Skip to main content
Account

Table 1 The generators of the Galois group, and how they act

From: The Number Behind the Simplest SIC–POVM

 

u

r

\(\sqrt{5}\)

\(\sqrt{2}\)

\(i\sqrt{1+\sqrt{5}}\)

i

\(\tau \)

\(g_1\)

1 / u

r

\(\sqrt{5}\)

\(\sqrt{2}\)

\(-i\sqrt{1+\sqrt{5}}\)

\(-i\)

\(1/\tau \)

\(g_2\)

\(-u\)

\(-r\)

\(\sqrt{5}\)

\(-\sqrt{2}\)

\(-i\sqrt{1+\sqrt{5}}\)

i

\(-\tau \)

\(g_3\)

u

1 / r

\(\sqrt{5}\)

\(\sqrt{2}\)

\(i\sqrt{1+\sqrt{5}}\)

\(-i\)

\(1/\tau \)

\(g_4\)

r

u

\(-\sqrt{5}\)

\(-\sqrt{2}\)

\(\sqrt{\sqrt{5}-1}\)

i

\(-\tau \)