Abstract
In his papers on the determination of maxima and minima and on the calculation of tangents Pierre Fermat uses two different Latin verbs, æquare and adæquare, which do not differ semantically but are used by him obviously in different meanings. While æquabitur is used unambiguously in the sense of “is equal” the meaning of adæquabitur is disputed by the experts since Tannery’s French translation (Œuvres complètes de Fermat, Vol. III, 1896). Herbert Breger (Arch. Hist. Exact Sci. 46, 193–219, (1994), p. 197 f), for instance, holds the view that Fermat used the word adæquare in the sense of “to put equal” and adds: In a mathematical context, the only difference between “æquare” and “adæquare” (if there is any) seems to be that the latter gives more stress on the fact that the equality is achieved. In contrast to this Michael Mahoney holds the thesis that adæquare describes a counterfactual equality (Mahoney, M.S.: Fermat, Pierre de. In: Dictionary of Scientific Biography, vol. IV (1971), p. 569) or a pseudo-equality (Mahoney, M.S.: The Mathematical Career of Pierre de Fermat (1601–1665), (1973), p. 164), whatever that may mean. This viewpoint has been taken up again recently by Enrico Giusti (Ann. Fac. Sci. Toulouse, Math. (6), 18 fascicule spécial, 59–85 (2009)) in order to bring arguments to bear against Breger. In contrast to these (and other) authors, I show that Fermat makes a subtle logical distinction between the words æquare and adæquare. The same distinction is made by Nicolas Bourbaki introducing his «théorie égalitaire». Notwithstanding: both verbs stand for a «relation d’égalité». On this premiss, I describe—using six selected examples—that Fermat’s “method” may be justified right down to the last detail, even from the view of today’s mathematical knowledge.
Similar content being viewed by others
Literatur
Academiæ qvinqve Germanicæ, Thesavrvs Lingvae Latinae, Volvmen I. Herausgegeben von den Akademien Berlin, Göttingen, Leipzig, München und Wien, Teubner, Leipzig (1900)
Alarcón, S.A., Suescún, C.M., de la Torre, A.: El método de las tangentes de Fermat. Mat., Enseñanza Univ. (N. S.) 13, 101–123 (2005)
Andersen [Møller Pedersen], K.: Techniques of the calculus 1630–1660. In: Grattan-Guinness, I. (ed.) From the Calculus to Set Theory 1630–1910: An Introductory History, pp. 10–48. Duckworth, London (1980)
Bourbaki, N.: Éléments de mathématique. Théorie des ensembles. Hermann, Paris (1970)
Boyer, C.B., Merzbach, U.C.: A History of Mathematics. Wiley, New York (1989)
Breger, H.: The mysteries of adaequare: A vindication of Fermat. Arch. Hist. Exact Sci. 46, 193–219 (1994)
Calinger, R.: A Contextual History of Mathematics. Prentice Hall, Upper Saddle River (1999)
Cifoletti, G.C.: La Méthode de Fermat: Son statut et sa diffusion: algèbre et comparaison de figures dans l’histoire de la méthode de Fermat. Société française d’histoire des sciences et des techniques, Paris (1990)
Courant, R.: Vorlesungen über Differential- und Integralrechnung. Zweiter Band. Funktionen mehrerer Veränderlicher. Springer, Berlin (1929)
Edwards, C.H., Jr.: The Historical Development of the Calculus. Springer, New York (1979)
Tannery, P., Henry, C. (dir.): Œuvres complètes de Fermat. Tome I–IV. Gauthier-Villars, Paris (1891, 1894, 1896, 1912)
Giusti, E.: Piccola storia del calcolo infinitesimale dall’antichità al novocento. Instituti editoriali e poligrafici internationali, Pisa (2007)
Giusti, E.: Les méthodes des maxima et minima de Fermat. Ann. Fac. Sci. Toulouse, Math. (6) 18 (Fascicule spécial), 59–85 (2009)
Heath, T.L.: A History of Greek Mathematics, Vol. II. Clarendon Press, Oxford (1921)
Hofmann, J.E.: Über ein Extremwertproblem des Apollonios und seine Behandlung bei Fermat. Nova Acta Leopoldina (2) 27(167), 105–113 (1963)
Itard, J.: Fermat précurseur du calcul différentiel. Arch. Int. Hist. Sci. 27, 589–610 (1948)
Jahnke, H.N. (Hrsg.): Geschichte der Analysis. Spektrum Akademischer Verlag, Heidelberg (1999)
Jensen, C.: Pierre Fermat’s method of determining tangents of curves and its application to the conchoid and the quadratrix. Centaurus 14, 72–85 (1969)
Krantz, S.G., Parks, H.R.: The Implicit Function Theorem: History, Theory, and Applications. Birkhäuser, Basel (2002)
Mahoney, M.S.: Fermat, Pierre de. In: Dictionary of Scientific Biography, vol. IV, pp. 566–576. Charles Scribner’s Sons, New York (1971)
Mahoney, M.S.: The Mathematical Career of Pierre de Fermat (1601–1665). Princeton University Press, Princeton (1973)
Menge, H.: Lehrbuch der lateinischen Syntax und Semantik. Neu bearbeitet von Thorsten Burkard und Markus Schauer. Wissenschaftliche Buchgesellschaft, Darmstadt (2005)
Miller, M.: Pierre de Fermats Abhandlungen über Maxima und Minima. Aus dem Lateinischen übersetzt und mit Anmerkungen versehen von Max Miller. Akademische Verlagsgesellschaft, Leipzig (1934)
Schneider, I.: Descartes’ Diskussion der Fermat’schen Extremwertmethode – ein Stück Ideengeschichte der Mathematik. Arch. Hist. Exact Sci. 7, 354–374 (1971)
Simmons, G.F.: Calculus Gems: Brief Lives and Memorable Mathematics. McGraw Hill, New York (1992)
Strømholm, P.: Fermat’s method of maxima and minima and of tangents. A reconstruction. Arch. Hist. Exact Sci. 5, 47–69 (1968)
Weil, A.: Review of “The mathematical career of Pierre de Fermat”, by M.S. Mahoney. Bull. Am. Math. Soc. 6, 1138–1149 (1973)
Weinrich, K.: Die Lichtbrechung in den Theorien von Descartes und Fermat. Franz Steiner, Stuttgart (1998)
Wieleitner, H.: Bemerkungen zu Fermats Methode der Aufsuchung von Extremwerten und der Bestimmung von Kurventangenten. Jahresbericht der Deutschen Mathematiker-Vereinigung 38, 24–35 (1929)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Barner, K. Fermats «adæquare» – und kein Ende?. Math Semesterber 58, 13–45 (2011). https://doi.org/10.1007/s00591-010-0083-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00591-010-0083-5