Skip to main content

Fermats «adæquare» – und kein Ende?

  • Philosophische und historische Sicht
  • Published:
Mathematische Semesterberichte Aims and scope Submit manuscript

Abstract

In his papers on the determination of maxima and minima and on the calculation of tangents Pierre Fermat uses two different Latin verbs, æquare and adæquare, which do not differ semantically but are used by him obviously in different meanings. While æquabitur is used unambiguously in the sense of “is equal” the meaning of adæquabitur is disputed by the experts since Tannery’s French translation (Œuvres complètes de Fermat, Vol. III, 1896). Herbert Breger (Arch. Hist. Exact Sci. 46, 193–219, (1994), p. 197 f), for instance, holds the view that Fermat used the word adæquare in the sense of “to put equal” and adds: In a mathematical context, the only difference between “æquare” and “adæquare” (if there is any) seems to be that the latter gives more stress on the fact that the equality is achieved. In contrast to this Michael Mahoney holds the thesis that adæquare describes a counterfactual equality (Mahoney, M.S.: Fermat, Pierre de. In: Dictionary of Scientific Biography, vol. IV (1971), p. 569) or a pseudo-equality (Mahoney, M.S.: The Mathematical Career of Pierre de Fermat (1601–1665), (1973), p. 164), whatever that may mean. This viewpoint has been taken up again recently by Enrico Giusti (Ann. Fac. Sci. Toulouse, Math. (6), 18 fascicule spécial, 59–85 (2009)) in order to bring arguments to bear against Breger. In contrast to these (and other) authors, I show that Fermat makes a subtle logical distinction between the words æquare and adæquare. The same distinction is made by Nicolas Bourbaki introducing his «théorie égalitaire». Notwithstanding: both verbs stand for a «relation d’égalité». On this premiss, I describe—using six selected examples—that Fermat’s “method” may be justified right down to the last detail, even from the view of today’s mathematical knowledge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  1. Academiæ qvinqve Germanicæ, Thesavrvs Lingvae Latinae, Volvmen I. Herausgegeben von den Akademien Berlin, Göttingen, Leipzig, München und Wien, Teubner, Leipzig (1900)

  2. Alarcón, S.A., Suescún, C.M., de la Torre, A.: El método de las tangentes de Fermat. Mat., Enseñanza Univ. (N. S.) 13, 101–123 (2005)

    MATH  Google Scholar 

  3. Andersen [Møller Pedersen], K.: Techniques of the calculus 1630–1660. In: Grattan-Guinness, I. (ed.) From the Calculus to Set Theory 1630–1910: An Introductory History, pp. 10–48. Duckworth, London (1980)

    Google Scholar 

  4. Bourbaki, N.: Éléments de mathématique. Théorie des ensembles. Hermann, Paris (1970)

    MATH  Google Scholar 

  5. Boyer, C.B., Merzbach, U.C.: A History of Mathematics. Wiley, New York (1989)

    MATH  Google Scholar 

  6. Breger, H.: The mysteries of adaequare: A vindication of Fermat. Arch. Hist. Exact Sci. 46, 193–219 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  7. Calinger, R.: A Contextual History of Mathematics. Prentice Hall, Upper Saddle River (1999)

    MATH  Google Scholar 

  8. Cifoletti, G.C.: La Méthode de Fermat: Son statut et sa diffusion: algèbre et comparaison de figures dans l’histoire de la méthode de Fermat. Société française d’histoire des sciences et des techniques, Paris (1990)

    MATH  Google Scholar 

  9. Courant, R.: Vorlesungen über Differential- und Integralrechnung. Zweiter Band. Funktionen mehrerer Veränderlicher. Springer, Berlin (1929)

    Google Scholar 

  10. Edwards, C.H., Jr.: The Historical Development of the Calculus. Springer, New York (1979)

    MATH  Google Scholar 

  11. Tannery, P., Henry, C. (dir.): Œuvres complètes de Fermat. Tome I–IV. Gauthier-Villars, Paris (1891, 1894, 1896, 1912)

  12. Giusti, E.: Piccola storia del calcolo infinitesimale dall’antichità al novocento. Instituti editoriali e poligrafici internationali, Pisa (2007)

    Google Scholar 

  13. Giusti, E.: Les méthodes des maxima et minima de Fermat. Ann. Fac. Sci. Toulouse, Math. (6) 18 (Fascicule spécial), 59–85 (2009)

    MATH  MathSciNet  Google Scholar 

  14. Heath, T.L.: A History of Greek Mathematics, Vol. II. Clarendon Press, Oxford (1921)

    Google Scholar 

  15. Hofmann, J.E.: Über ein Extremwertproblem des Apollonios und seine Behandlung bei Fermat. Nova Acta Leopoldina (2) 27(167), 105–113 (1963)

    Google Scholar 

  16. Itard, J.: Fermat précurseur du calcul différentiel. Arch. Int. Hist. Sci. 27, 589–610 (1948)

    MathSciNet  Google Scholar 

  17. Jahnke, H.N. (Hrsg.): Geschichte der Analysis. Spektrum Akademischer Verlag, Heidelberg (1999)

    MATH  Google Scholar 

  18. Jensen, C.: Pierre Fermat’s method of determining tangents of curves and its application to the conchoid and the quadratrix. Centaurus 14, 72–85 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  19. Krantz, S.G., Parks, H.R.: The Implicit Function Theorem: History, Theory, and Applications. Birkhäuser, Basel (2002)

    MATH  Google Scholar 

  20. Mahoney, M.S.: Fermat, Pierre de. In: Dictionary of Scientific Biography, vol. IV, pp. 566–576. Charles Scribner’s Sons, New York (1971)

    Google Scholar 

  21. Mahoney, M.S.: The Mathematical Career of Pierre de Fermat (1601–1665). Princeton University Press, Princeton (1973)

    Google Scholar 

  22. Menge, H.: Lehrbuch der lateinischen Syntax und Semantik. Neu bearbeitet von Thorsten Burkard und Markus Schauer. Wissenschaftliche Buchgesellschaft, Darmstadt (2005)

    Google Scholar 

  23. Miller, M.: Pierre de Fermats Abhandlungen über Maxima und Minima. Aus dem Lateinischen übersetzt und mit Anmerkungen versehen von Max Miller. Akademische Verlagsgesellschaft, Leipzig (1934)

    Google Scholar 

  24. Schneider, I.: Descartes’ Diskussion der Fermat’schen Extremwertmethode – ein Stück Ideengeschichte der Mathematik. Arch. Hist. Exact Sci. 7, 354–374 (1971)

    Article  MATH  Google Scholar 

  25. Simmons, G.F.: Calculus Gems: Brief Lives and Memorable Mathematics. McGraw Hill, New York (1992)

    MATH  Google Scholar 

  26. Strømholm, P.: Fermat’s method of maxima and minima and of tangents. A reconstruction. Arch. Hist. Exact Sci. 5, 47–69 (1968)

    Article  MATH  Google Scholar 

  27. Weil, A.: Review of “The mathematical career of Pierre de Fermat”, by M.S. Mahoney. Bull. Am. Math. Soc. 6, 1138–1149 (1973)

    Article  MathSciNet  Google Scholar 

  28. Weinrich, K.: Die Lichtbrechung in den Theorien von Descartes und Fermat. Franz Steiner, Stuttgart (1998)

    Google Scholar 

  29. Wieleitner, H.: Bemerkungen zu Fermats Methode der Aufsuchung von Extremwerten und der Bestimmung von Kurventangenten. Jahresbericht der Deutschen Mathematiker-Vereinigung 38, 24–35 (1929)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus Barner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barner, K. Fermats «adæquare» – und kein Ende?. Math Semesterber 58, 13–45 (2011). https://doi.org/10.1007/s00591-010-0083-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00591-010-0083-5