti, M., Heiligers, J., McInnes, C.R.: Trajectory and spacecraft design for a pole-sitter mission. J. Spacecr. Rockets 51(1), 311–326 (2014). https://doi.org/10.2514/1.A32477
Chen, Y., Qi, R., Zhang, J.: Sliding mode control for orbit keeping of hybrid low-thrust spacecraft with high performance. Acta Aeronaut. Astronaut. Sin. 40, 221–232 (2019) (in Chinese)
Funaki, I., Kojima, H., Yamakawa, H., et al.: Laboratory experiment of plasma flow around magnetic sail. In: High Energy Density Laboratory Astrophysics, pp. 63–68. Springer, Dordrecht (2006). https://doi.org/10.1007/978-1-4020-6055-7-12
Gong, S.: Dynamics and Control of Solar Sail Spacecraft. Tsinghua University, Beijing (2009) (in Chinese)
Gong, S., Li, J.: Solar sail heliocentric elliptic displaced orbits. J. Guid. Control Dyn. 37(6), 2021–2025 (2014). https://doi.org/10.2514/1.G000660
Gong, S., Li, J., Baoyin, H.: Analysis of displaced solar sail orbits with passive control. J. Guid. Control Dyn. 31, 782–785 (2008). https://doi.org/10.2514/1.32360
Huo, M., Liao, H., Liu, Y., et al.: The coupled orbit-attitude dynamics and control of electric sail in displaced solar orbits. Int. J. Aerosp. Eng. (2017). https://doi.org/10.1155/2017/3812397
Janhunen, P.: Electric sail for spacecraft propulsion. J. Propuls. Power 20(4), 763–764 (2004). https://doi.org/10.2514/1.8580
Kajimura, Y., Funaki, I., Nishida, H., et al.: Quantitative evaluation of ion kinetic effect in magnetic field inflation by the injection of a plasma jet. Trans. Jpn. Soc. Aeronaut. Space Sci. 54(184), 90–97 (2011). https://doi.org/10.2322/tjsass.54.90
Kajimura, Y., Funaki, I., Matsumoto, M., et al.: Thrust and attitude evaluation of magnetic sail by three-dimensional hybrid particle-in-cell code. J. Propuls. Power 28(3), 652–663 (2012). https://doi.org/10.2514/1.B34334
Kojima, A.H., Funaki, I., Shimizu, Y., Yamakawa, H., Shinohara, S., Nakayama, Y.: Experimental simulation of a plasma flow around magnetic sail. In: 29th International Electric Propulsion Conference, IEPC-2005-107, Princeton (2005)
Kong, E.M., Kwon, D.W., Schweighart, S.A., Elias, L.M., Sedwick, R.J., Miller, D.W.: Electromagnetic formation flight for multisatellite arrays. J. Spacecr. Rockets 41(4), 659–666 (2004). https://doi.org/10.2514/1.2172
Kumar, K.: Review on dynamics and control of nonelectrodynamic tethered satellite systems. J. Spacecr. Rockets 43(4), 705–720 (2006). https://doi.org/10.2514/1.5479
Lou, Z., Wang, Y.: Robust station-keeping control of Sun-Earth/Moon libration point orbits using electric propulsion. J. Aerosp. Eng. 32(2), 04018142 (2019). https://doi.org/10.1061/(ASCE)AS.1943-5525.0000971
McInnes, C.: Dynamics, stability, and control of displaced non-Keplerian orbits. J. Guid. Control Dyn. 21(5), 799–805 (1998). https://doi.org/10.2514/2.4309
McInnes, C.R., McDonald, A.J.C., Simmons, J.F.L., et al.: Solar sail parking in restricted three-body systems. J. Guid. Control Dyn. 17(2), 399–406 (1994). https://doi.org/10.2514/3.21211
Mengali, G., Quarta, A.A.: Non-Keplerian orbits for electric sails. Celest. Mech. Dyn. Astron. 105, 179–195 (2009). https://doi.org/10.1007/s10569-009-9200-y
Minami, Y., Funaki, I., Yamakawa, H., et al.: Thrust characteristics of magnetic sail spacecraft using superconducting coils. In: AIP Conference Proceedings, vol. 1084, pp. 721–727. American Institute of Physics, New York (2008). https://doi.org/10.1063/1.3076571
Morimoto, M., Yamakawa, H., Uesugi, K.: Trajectory analysis of magneto-plasma sail comparing with other low thrust propulsion systems. J. Space Technol. Sci. 20(2), 2_54–2_63 (2004). https://doi.org/10.11230/jsts.20.2_54
Niccolai, L., Quarta, A.A., Mengali, G.: Electric sail elliptic displaced orbits with advanced thrust model. Acta Astronaut. 138, 503–511 (2016). https://doi.org/10.1016/j.actaastro.2016.10.036
Nishida, H., Funaki, I.: Analysis of thrust characteristics of a magnetic sail in a magnetized solar wind. J. Propuls. Power 28(3), 636–641 (2012). https://doi.org/10.2514/1.B34260
Oshio, Y., Ueno, K., Funaki, I., et al.: Thrust measurement of magnetoplasma sail in laboratory experiment. Trans. Jpn. Soc. Aeronaut. Space Sci. Aerosp. Technol. Jpn. 12(ists29), Pb_45–Pb_51 (2014). https://doi.org/10.2322/tastj.12.Pb_45
Qian, H., Zheng, J.H., Yu, X.Z., Gao, D.: Dynamics and control of solar sail spacecraft displaced orbit. Chin. J. Space Sci. 33(04), 458–464 (2013) (in Chinese)
Qin, Z., Fu, L.: Design of geosynchronous suspension orbit based on hybrid propulsion. Chin. Space Sci. Technol. 34, 57–62 (2014) (in Chinese)
Quarta, A.A., Mengali, G., Aliasi, G.: Optimal control laws for heliocentric transfers with a magnetic sail. Acta Astronaut. 89, 216–225 (2013). https://doi.org/10.1016/j.actaastro.2013.04.018
Schaub, H., Parker, G., King, L.: Challenges and prospects of Coulomb spacecraft formation control. J. Astronaut. Sci. 52(1–2), 169–193 (2004). https://doi.org/10.1007/BF03546427
Song, M., He, X., He, D.: Displaced orbits for solar sail equipped with reflectance control devices in Hill’s restricted three-body problem with oblateness. Astrophys. Space Sci. 361(10), 1–7 (2016). https://doi.org/10.1007/s10509-016-2915-9
Tragesser, S.G.: Static formations using momentum exchange between satellites. J. Guid. Control Dyn. 32(4), 1277–1286 (2009). https://doi.org/10.2514/1.40939
Ueno, K., Oshio, Y., Funaki, I., et al.: Experimental simulation of magnetoplasma sail for thrust measurement. Fusion Sci. Technol. 63(1T), 392–394 (2013). https://doi.org/10.13182/FST13-A16965
Wang, W., Mengali, G., Quarta, A.A., et al.: Formation flying for electric sails in displaced orbits. Part II: distributed coordinated control. Adv. Space Res. 60(6), 1130–1147 (2017). https://doi.org/10.1016/j.asr.2017.06.017
Winglee, R.M., Slough, J., Ziemba, T., et al.: Mini-magnetospheric plasma propulsion: tapping the energy of the solar wind for spacecraft propulsion. J. Geophys. Res. Space Phys. 105(A9), 21067–21077 (2000). https://doi.org/10.1029/1999JA000334
Yamakawa, H., Ogawa, H., Fujita, K., et al.: Planetary exploration by magneto plasma sail. Jpn. Soc. Aeronaut. Space Sci. 52(603), 148–152 (2004). https://doi.org/10.2322/jjsass.52.148
Yamakawa, H., Funaki, I., Nakayama, Y., et al.: Magneto-plasma sail: an engineering satellite concept and its application for outer planet missions. Acta Astronaut. 59(8–11), 777–784 (2006). https://doi.org/10.1016/j.actaastro.2005.07.003
Yang, Z., Zhang, Z., Fan, W., et al.: Mechanism analysis and experimental verification of electromagnetic sail, a new solar propulsion system without propellent. AIP Adv. 11(5), 055222 (2021). https://doi.org/10.1063/5.0045258
Zhao, L., Yuan, C., Hao, Q., et al.: Hybrid propulsion spacecraft formation control around the planetary displaced orbit. Adv. Mech. Eng. 13(10), 16878140211051454 (2021). https://doi.org/10.1177/16878140211051454
Zubrin, R., Andrews, D.: Magnetic sails and interplanetary travel. J. Spacecr. Rockets 28(2), 197–203 (1991). https://doi.org/10.2514/3.26230
Acknowledgements
This work was supported by the Natural Science Foundation of China under Grant No. 11372353 and No. 10902125.
Author information
Authors and Affiliations
Contributions
Zhao wrote the main manuscript text and Yuan prepared Figs. 1–33. Gong, Zhang and Hao reviewed the manuscript.
Corresponding author
Ethics declarations
Conflicts of Interest
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Zhao, L., Yuan, C., Gong, S. et al. Magneto plasma sail formation reconfiguration around a heliocentric elliptic displaced orbit. Astrophys Space Sci 367, 76 (2022). https://doi.org/10.1007/s10509-022-04105-x
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10509-022-04105-x