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Abstract

Ancient DNA is typically highly degraded with appreciable cytosine deamination, and contamination with
present-day DNA often complicates the identification of endogenous molecules. Together, these factors impede
accurate assembly of the endogenous ancient mitochondrial genome. We present schmutzi, an iterative approach to
jointly estimate present-day human contamination in ancient human DNA datasets and reconstruct the endogenous
mitochondrial genome. By using sequence deamination patterns and fragment length distributions, schmutzi
accurately reconstructs the endogenous mitochondrial genome sequence even when contamination exceeds 50%.
Given sufficient coverage, schmutzi also produces reliable estimates of contamination across a range of
contamination rates. Availability: https://bioinf.eva.mpg.de/schmutzi/ license:GPLv3.

Introduction
Advances in sequencing and improved methods for the
extraction of ancient DNA (aDNA) have enabled the study
of ancient genomes. However, many computational hur-
dles remain in the analysis of aDNA. After the death of
an organism, the endogenous DNA begins to degrade and
accumulates chemical damage. aDNA molecules, there-
fore, tend to be quite short, typically less than 60 bases in
length [1], and carry uracils as a result of cytosine deam-
ination. Deaminated cytosines are misread as thymines
during sequencing and lead to the characteristic increase
in frequency of cytosine to thymine transitions near the
ends of ancient molecules [2]. Further, when extracting
DNA from ancient human remains, microbial DNA often
forms the bulk of all recoverable fragments [3], which,
together with contaminating DNA from individuals who
handled the ancient sample, is sequenced along with the
endogenous DNA [4]. While bacterial sequences do not
typically align to the human reference genome, present-
day human contaminants will align together with the
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endogenous DNA fragments. The presence of contami-
nant fragments affects both consensus calling and geno-
typing, and the resulting errors may influence compar-
isons to present-day humans including the calculations of
genotype likelihoods, divergence times, population genet-
ics parameters and phylogenetic reconstructions [5, 6].
Previous approaches to reconstructing ancient mito-

chondrial genomes include the mapping iterative assem-
bler (MIA), which iteratively calls a consensus from the
DNA fragments [7]. When contamination is high (e.g.,
>30%), calling the consensus sequence of the endogenous
mitochondrial genome without removing contaminant
fragments is likely to result in an incorrect sequence (see
Fig. 1). Because ancient endogenous DNA is more likely to
be deaminated than the contaminant DNA from present-
day humans [8], some studies have restricted the analy-
ses to fragments carrying deaminated cytosines [9, 10].
However, using only deaminated fragments reduces the
amount of data available for many ancient samples.
Due to these issues, research groups have generally pri-

oritized samples with low levels of present-day human
contamination. To date, methods to quantify present-day
human mitochondrial contamination have relied on the
presence of fixed differences between the mitochondrial
genomes of archaic and modern humans [11, 12]. This
works well when analyzing the genomes of Neanderthals
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Fig. 1 Schematic illustration of mitochondrial sequences from an ancient DNA library. When DNA from an ancient human sample is sequenced,
DNA from the ancient human (endogenous fragments represented in green) as well as contaminant DNA fragments from the individuals who have
handled the bone (contaminating fragments represented in red) are included. Because DNA undergoes deamination over time, endogenous
fragments are likely to carry deaminated cytosines (represented as T’s in a blue frame), particularly near the ends of the DNA fragments. The
non-deaminated cytosines are represented as unframed blue C’s. Schmutzi first identifies the endogenous fragments and, in a second step, uses
these to quantify contamination. These steps are repeated until convergence is achieved and a single mitochondrial genome is identified

and Denisovans, but early modern human genomes typ-
ically carry too few fixed differences to permit a robust
estimate of contamination. For early modern humans,
various groups have, therefore, relied on sites in the
ancient sample that differ from a large dataset of present-
day human mitochondrial sequences [13]. Addition-
ally, a maximum-likelihood approach, which co-estimates
sequencing error rates and contamination, has been
applied to sequences originating from both early mod-
ern humans and archaic humans [14]. Deamination pat-
terns have also been used to estimate contamination from
present-day humans inmitochondrial DNA [10]. Software
tools are available to measure overall deamination [15],
identify the endogenous template [16], isolate deaminated
fragments [9] and perform nuclear contamination esti-
mates based on the X-chromosome [17]. However, there
is currently no software for estimating mitochondrial con-
tamination, which has been thoroughly tested to ascertain
its accuracy, available for download for the aDNA research
community.
We developed schmutzi, an iterative approach to assem-

bling the endogenous mitochondrial genome while simul-
taneously estimating present-day human mitochondrial
contamination in archaic and early modern human aDNA
datasets. Our approach to determining the endogenous
mitochondrial genome sequence relies on distinguishing
the endogenous and the contaminant nucleotides, given
a prior on: contamination, deamination frequency and
length distribution of the fragments. Contamination is
estimated using single nucleotide differences between the

endogenous mtDNA sequence and a database of potential
contaminant mitochondrial genomes. The consensus call-
ing and contamination estimation are run iteratively until
a stable contamination rate estimate is reached.
Schmutzi was tested on both simulated and empiri-

cal data. Our results show that schmutzi outperforms
currently available methods in terms of accuracy of the
endogenous call and contamination estimate, particularly
at high levels of contamination. An open-source imple-
mentation of schmutzi in C++ has been released under
the GPLv3.0 and is freely available together with the test
datasets that were used [18]. On a desktop computer,
schmutzi requires between 1 and 3 hours to reach con-
vergence for approximately 1 million fragments aligned
to the mitochondrial reference genome. Faster run times
(∼30 minutes) can be achieved using multi-core systems.

Results
Schmutzi iteratively calls (i) the endogenous mitochon-
drial consensus sequence and (ii) a contamination esti-
mate using two linked software programs (Fig. 2). The
input for endoCaller, the consensus caller, is a set of
aDNA sequences aligned to a mitochondrial genome ref-
erence, a contamination prior and deamination rates for
the potentially endogenous and potentially contaminat-
ing DNA fragments. In the first iteration, the deamina-
tion rates and the prior for contamination are obtained
using contDeam, a third sub-program of the schmutzi
package (Fig. 2). contDeam implements a methodology
described in previous studies [10], but incorporates some
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Fig. 2 Schmutzi workflow. An initial contamination estimate is computed using the deamination rates of fragments by conditioning on the other
end being deaminated and comparing these to the deamination rate of all fragments in the dataset (contDeam). This prior is provided to call an
endogenous consensus (endoCaller). The consensus call is, in turn, used to re-estimate mitochondrial contamination (mtCont). Deamination rates
and fragment length distributions are measured for fragments that support endogenous and contaminant mitochondrial genomes (splitEndo). The
information from mtCont and splitEndo is used as input for re-calling the endogenous consensus (endoCaller). This cycle is repeated until a stable
contamination rate is reached. db database

additional information including base quality and map-
ping quality into a Bayesian framework. An underlying
assumption is that the base qualities are reasonably repre-
sentative of the sequencing error probability. Recent ver-
sions of the default Illumina base caller, Bustard, provide
such accuracy. The inputs for the contamination esti-
mator, mtCont, are the same set of aligned fragments
(in BAM format) that were used as input for contDeam,
the endogenous consensus sequence determined by
endoCaller, and a database of potential contaminant
mitochondrial genomes. endoCaller, contDeam and
mtCont can also be used as standalone applications. Each
component program uses a Bayesian maximum a posteri-
ori algorithm to estimate themost probable model param-
eters given the data. A list of the inputs and outputs for
each of the three main programs, which are described in
more detail in the sections below, is presented in Table 1.

Table 1 Inputs and outputs for the different programs described
in ‘Methods’. Overview of the three main programs, contDeam,
endoCaller and mtCont, with the helper program splitEndo for
the iterative mode

Program Input Output

contDeam BF CRDP, EDR

endoCaller BF, EDR, CP, DFL EB

mtCont BF, EDR, DB, EB CRDB, CS

splitEndo BF, EB EDR, DFL

BF BAM file, CRDP present-day human contamination rate using deamination
patterns, CRDB present-day human contamination rate using a database of putative
contaminants and the endogenous base, EDR endogenous deamination rates, CP
contamination prior, DFL distribution of endogenous/contaminant fragment
lengths, EB endogenous base, DB database of putative mitochondrial contaminant
genomes, CSmost likely contamination source
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We tested the performance of each of the component
programs and of the iterative function, using both
simulated and empirical data. For simulations, we
used mitochondrial sequences from an early mod-
ern human, a Neanderthal and a Denisovan as the
endogenous genomes and a present-day human as the
contaminant genome. We also tested the performance
on a number of previously published aDNA datasets
[12, 19–21]. Further details about the test data can be
found in ‘Methods’.

Endogenous consensus calling
Simulated data
We ran schmutzi on simulated datasets created for three
archaic genomes, each with increasing levels of present-
day human contamination, and compared the endoge-
nous and the contaminant genome sequences inferred
by schmutzi to the published mitochondrial genome
sequences for each individual (see Fig. 3). We also
compared the endogenous consensus produced by (i)
schmutzi, (ii) simply calling a consensus from all frag-
ments using htslib and (iii) calling a consensus from
fragments identified as deaminated by PMDtools. A
Neanderthal was used as the endogenous mitochon-
drion and various levels of present-day human contam-
ination were simulated. The mitochondrial sequences

obtained using all three approaches to call the consen-
sus were not considerably different (<1%) at low levels
of contamination (see Table 2). In contrast, at higher
levels of contamination (>20%), using only the deami-
nated reads reduces false calls by bases from present-
day human contamination. However, schmutzi, which
uses all the reads and includes additional sources of
information such as fragment length and a contami-
nation prior, prevents false calls that are due to the
presence of present-day human contamination. For the
remaining simulations, a Denisovan, Neanderthal or early
modern human was used as the endogenous genome,
with either single- or double-stranded deamination pat-
terns. The accuracy of the consensus sequences gener-
ated by schmutzi and by other computational methods
to the published reference sequences is presented in
Additional file 1: Tables S9–S14.
Schmutzi produced a consensus for both the endoge-

nous and contaminant genomes that is very robust to
high levels of contamination. Our results show that the
endogenous consensus is accurately reconstructed for
up to 50% present-day human contamination for the
double-stranded simulations and up to 70% for the single-
stranded ones. This is due to higher levels of deamina-
tion in the single-stranded simulations resulting in better
ascertainment of the endogenous base.

Fig. 3 Effect of increasing contamination on endogenous genome sequence reconstruction and contaminant genome sequence reconstruction of
simulated data. Accuracy of the ancient (a) and present-day contaminant (b) mitochondrial consensus sequences produced by schmutzi on
simulated data for an early modern human, a Neanderthal and a Denisovan mitochondrial genome. We define an error as either a mismatch or an
indel between the predicted endogenous sequence and the published mitochondrial sequence used for simulations. As contamination increases,
inference of the endogenous mitochondrial genome becomes more difficult (a). In contrast, the prediction of the contaminant genome becomes
more accurate at higher levels of present-day human contamination (b)
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Table 2 Similarity of the predicted endogenous mitochondrial genome sequence to the original Neanderthal reference sequence, at
various rates of simulated contamination with present-day human DNA. An endogenous consensus call was performed using
schmutzi on all fragments, and using PMDtools followed by htslib on the fragments labeled by PMDtools as endogenous. For
comparison, we generated a simple consensus by running htslib on all sequenced fragments. While this approach works well at low
amounts of contamination, it produces an incorrect consensus at higher levels of contamination when the presence of contaminating
fragments is not accounted for using approaches like PMDtools and schmutzi. The number of indels are reported as either insertions or
deletions in either the predicted consensus or the Neanderthal reference; hence, discrepancies in the final sum may occur

Contamination Endogenous prediction Endogenous prediction from Mitochondrial consensus, called
rate from schmutzi PMDtools and htslib using htslib on all fragments

Matches Mismatches Indels Matches Mismatches Indels Matches Mismatches Indels

1% 16,565 0 0 16,561 2 6 16,561 3 5

5% 16,565 0 0 16,561 2 6 16,561 3 5

10% 16,565 0 0 16,561 2 6 16,561 3 5

15% 16,565 0 0 16,560 3 6 16,553 11 5

20% 16,565 0 0 16,560 3 6 16,488 76 5

25% 16,565 0 0 16,558 5 6 16,374 190 5

30% 16,564 1 0 16,558 5 6 16,371 193 5

35% 16,564 1 0 16,556 7 6 16,371 193 5

40% 16,564 1 0 16,555 8 6 16,371 193 5

45% 16,564 1 0 16,553 10 6 16,371 193 5

50% 16,563 2 0 16,553 10 6 16,371 193 5

55% 16,564 1 0 16,554 9 6 16,370 194 5

60% 16,563 2 0 16,551 12 6 16,368 196 5

65% 16,563 1 1 16,551 12 6 16,361 203 5

70% 16,562 1 2 16,548 15 6 16,358 206 5

75% 16,563 1 1 16,546 17 6 16,355 209 5

80% 16,561 2 2 16,545 18 6 16,355 209 5

85% 16,563 1 1 16,544 19 6 16,355 209 5

90% 16,561 3 1 16,539 24 6 16,355 209 5

95% 16,550 15 7 16,532 31 6 16,355 209 5

We also called mitochondrial consensus sequences for
each sample after processing the data using PMDtools
(using the parameter -a to adjust quality scores and
the recommended PMD score threshold of 3) to iden-
tify deaminated reads and then calling the consensus
with htslib (default parameters and haploid model). The
sequence similarity to the published ancient genomes was
computed as for schmutzi. At higher levels of contami-
nation, schmutzi is able to infer the endogenous genome
more accurately than is possible using only htslib on
the deaminated reads. It also performs better at higher
levels of contamination than the approach of calling a
consensus solely from deaminated reads using samtools
mpileup (see Additional file 1: Results, Section 2.3.1). All
three approaches provide a more accurate sequence than
mitochondrial consensus genome obtained using MIA
(see Additional file 1: Results, Section 2.3.1).
The improvement obtained by schmutzi over

approaches that use only deaminated reads from highly

contaminated samples results from the inclusion of length
and observed ratio of endogenous and contaminant
bases. Iteration increases the accuracy of the endogenous
consensus call. We found that the initial call for the m
dataset with a simulated contamination rate of 58% had
seven mismatches to its original reference while only a
single mismatch remained after convergence.
At around 50% present-day human contamination, the

inference of the endogenous base becomes difficult as
there is a near 50/50 distribution of endogenous and
contaminant bases. As in the evaluation of the contami-
nation estimate, to simulate low coverage, we subsampled
the original BAM file with a simulated contamination
rate of 48%. This was done both for fragments with
double-stranded and single-stranded associated damage.
Our results show that, for this difficult target, we can infer
the endogenous genomes to a coverage of about 20× (see
Additional file 1: Results, Section 2.3.2). This is also pos-
sible at 15× but the endogenous calls need to be filtered
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for high-quality bases to avoid a high number of errors.
This filtering also eliminates a significant portion (≈1/16)
of the mitochondrial calls. Prediction of the endogenous
mitochondrial genome at a lower coverage is possible if
present-day human contamination is lower.

Empirical data
Because not all features of empirical aDNA datasets can
be accurately simulated, we also tested schmutzi on the
five empirical datasets described in Table 3. Only a sub-
set of the original data was used here. The accuracy of the
endogenous consensus sequences called using schmutzi
was compared to the published mitochondrial genomes
and to the consensus sequence called using htslib. For
htslib, the quality scores of potentially deaminated bases
were reduced to avoid incorrect calls at deaminated sites,
like the procedure used in [12, 22].
At contamination rates less than 5%, the consen-

sus sequences called with htslib were highly similar
(between one and five mismatches) to the published
mitochondrial genome sequences (see Fig. 4). However,
at higher contamination rates (>40%), the consensus
sequence becomes increasingly inaccurate when called
with htslib. In contrast, the consensus sequence produced
by schmutzi is robust to higher contamination (40–50%).
For the highly contaminated Mezmaiskaya samples, we
assessed the effect of using only deaminated fragments
to generate the consensus using htslib. This approach
has been used previously and substantially reduces the
amount of contamination. Indeed, we show that the con-
sensus obtained using htslib and only deaminated frag-
ments improves the accuracy of the consensus sequence
(see Fig. 4) but that the consensus sequence produced by
schmutzi is still more accurate in all but one case, which
was influenced by capture bias (see paragraphs below and
‘Discussion’).
To evaluate further the accuracy of the endogenous con-

sensus calling, a maximum-likelihood phylogenetic tree
was computed using the high-quality bases (≥200 PHRED
scale) for both the inferred endogenous and contaminant
genomes (see Fig. 5b), and another using the unfiltered
positions (see Additional file 1: Results, Section 2.2.3).

The tree for the high-quality bases has a higher likelihood
than the unfiltered one. As expected, our endogenous
mitochondrial genome falls within the Neanderthal lin-
eage, more precisely on theMezmaiskaya branch, whereas
the contaminant one falls within the range of human
variation. Our algorithm is, therefore, able, without any
prior phylogenetic information, to separate the endoge-
nous sequences from the contaminant portions of the
alignment.
We examined in more detail the sequence inferred for

the mitochondrial genome of the Neanderthal from Mez-
maiskaya 1 (library ID B9687), which was generated from
the same individual for which a high-quality mitochon-
drial genome from a library with low contamination is
available (GenBank FM865411).We note that the contam-
inating mitochondrial sequence is not known.
Under the assumption that the sequence from GenBank

is without errors, the endogenous genome inferred by
schmutzi should match perfectly this reference sequence.
The inferred endogenous sequence differed by nine of the
16,608 bases. We noted that this region falls in the D-
loop, which is typically quite divergent. We speculated
that the incorrect identification of these nine bases may
arise from an ascertainment bias due to the mitochon-
drial capture of the Mezmaiskaya sample using probes
based on the human mitochondrial sequence. Indeed, we
found that in this region the endogenous bases were sig-
nificantly underrepresented compared to the contaminant
(75% rather than the average of 50% for the whole mito-
chondrial genome). However, these bases tend to have low
consensus base quality, which implies that the consensus
calls at these positions is unreliable. Filtering for consen-
sus base quality ≥200 (PHRED scale) reduces the number
from nine mismatches to one. This single mismatch is
in the poly-C region (position 16,184), which is routinely
removed in downstream analyses [23, 24].

Accuracy of contamination estimates
Empirical data
We estimated contamination for each of the five empir-
ical datasets using schmutzi and contamMix (v1.0-10),
an implementation from the authors of a previously

Table 3 Empirical mitochondrial datasets. The numbers in parentheses represent the deamination rates when conditioning on the
other end of the fragment being deaminated for heavily contaminated samples

Sample mtDNA Deamination Present-day Library ID
ID coverage rates (%) contamination and reference

(×) 5′ 3′

Altai Neanderthal 1076 5.7 28.4 Low (∼1%) L9198 from [12]

Denisovan 258 14.8 33.9 Low (∼1%) B1108 from [20]

Ust’-ishim 124 2.7 3.4 Low (∼1%) B3899 from [19]

Mezmaiskaya Neanderthal B9687 711 8.8 (17.3) 13.3 (25.8) High (∼40–50%) B9687 from [21]

Mezmaiskaya Neanderthal B9688 636 8.5 (15.0) 12.7 (24.1) High (∼40–50%) B9688 from [21]
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Fig. 4 Consensus call and contamination estimate accuracy for empirical datasets. a The htslib consensus call (yellow) and the schmutzi consensus
call (red) were performed on a subset of the data from three Neanderthals, one Denisovan and one early modern human. The number of
mismatches between the mitochondrial consensus sequence and the published mitochondrial genome from the same individual was calculated.
b Contamination was estimated using schmutzi (red) and contamMix v.1.0-10 (blue) and compared to the contamination computed using
diagnostic positions (gray per fragment and black per base). For the two Mezmaiskaya individuals, the endogenous genome used for comparison
was obtained using another library with low levels of contamination from the same individual. diag pos diagnostic position, Nean Neanderthal

Fig. 5 Contamination estimates and phylogenetic placement of Mezmaiskaya 1 (library ID B9687). a The posterior probability distribution for
contamination in Mezmaiskaya 1. The dotted line represents the estimate obtained using an ad hoc method based on fixed sites. b A
maximum-likelihood tree showing the placement of the mitochondrial genome of Mezmaiskaya 1 (labeledMT in the tree) and the inferred
contaminant (labeledMTc in the tree), compared to 20 present-day humans and nine archaic humans
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described maximum-likelihood method for estimating
mitochondrial contamination [14, 19].
The correct contamination estimate was taken to be that

obtained from fragments aligned to sites in the reference
mitochondrial genome where Neanderthals or Deniso-
vans differ from 20 present-day humans (diagnostic sites).
Since there are too few diagnostic sites, this approach
could not be used for the early modern human data.
For the Altai Neanderthal and Denisovan samples,

which have low contamination, both schmutzi and
contamMix accurately estimate the contamination (see
Fig. 4). However, for the highly contaminated Mez-
maiskaya Neanderthal samples, schmutzi’s contamination
estimates are closer to the estimates provided using diag-
nostic positions (44.1 ± 0.8 and 49.3 ± 0.7 for Mez-
maiskaya samples 1 and 2, respectively). For Mezmaiskaya
1, for instance, using the 111 diagnostic sites, there
were 2,443,418 individual bases supporting the Nean-
derthal base and 1,989,785 supporting the present-day
human base, resulting in an estimated contamination of
44.9% (per nucleotide basis). The contamination esti-
mates obtained using diagnostic positions are constant
even when filtering for high base quality and removing
potentially deaminated bases. In comparison, the contam-
ination estimate from schmutzi was 44 ± 1% and the
estimate from contamMix was 41.4 ± 0.8%. We specu-
late that this is due to schmutzi’s iterative inference of the
contaminating genome (see ‘Simulated data’). To explore
the results, we plotted the distribution of the posterior
probability for the contamination estimate from one of
the individuals (library ID B9687); see Fig. 5a. The poste-
rior probability peaks at the one obtained using diagnostic
positions.

To test further the ability of schmutzi to estimate con-
tamination and infer the endogenous sequence, we down-
loaded 22 different aDNA datasets from four different
studies from different research groups. To compare our
estimates to those produced by existing methods, we also
ran contamMix on the same samples. Our results show
that schmutzi is more accurate and our implementation
faster than the existing methodologies (see Additional
file 1: Results, Section 2.2.5).

Simulated data
To evaluate the range of contamination and coverage over
which schmutzi can be used, we used the three simu-
lated datasets with increasing levels of contamination and
at varying coverage. For the simulated datasets, the con-
tamination rates predicted by schmutzi correlate well with
those simulated (Fig. 6 and Additional file 1: Fig. S16).
To test the accuracy of our algorithm to existing meth-

ods, we ran our algorithm and contamMix on a simu-
lated dataset of 1 million fragments with double-stranded
deamination patterns. The endogenous mitochondrial
genome used was an early modern human with 50%
present-day human contamination. Our result show that
the schmutzi algorithm offers superior accuracy com-
pared to this existing method for estimating early mod-
ern human contamination (see Table 4). Results for the
maximum-likelihood methods used by contamMix for
the remaining samples are presented in Additional file 1:
Results, Section 2.3.6. We also evaluated the impact of
having multiple contaminant mitochondrial genomes (see
Additional file 1: Results, Section 2.3.7) where an under-
estimate is observed for the early modern human at
very high levels of contamination (70%) and at a high

Fig. 6 Simulated versus measured contamination rates. Several sets contained simulated aDNA fragments from a mitochondrial genome belonging
to an early modern human (left), a Neanderthal (middle) or a Denisovan (right). All simulated sets had damage patterns associated with a
single-stranded library protocol. The double-stranded figure can be found in Additional file 1: Results. A contaminating present-day human was
pooled together at various rates to simulate contamination. The dotted black line represents a perfect prediction, and blue dots are the predicted
rates of contamination by schmutzi once convergence was achieved. The red dots represent sets for which the algorithm stopped prematurely due
to lack of information about the contaminant fragments. The black whiskers represent the 95% confidence interval for contamination
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Table 4 Accuracy of contamination estimates on a simulated early modern human with double-stranded deamination patterns and
high present-day modern human contamination. Three cores were used for every program. The programs contamMix and contDeam
estimate contamination on a per fragment basis while mtCont estimates contamination on a per nucleotide basis. The contamination
on a per nucleotide basis is higher due to the longer average length of contaminating fragments

Contamination Contamination Run time
estimate estimate
method

Target contamination rate: 50% (fragment basis)

contamMix 1.0-10 54.9 ± 0.7% 4 days

Schmutzi (contDeam) 49.0 ± 0.5% 68 s

Target contamination rate: 58.2% (nucleotide basis)

Schmutzi (mtCont without the predicted contaminant) 32.0 ± 1.0% 183 m

Schmutzi (mtCont with the predicted contaminant ) 60.0 ± 1.0% 200 m

mixture (e.g., 50/50) of different contaminant mitochon-
drial sequences.
The predictions of our algorithm for the remaining sim-

ulated datasets are presented in Additional file 1: Results,
Section 2.3.5. The predicted present-day human contami-
nation rates matched the simulated contamination rates.
To evaluate the effect of coverage on schmutzi’s con-

tamination estimate, we analyzed a dataset with 47%
contamination and subsampled this to various levels of
coverage. We chose 47% as a level of contamination that
makes the use of currently available tools difficult. Fur-
thermore, at this level of contamination, there is an almost
even number of endogenous and contaminant bases thus
making the inference of each one relatively difficult for our
model.
For the simulated Neanderthal, the contamination esti-

mated by schmutzi is stable down to a coverage of
∼100× (see results for the single-stranded protocol in the
top row of Fig. 7 and Additional file 1: Fig. S18 for the
double-stranded data). At coverage less than 100× for
the single-stranded data and contamination simulated
here, estimation of contamination becomes difficult. For
the double-stranded data, due to lower rates of deamina-
tion, our estimates are stable at coverages down to 150×.
However, there are cases where an accurate mitochondrial
genome sequence from another closely related individual
can be used as a proxy to compute contamination rates
(see Additional file 1: Fig. S19). Using this heuristic we can
obtain accurate contamination rates for coverage down to
∼5× (see Fig. 7 bottom row).
We also note that the contamination prior estimates

based only on deamination patterns also show a high cor-
relation to those simulated (see Additional file 1: Results,
Section 2.3.3). However, these estimates do not have
the same robustness to low coverage as the final con-
tamination estimate produced by the iterative approach.
Additionally, we show that using a sensitive aligner like

SHRIMP [25] does not cause drops in coverage around
regions of high divergence of the Denisovan mitochon-
drial genome to the human mtDNA, thus allowing for
a more reliable contamination estimate (see Additional
file 1: Results, Section 2.1).

Contaminant consensus calling
The accuracy of the contaminant genome inferred from
the simulated datasets increased as the amount of con-
tamination increased (Fig. 3). However, at less than
1% contamination, schmutzi cannot accurately infer the
contaminant genome. An analysis of the inferred contam-
inant sequences is presented in Additional file 1: Tables S6
and S7.
For our empirical Mezmaiskaya samples, while the

endogenous genome sequence is known, the nature of the
contaminant is not. We can, however, take the inferred
contamination genome and verify whether it falls within
a known mitochondrial haplogroup. Using HaploGrep
[26, 27], we determined that our inferred mitochondrial
genome pertained to the T2b3 haplogroup with a confi-
dence of 93.1%. Out of a total of 33 diagnostic sites for this
haplogroup, only one site, with a relatively low consen-
sus prediction quality from our software (65 on a PHRED
scale), was not the expected diagnostic base.

Methods
Test data
We tested the performance of schmutzi on simulated
and empirical mitochondrial sequence data from both
archaic humans and early modern humans. Simulated
mtDNA datasets with increasing levels of contami-
nation were created by fragmenting and deaminating
the mitochondrial genome sequences of a Denisovan
(GenBank: FN673705.1) [20], a Neanderthal (GenBank:
AM948965.1) [12] and an early modern human (Ust’-
Ishim individual [19]) and adding increasing amounts
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Fig. 7 Robustness of the contamination estimate to lower coverage. The simulated dataset with a contamination rate of ∼47% and single-stranded
deamination patterns was subsampled at various coverages from 0 to 1250×. Top: Contamination rates were estimated across a range of coverages
in simulated data for a Neanderthal, a Denisovan and an early modern human (Ust’-Ishim). Bottom: Contamination estimates when a high-quality
mtDNA sequence from a closely related individual is used as the endogenous genome. Robust estimates can be made down to 5× coverage even
at 47% contamination. For the early modern human, the contamination estimate provided was computed using the database alone and not the
prediction of the contaminant genome thus leading to underestimates (see Table 4 for an example of the effect of using the predicted contaminant
in the contamination estimate)

of contamination from a single, randomly selected
present-day human mitochondrial genome (GenBank:
KJ446110.1). We used empirical deamination rates from
data prepared using a double-stranded library prepara-
tion protocol (C → T at the 5′ end and G → A at the
3′ end, rates from [13]). We repeated the simulations by
adding deamination rates from empirical data prepared
using a single-stranded library protocol (C → T at both
ends, rates from [22], see Additional file 1: Methods).
The empirical data included Illumina sequences from

the same three ancient individuals as well as sequence data
for two additional Neanderthal individuals from Mez-
maiskaya [21] (NCBI SRA ID: PRJEB6014), which were
selected because of the high rate of present-day human
contamination present in the sequencing libraries [12].
We compared the accuracy of the consensus sequence

called by schmutzi to the consensus sequences generated
using a set of typical approaches that have been described
in the literature: (i) MIA [7], (ii) PMDtools to iden-
tify deaminated reads followed by a haploid consensus

call using htslib [9] and (iii) samtools mpileup (obtained
from [28]) after removing deaminated reads [10]. We
also compared schmutzi’s contamination estimates to the
known contamination in the simulated sequence data, to
the estimates based on diagnostic sites for the empirical
data, and to the estimates obtained from the maximum-
likelihood approach described in [14, 19]. This is currently
the only published method that can estimate mitochon-
drial contamination for both early modern humans and
archaic humans. To assess the robustness of schmutzi
to varying coverage, fragments were downsampled from
1% to 50% of the data using a uniform probability
distribution.
We first discuss how a reasonable contamination prior

can be obtained using deamination patterns. We then
provide details of the algorithm behind the endogenous
consensus caller and show how the contamination is esti-
mated using the output of the endogenous consensus
caller. A list of the symbols used throughout this section
is found in Table 5.
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Table 5 Notation used in ‘Methods’

Symbol Definition

R Set of all fragments

E Set of all fragments from the endogenous genome

Rj a particular fragment in R, with l bases {r1, . . . , rl} and respective error probabilities {ε1, . . . , εl}, which are given by the per-base quality scores

E The event that a sequencing error has occurred

D The event that deamination has occurred

C The event that Rj was sampled from a contaminant mitochondrial genome

M The event that Rj was correctly mapped

mRj Probability that RJ is mismapped (P[¬M])

be The base from the endogenous genome

bc The base from the contaminant genome

c The base from the contaminant genome used by mtCont, obtained from a database

ri The base at position i from fragment Rj

εi The probability that base ri has a sequencing error as determined by the base caller

¬ Denotes the complement of an event (event has not occurred)

cd Contamination rate, estimated by contDeam

cr Contamination rate, estimated by mtCont

cc Prior on contamination rate provided as input to endoCaller

endodist log-normal distribution of the fragment length for the endogenous fragments

contdist log-normal distribution of the fragment length for the contaminant fragments

contDeam: determining a contamination prior using
deamination patterns
The first iteration of the endogenous genome inference
needs a contamination prior that is ideally a reason-
able approximation of the actual contamination rate. This
first contamination estimate is computed by contDeam
(see schematic in Fig. 2). This program computes the like-
lihood of observing the aDNA fragments aligned to the
reference genome given fixed endogenous deamination
patterns and a prior on the rate of present-day human
contamination. It then returns the contamination rate
with the highest posterior probability. This contamina-
tion rate is the most likely value needed to explain the
difference between deamination rates for fragments iden-
tified as endogenous and overall deamination rates for all
the fragments of the entire dataset. We start from the
assumption that only the endogenous DNA has the deam-
ination patterns typical of aDNA and that contaminant
fragments are not deaminated and will, therefore, only
reduce overall deamination rates. Previous studies sug-
gest that deamination is rare in contaminants younger
than about 100 years old [8]. Having deaminated contam-
inant fragments may lead to underestimates. We discuss
the extent of the potential underestimate at the end of this
section.
To identify the endogenous fragments and derive their

deamination rate, there are two possible approaches.
The first involves the separation of the endogenous and

contaminant fragments using diagnostic positions on the
mitochondrial genome. This is relatively straightforward
when dealing with Neanderthal or Denisovan individu-
als, as their mitochondrial genome sequences fall outside
of present-day human variation [29, 30]. For instance,
there are 111 diagnostic positions on the mitochon-
drial genome sequence at which seven Neanderthals
share the same base, which differs from 20 present-day
humans.
However, when the endogenous sample is an early mod-

ern human and falls within present-day human variation,
this approach lacks power due to the rarity of such diag-
nostic sites. A second strategy takes advantage of the
observation that deamination at the 5′ end of the frag-
ment is independent of the deamination occurring at the
3′ end and vice versa. By conditioning on observing deam-
ination at one end andmeasuring the rates of deamination
at the other, an estimate of the deamination rates of the
endogenous fragments can be obtained [10]. This sec-
ond strategy requires an endogenous base to measure
rates of deamination. We, therefore, use the mitochon-
drial reference sequence as the endogenous template. This
assumption yields accurate results even for the highly
divergent Denisovan mitochondrial genome. The con-
tamination prior estimated by schmutzi uses this second
approach by default. The estimate of the endogenous
deamination rate is calculated only once, when launch-
ing contDeam. The contamination estimate obtained by
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contDeam is subsequently used as contamination prior for
the first iteration (see Fig. 2).
LetR be the set of all fragments and Rj ∈ R be a particu-

lar aligned fragment of length l. We compute the probabil-
ity of observing this particular alignment to the reference
genome given two models: (i) the null model, where any
difference from the reference can be solely explained by
sequencing error or (ii) the deaminated model, where
deamination and sequencing errors could have given rise
to this particular alignment to the reference. For frag-
ment Rj, let {r1, . . . , rl} be the individuals nucleotides
and their respective error probabilities {ε1, . . . , εl}, both
of which are provided by the base caller. Let E denote
the event that a sequencing error has occurred, D the
event that deamination has occurred and let ¬ denote
the complement of an event (i.e., the event has not
occurred).
We compute the likelihood of observing the base ri ∈

Rj, aligned to the reference nucleotide n, by assum-
ing that nucleotide n was the endogenous template.
The likelihood of observing ri under the null model,
denoted pn(ri), is computed by taking into account two
events, either a sequencing error has occurred or it has
not:

Pn[ri]=
{

(1 − εi)P[n → ri|¬E] , if n = ri
εi P[n → ri|E] , if n �= ri

(1)

where p[ n → ri|¬E] is the probability that ri is observed if
n was the template. This quantity is 1 as both nucleotides
are identical. The other term, p[ n → ri|E], is the prob-
ability of a substitution from nucleotide n to ri given
sequencing error. This term is approximately equal to
1/3 but empirical substitution rates are used (see next
section for details). Under the deaminated model, the
probability of seeing base ri (given the template n) denoted
pd(ri) is

Pd[ri]=

⎧⎪⎪⎨⎪⎪⎩
(1 − εi)P[n → ri|¬D ∩ ¬E] , if n = ri
(1 − εi)P[n → ri|D]
+
εi P[n → ri|E] , if n �= ri

(2)

as three events need to be taken into account: (i)¬D∩¬E,
absence of both sequencing error and deamination
(if n = ri), and either (ii) D deamination or (iii) E error
occurred and n �= ri. We currently ignore the probabil-
ity of observing the data given that both deamination and
a sequencing error have occurred (D ∩ E) as it is very
unlikely compared to the scenarios mentioned above. The
probability of observing a substitution n → ri given deam-
ination (P[n → ri|D]) is computed using the endogenous
deamination rates that were described earlier. The term
P[n → ri|¬D ∩ ¬E] is the probability that base ri remains

as is. This probability is obtained by subtracting from 1,
the deamination probability of the remaining bases. For
instance, if a given base has a deamination rate of 0.3, the
probability that the base remains as is, given the absence
of sequencing error, is 0.7.
Let C be the event that we sampled the fragment Rj

from a contaminant mitochondrial genome and ¬C be
the event that we sampled from the endogenous genome.
We compute the probability of observing fragment Rj
with its alignment to the reference given that it was sam-
pled from the endogenous genome by assuming that each
base is an independent observation and that the probabil-
ity of seeing any difference to the reference is explained
by the deaminated model described by Eq. 2. Hence, we
have:

P[Rj|¬C]=
∏
ri∈Rj

Pd[ri] (3)

and similarly, if Rj was sampled from the contaminant, the
probability of any base that differs from the reference is
explained solely by sequencing errors (as defined by Eq. 1).
This probability for all bases is given by

P[Rj|C]=
∏
ri∈Rj

Pn[ri] . (4)

There are two events that could have occurred: either we
sampled the fragment from the contaminant with prob-
ability denoted cd or we sampled from the endogenous
genome with probability 1 − cd. The goal of contDeam is
to estimate cd given the data. Using Eqs. 3 and 4, we obtain
the probability of observing Rj given that it is sampled
from the contaminant at rate cd:

P[Rj|cd]= P[Rj|¬C] (1 − cd) + P[Rj|C] cd (5)

since P[C]= cd by definition. The probability of observ-
ing all the fragments in set R, assuming the reference as
the template and the endogenous deamination rates that
were initially computed, for a given contamination rate cd,
is given by assuming that each fragment is an independent
observation:

P[R|cd]=
∏
Ri∈R

P[Ri|cd] . (6)

Finally, the posterior probability of the contamination
rate is given by omitting the probability term for the data
(P[R]) as it is independent of the contamination rate, and
using a uniform prior for the contamination rate (P[cd]).
This posterior probability is, therefore,
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P[cd|R]∝ Pd[R|cd] . (7)

We then produce the contamination rate ĉd with the
highest posterior probability:

ĉd = argmax P[cd|R] . (8)

One advantage of this approach is that it does not
require the computation of the endogenous consensus.
However, it also does not allow the user to identify the
source of the contamination. Furthermore, it may under-
estimate contamination if the contaminant is deaminated
(see Additional file 1: Results, Section 2.3.4). The assump-
tion that the mitochondrial genome reference sequence
is the template does not seem to influence the final con-
tamination estimate even for the highly divergent Deniso-
van mitochondrial genome (see Additional file 1: Results,
Section 2.3.3).

endoCaller: mitochondrial consensus call
The first step of the iterative process is to call an initial
consensus of the endogenousmitochondrial genome from
mtDNA fragments aligned to a mitochondrial reference
sequence (endoCaller in Fig. 2).
The consensus call relies on computing the probabil-

ity of observing the aligned aDNA data for a particular
pair of endogenous and contaminant nucleotides at a spe-
cific site, given a fixed contamination prior and fixed
deamination patterns. The endogenous consensus caller
seeks to identify the pair of endogenous and contami-
nation nucleotides with the highest posterior probability
given the aligned aDNA fragments. We also consider
insertion/deletion at a given position. We assume that
at any position there is a single nucleotide from the
present-day human contaminant. The impact of having
multiple contaminating nucleotides was also considered
(see ‘Results’).
For a given position in the mitochondrial reference

sequence, assuming a single contaminant, there are two
bases to infer, be and bc, for the endogenous and con-
taminant genomes, respectively. Let R be the set of all
fragments and Rj ∈ R be a fragment of length l that
overlaps the position. Let {r1, . . . , rl} be the individual
nucleotides of the fragment Rj, as identified by the base
caller. The respective error probabilities {ε1, . . . , εl} for
each base are also provided by the base caller.
For the position to be evaluated, let the nucleotide ri

be the base of fragment Rj that aligns at that specific
position. Let εi be its error probability as determined
by the base caller. Let M be the event that Rj was cor-
rectly mapped and P[M] is estimated using the mapping
quality provided by the mapper. Let E be the set of frag-
ments from the endogenous mitochondrial genome such
that E ⊆ R. We will assume that the a priori probabil-
ity that fragment Rj is endogenous is P[Rj ∈ E]. This

quantity is computed using both the deamination patterns
of the fragment and its length to derive a probability of
that fragment being endogenous. The equations for this
expression are described in greater detail at the end of this
section.
In having observed the base ri, there are two possibil-

ities: the base came either from the contaminant with
probability 1 − P[Rj ∈ E] or from the endogenous sam-
ple with probability P[Rj ∈ E]. We assume for now that
the fragment was properly mapped (i.e.,M occurred). The
final equation, which considers either possibility, is pre-
sented in ‘Mapping’. The probability of observing base ri,
denoted by P[ri|be, bc,M], is given by

P[Rj ∈ E]Pc[ri|be,M]+ (1 − P[Rj ∈ E] )Pc[ri|bc,M] .
(9)

The expression Pe[ ri|be,M] is the probability of observ-
ing ri given that the fragment is endogenous and be is the
endogenous base. Let E denote the event that a sequenc-
ing error has occurred and let ¬E denote the comple-
ment of the event or, in other words, that the sequencing
was correct and no error has occurred. The quantity
Pe[ri|be,M] is given by

(1 − εi)Pe[be → ri|¬E,M]+ εiPe[be → ri|E,M] . (10)

Given that the base is correct (i.e., without sequencing
error), both ri and be should be identical; hence,

Pe[be → ri|¬E,M]=
{
1, if be = ri
0, if be �= ri.

(11)

However, due to deamination, it is possible to have a
substitution with the probability derived from the deami-
nation profile entered as input. Let� be the set of all DNA
bases (� = {A,C,G,T}). Under the deamination model,
the term Pe[be → ri|¬E,M] becomes

⎧⎨⎩1 − ∑
b′
e∈�\b

ratedeam
(
be → b′

e
)
, if be = ri

ratedeam(be → ri), if be �= ri
(12)

where ratedeam(b → ri) is the rate of nucleotide substi-
tution from b to ri due to deamination at that specific
position of the fragment. As stated before, the deamina-
tion rates per base for each position of the fragment are
entered as input and remain unchanged by endoCaller.
For sequencing errors, the probability of base substitu-
tion can be obtained using the assumption that any given
nucleotide is equally likely to be miscalled as any of the
remaining three nucleotides:
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Pe[be → ri|E,M]= 1
3
, ∀be �= ri. (13)

However, studies on Illumina sequencing errors show
that this assumption is often incorrect [31]. We, there-
fore, recommend using empirical nucleotide substitutions
rates from an Illumina sequencing run (provided with
the software package). The new error probability term
becomes

Pe[be → ri|E,M]= #be → ri∑
b′
e∈�\be

#be → b′
e

(14)

where #x → y represents the number of times a mis-
match between the reference base x to an observed y
occurred. These counts were determined using spiked-in
control sequences aligned to the PhiX genome provided
by Illumina Corp.
A similar computation is derived for the probability of

seeing ri given that we sampled the contaminant base bc
(Pc[ri|bc,M]). However, the deamination profile provided
as input for the contaminant fragments are different from
the endogenous ones and tend to be much lower (the end
of ‘Methods’ describes the test data for empirical deami-
nation rates for both endogenous and contaminant frag-
ments). Our mitochondrial consensus caller endoCaller
allows for deamination of the contaminant unlike con-
tDeam, which assumes that the contaminant fragments
have little to no deamination.

Mapping
Thus far, it was assumed that the fragment Rj was cor-
rectly mapped. For fragments not properly mapped, we
estimate that the probability of seeing the base ri is inde-
pendent of bases be and bc and is simply the probability of
observing ri:

P[ri|b,¬M]= P[ri]= 1
4
. (15)

The probability of fragment Rj being incorrectly mapped
is obtained using its mapping quality, and we, therefore,
combine Eqs. 9 and 15 into one to compute the final prob-
ability of observing the base ri, denoted by P[ri|be, bc]:(

1 − mRj
)
P[ri|be, bc,M]+ mRjP[ri|be, bc,¬M] (16)

where mRj is the probability that the fragment Rj is
mismapped (i.e.,mRj = P[¬M]).

Producing themost likely bases
The probability of observing the data given every endoge-
nous and contaminant base has been described. However,
the posterior probability of the pair of bases given the data
R is the quantity that is sought.We assume that every frag-
ment Rj represents an independent observation and we
also consider that the likelihood of bases be and bc given

the data is proportional to the probability of observing the
data given the pair of nucleotides times a flat prior:

P[be, bc|R]∝
∏
Rj∈R

P[Rj|be, bc] 1
42

. (17)

Once the joint probability for all pairs of nucleotides is
computed, a marginalization over bc is used to obtain the
likelihood of a given endogenous base:

P[be|R]=
∑
bc∈�

P[be, bc|R] . (18)

Amarginalization over the endogenous base is used to call
the contaminant base. Finally, the most likely endogenous
nucleotide b̂e is produced:

b̂e = argmax
be∈�

P[be|R] . (19)

The probability of error on b̂e is given by the ratio of the
sum of the probabilities for all alternative bases except the
most likely over the sum of the probabilities for all bases:

P[¬b̂e|R]=

∑
be∈�\b̂e

P[be|R]∑
be∈�

P[be|R] . (20)

An analogous computation is done to determine the
contaminant base. The computation for insertions and
deletions is similar (see Additional file 1: Methods,
Section 1.2).

Computation of P[Rj ∈ E]
For the probability that a given fragment Rj is endogenous,
denoted as P[Rj ∈ E], our model takes into consider-
ation two factors: deamination patterns and the length
of the fragments. Parameters for these two factors are
introduced as input to the endogenous caller. Such param-
eters are re-estimated at each iteration using fragments
that support an endogenous base versus a contaminant
one (splitEndo in Fig. 2). The splitEndo module will
(i) use the output of endoCaller from the previous itera-
tion and separate fragments that support the endogenous
or the contaminant base at positions where they differ and
(ii) estimate deamination parameters and fit a log-normal
distribution on each separated set of fragments indepen-
dently. Deamination rates are obtained bymeasuring rates
of nucleotide substitution from the reference base at a
given position in the fragment and the log-normal param-
eters are obtained by a maximum-likelihood fit using the
fitdistrplus R package. These estimates are fixed through-
out a single iteration and are re-estimated by splitEndo in
the following one.
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Endogenous fragments tend to exhibit higher rates of
deamination than contaminant fragments (see Additional
file 1:Methods, Section 1.7). In the previous section where
contDeam was described, we compared a model that con-
siders deamination and sequencing errors, and another
model that solely uses sequencing errors to compute the
probability of seeing a particular alignment given the
reference as template. In this section, we seek to incorpo-
rate the possibility that the template might be a different
base than the endogenous one for greater accuracy. Let
E denote the event that a sequencing error has occurred,
D the event that deamination has occurred and let ¬
denote the complement of an event (i.e., the event has
not occurred). First, we seek to compute the probability
of observing the base ri, part of the fragment Rj, given
that it originated from endogenous base be under a model
where substitutions are solely due to sequencing errors.
This term, denoted pn(ri), is obtained similarly to Eq. 1
but by considering all four potential endogenous bases be
as follows:∑

be∈�

(1 − P[¬be] )Pn[ri|be] (21)

where Pn[ ri|be] is equal to{
(1 − εi)P[be → ri|¬E] , if be = ri
εi P[be → ri|E] , if be �= ri

(22)

where P[¬be|R] is the probability of error for endogenous
base be as defined in Eq. 20. The nucleotide substitu-
tion probabilities given either absence or presence of a
sequencing error are computed as described in the con-
tDeam section. Second, we compute the probability of
seeing base ri given endogenous base be if any difference
is explained by either deamination or sequencing errors.
Like Eq. 2, this probability, denoted Pd[ri], is computed
using∑

be∈�

(1 − P[¬be] )Pd[ ri|be] (23)

where Pd[ ri|be] is equal to{
(1 − εi)P[be → ri|¬D ∩ ¬E] , if be = ri
(1 − εi)P[be → ri|D]+ εiP[be → ri|E] , if be �= ri.

(24)

Again, the substitution probabilities given either deam-
ination or sequencing error are computed as described in
the contDeam section.
We compute the probability that the aligned fragment Rj

was observed under a deamination and sequencing error
model, denoted P[Rj|Mdeam], by taking the product for
each base r1, . . . , rl ∈ Rj of the term described by Eq. 23.
The probability that aligned fragment Rj was observed
under a sequencing error model, denoted P[Rj|Mnull] uses

the product of the term described by Eq. 21 where only
sequencing errors are considered.
As mentioned previously, endoCaller needs as input a

prior, denoted cc, on the rate of present-day human con-
tamination. Finally, both probabilities are combined with
our prior on a fragment being endogenous of 1 − cc
as a posterior probability to obtain the probability that
fragment Rj is deaminated:

(1 − cc)P[Rj|Mdeam]
(1 − cc)P[Rj|Mdeam]+ ccP[Rj|Mnull]

. (25)

Differences in fragment lengths between the endoge-
nous and contaminant sequences can also be informa-
tive about contamination. Ancient fragments tend to be
shorter than modern contaminating DNA fragments due
to degradation of aDNA [1, 29, 30, 32] (see Additional
file 1: Methods, Section 1.5). Other studies have modeled
the length of aDNA fragments using a log-normal distri-
bution [33]. Here we model the endogenous and contam-
inant fragment length distributions using two log-normal
distributions and infer, using empirical distributions, four
parameters, μendo, σendo,μcont and σcont, for the location
and scale parameters of the endogenous and contami-
nant log-normal distributions, respectively. Again, these
parameters are estimated by splitEndo at each iteration.
The probability that the fragment Rj of length l was sam-
pled from the endogenous distribution is given by the
probability density function for the log-normal distribu-
tion:

P[Rj ∈ endodist]= 1
l
√
2πσendo

e
− (ln(l)−μendo)

2

2σ2endo . (26)

The probability that the fragment is from the contami-
nant distribution (P[Rj ∈ contdist]) is calculated the same
way except using the location and scale for that distribu-
tion. The posterior probability of both terms is used to
compute the probability that fragment Rj pertains to the
endogenous distribution using the contamination prior:

(1 − cc)P[Rj ∈ endodist]
(1 − cc)P[Rj ∈ endodist]+ ccP[Rj ∈ contdist]

. (27)

Finally, the deamination and length probabilities are
combined to compute the probability that a fragment is
endogenous (P[Rj ∈ E]).

mtCont: mitochondrial contamination estimate
Once the endogenous base and its likelihood have been
computed for a given site, a second program takes this
information, together with the aligned BAM file of all
fragments covering each site, and determines the most
likely contaminating genome from the database of pos-
sible contaminants as well as the contamination rate
(mtCont in Fig. 2). This is achieved by determining the
most likely contamination rate using sites where bases
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in the putative endogenous and contaminant genomes
differ. Once this computation is finished for all mito-
chondrial genomes in the database, the genome with the
highest likelihood of being the contaminant is identified
(see details in Additional file 1: Methods, Section 1.6).
In the previous section, a fixed contamination prior was

supplied to endoCaller and the most likely endogenous
and contaminant bases were inferred given the data. In
this section, mtCont computes the most likely contami-
nation rate given the data for fixed probabilities for the
endogenous and contamination bases, which are provided
by endoCaller. As in endoCaller, the deamination rates are
entered as input. The contamination estimate generated
by contDeam at iteration #1 is recalculated by mtCont in
subsequent iterations (see Fig. 2).
For a given position on the mitochondrion, let be be

a possible base from the endogenous sample and c be a
potential base from the contaminant. Let the contamina-
tion rate be cr, defined as the probability of seeing a base
from the contaminant at this given position. Therefore,
the probability that the base is endogenous is 1 − cr. Like
the terms used in the section above, let Rj be a fragment
withmismapping probabilitymRj and let base ri be its base
at the position of interest. The probability of observing ri
given that either be or c could have given rise to it, denoted
P[ri|be, c], is

(1 − mRj)P[ri|be, c,M]+ mRjP[ri|be, c,¬M] (28)

where the probability of being mismapped is defined as in
Eq. 15. If the fragment is properly mapped, it can originate
from either the contaminant or the endogenous genome.
Using the defined contamination rate, we can quantify
P[ ri|be, c,M], the probability of observing ri given that the
fragment was correctly mapped as

(1 − cr)Pe[ri|be,M]+ crPc[ri|c,M] (29)

since we either sampled from the contaminant with prob-
ability cr or from the endogenous base with probability
1− cr. The probability of observing the base ri given it
came from either the endogenous material (Pe[ri|be, c,M])
or the contamination (Pc[ri|be, c,M]) considers sequenc-
ing errors and deamination rates. The precise terms found
for such quantities are derived as in Eq. 10. The only dif-
ference is that a deaminated substitution model is used for
the endogenous base whereas a model that only considers
sequencing errors is used for the contaminant base.
Let �2 be the set of all possible pairs of nucleotides.

For a given contamination rate cr, the probability (P[ri])
of observing the base ri is obtained by marginalizing over
each possible contaminant and endogenous base:∑

be,c∈�2

P[ri|be, c]P[be, c] (30)

where the term P[ri|be, c] is defined in Eq. 28. The com-
bined probability of be being the endogenous and c being
the contaminant base is given by P[be, c]= P[be]P[c].
The prior on the endogenous base P[be] is one minus the
probability that be is not the endogenous base, a quan-
tity defined by Eq. 20. The probability P[c] is defined
by the probability of having nucleotide c in the putative
contaminant mitochondrial sequence.
The total likelihood is obtained by the product of Eq. 30

for every fragment. This likelihood is computed for every
contamination rate between 0 and 100% assuming a uni-
form prior on the contamination rate and for each mito-
chondrial genome in the set of putative contaminants.
Finally, the contaminant genome is determined and the
contamination rate with the highest posterior probability,
as well as a 95% confidence interval, is produced.

Discussion
aDNA analyses have typically decoupled reconstruction
of the endogenous mitochondrial genome from quantifi-
cation and characterization of present-day human con-
tamination. Since these two tasks are interdependent,
we argue that consensus calling and contamination esti-
mation should be performed iteratively to achieve the
most accurate results. Current approaches to determin-
ing the endogenous mtDNA sequence are very dependent
on the amount of contamination. In samples with low
present-day human contamination, a consensus sequence
is usually called using all sequences, whereas for highly
contaminated samples, only deaminated fragments are
used. However, there is no clear contamination cut-off to
determine which strategy should be used. Schmutzi can
be applied to samples with either low or high levels of
contamination thereby obviating this decision.
We have presented here empirical and simulated

datasets demonstrating that schmutzi outperforms a
number of existing approaches to consensus sequence
calling and contamination estimation over a wide range
of contamination rates and coverages. Our simulations
were conducted using empirical fragment length distri-
butions and deamination rates. It is trivial to see that
higher deamination rates can enable end users to infer
with greater confidence the endogenous sequence of even
highly contaminated samples. We note that absence of
deamination will yield incorrect estimates of contamina-
tion. Since deamination is the primary feature used to
distinguish endogenous from contaminant bases, treat-
ment with full uracil-DNA glycosylase [34] is also likely
to impact negatively the estimation of contamination and
result in an incorrect endogenous consensus call at high
levels of contamination. We, therefore, recommend using
schmutzi only for samples with either no, or partial,
uracil-DNA glycosylase treatment for potentially contam-
inated samples. It is important to note that the number of
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parameters and their range hinder us from making sim-
ple general statements about the amount of coverage or
extent of deamination required for accurate estimates of
present-day human contamination or accurate inference
of the endogenous genome sequence. Although our study
focused on human mitochondrial aDNA data, schmutzi
can be applied to any other haploid aDNA dataset for
which a reference genome is available. This includes non-
human mitochondrial genomes, as well as viral, bacterial
and chloroplast genomes.
Although many groups have implemented ad hoc meth-

ods to assess contamination, there are few available
software implementations. We compared schmutzi to
contamMix, a previously used maximum-likelihood
method described in [14]. The predicted contamination
rates produced by our algorithm are more accurate than
those produced by this method on simulated data (see
Additional file 1: Results, Section 2.3.6). Although the
true contamination rate is not known for most ancient
datasets, we have shown that our estimates are also consis-
tent with contamination measured in empirical datasets
using methods relying on diagnostic positions. While
the approach of taking diagnostic positions is suitable
for archaic humans like Neanderthals, it is not readily
applicable to early modern humans, who have few fixed
differences to present-day humans. Schmutzi’s modeling
of mismatches due to deamination, sequencing errors
and mismapping results in greater accuracy than simply
estimating a single error parameter.
Our endogenous consensus call shows a significant

dependence on the prior, which is calculated based on
the deamination patterns only for the first iteration
(contDeam). We interpret this as evidence that a reason-
able estimate for contamination can be obtained from
deamination. For contDeam, we have also evaluated the
impact on the final estimate due to biases like insufficient
deamination and having deamination for contaminant
fragments (see Additional file 1: Results Section 2.3.4).
We do, however, notice that the contamination esti-
mate improves incrementally during iteration of consen-
sus calling and contamination estimation, suggesting that
additional information is available in the mitochondrial
endogenous consensus. This is particularly useful for low
coverage samples.
Schmutzi accurately infers the endogenous ancient

genome sequence from unfiltered ancient sequence data.
This is of particular importance when the contamina-
tion is high. Interestingly, schmutzi is also more accu-
rate than approaches that reduce contamination by using
only deaminated fragments to call the consensus. Such
approaches substantially reduce the number of fragments
available for calling the consensus, whichmay explain why
schmutzi is marginally better at determining the consen-
sus sequence.

Although schmutzi performs well for both simulated
and empirical data, a few artifacts are not currently mod-
eled in the software. First, it is possible that there are
multiple present-day human contaminants. At low con-
tamination rates with multiple contaminants, schmutzi
will underestimate the contamination, but the inference
of the endogenous consensus sequence should not be
affected. However, at high contamination rates, multi-
ple contaminants make the inference of the endogenous
sequence and estimation of the contamination extremely
difficult, since the endogenous and contaminant alleles
do not follow the expected distributions. Second, inclu-
sion of misaligned microbial sequences and mitochon-
drial heteroplasmy are also not currently considered in
the computation, though the empirical data suggest that
schmutzi is not particularly sensitive to these. Lastly, the
use of target enrichment approaches with DNA probes
that are closer to the contaminant than to the endoge-
nous sequence may cause differences in allele sampling,
and may lead to incorrect consensus calls (see Fig. 4 and
Additional file 1: Section 2.2.3 for further discussion about
the capture bias).
Schmutzi is sensitive to the divergence between the

actual contaminant and the closest record in the database
of putative contaminants. If this divergence is very large
(e.g., more than 30 mismatches), contamination will be
underestimated.
When contamination rates are high, the predicted con-

taminant can be inferred at high resolution. This enables
the program to use this predicted contaminant as a
database record for the quantification of mitochondrial
contamination (see Additional file 1: Results). This is not
feasible at low contamination rates, where the predic-
tion of the contaminant mtDNA is poor. Our method
does not currently use phylogenetic information to infer
the endogenous and contaminant sequences. Although
our approach works well empirically, the use of phylo-
genetic information could provide additional power for
obtaining contamination estimates in very low coverage
samples.
In conclusion, we have described an algorithm that

infers the endogenous mitochondrial genome sequence
from an aDNA sample, even in the presence of high con-
tamination. We have applied this to the reconstruction
of mitochondrial genomes for archaic and early modern
humans and show that it is possible to quantify accurately
contamination from present-day individuals.

Additional file
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