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Cover equation: Formula for the 𝑛th Fibonacci number. Exercise 21 in Section 5D
uses linear algebra to derive this formula.
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Preface for Students

You are probably about to begin your second exposure to linear algebra. Unlike
your first brush with the subject, which probably emphasized Euclidean spaces
and matrices, this encounter will focus on abstract vector spaces and linear maps.
These terms will be defined later, so don’t worry if you do not know what they
mean. This book starts from the beginning of the subject, assuming no knowledge
of linear algebra. The key point is that you are about to immerse yourself in
serious mathematics, with an emphasis on attaining a deep understanding of the
definitions, theorems, and proofs.

You cannot read mathematics the way you read a novel. If you zip through a
page in less than an hour, you are probably going too fast. When you encounter
the phrase “as you should verify”, you should indeed do the verification, which
will usually require some writing on your part. When steps are left out, you need
to supply the missing pieces. You should ponder and internalize each definition.
For each theorem, you should seek examples to show why each hypothesis is
necessary. Discussions with other students should help.

As a visual aid, definitions are in yellow boxes and theorems are in blue boxes
(in color versions of the book). Each theorem has an infomal descriptive name.

Please check the website below for additional information about the book,
including a link to videos that are freely available to accompany the book.

Your suggestions, comments, and corrections are most welcome.
Best wishes for success and enjoyment in learning linear algebra!

Sheldon Axler
San Francisco State University

website: https://linear.axler.net
e-mail: linear@axler.net
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Preface for Instructors

You are about to teach a course that will probably give students their second
exposure to linear algebra. During their first brush with the subject, your students
probably worked with Euclidean spaces and matrices. In contrast, this course will
emphasize abstract vector spaces and linear maps.

The title of this book deserves an explanation. Most linear algebra textbooks
use determinants to prove that every linear operator on a finite-dimensional com-
plex vector space has an eigenvalue. Determinants are difficult, nonintuitive,
and often defined without motivation. To prove the theorem about existence of
eigenvalues on complex vector spaces, most books must define determinants,
prove that a linear operator is not invertible if and only if its determinant equals 0,
and then define the characteristic polynomial. This tortuous (torturous?) path
gives students little feeling for why eigenvalues exist.

In contrast, the simple determinant-free proofs presented here (for example,
see 5.19) offer more insight. Once determinants have been moved to the end of
the book, a new route opens to the main goal of linear algebra—understanding
the structure of linear operators.

This book starts at the beginning of the subject, with no prerequisites other
than the usual demand for suitable mathematical maturity. A few examples
and exercises involve calculus concepts such as continuity, differentiation, and
integration. You can easily skip those examples and exercises if your students
have not had calculus. If your students have had calculus, then those examples and
exercises can enrich their experience by showing connections between different
parts of mathematics.

Even if your students have already seen some of the material in the first few
chapters, they may be unaccustomed to working exercises of the type presented
here, most of which require an understanding of proofs.

Here is a chapter-by-chapter summary of the highlights of the book:

• Chapter 1: Vector spaces are defined in this chapter, and their basic properties
are developed.

• Chapter 2: Linear independence, span, basis, and dimension are defined in this
chapter, which presents the basic theory of finite-dimensional vector spaces.

• Chapter 3: This chapter introduces linear maps. The key result here is the
fundamental theorem of linear maps: if 𝑇 is a linear map on 𝑉, then dim𝑉 =
dim null𝑇 + dim range𝑇. Quotient spaces and duality are topics in this chapter
at a higher level of abstraction than most of the book; these topics can be
skipped (except that duality is needed for tensor products in Section 9D).

xiii



xiv Preface for Instructors

• Chapter 4: The part of the theory of polynomials that will be needed to un-
derstand linear operators is presented in this chapter. This chapter contains no
linear algebra. It can be covered quickly, especially if your students are already
familiar with these results.

• Chapter 5: The idea of studying a linear operator by restricting it to small sub-
spaces leads to eigenvectors in the early part of this chapter. The highlight of this
chapter is a simple proof that on complex vector spaces, eigenvalues always ex-
ist. This result is then used to show that each linear operator on a complex vector
space has an upper-triangular matrix with respect to some basis. The minimal
polynomial plays an important role here and later in the book. For example, this
chapter gives a characterization of the diagonalizable operators in terms of the
minimal polynomial. Section 5E can be skipped if you want to save some time.

• Chapter 6: Inner product spaces are defined in this chapter, and their basic
properties are developed along with tools such as orthonormal bases and the
Gram–Schmidt procedure. This chapter also shows how orthogonal projections
can be used to solve certain minimization problems. The pseudoinverse is then
introduced as a useful tool when the inverse does not exist. The material on
the pseudoinverse can be skipped if you want to save some time.

• Chapter 7: The spectral theorem, which characterizes the linear operators for
which there exists an orthonormal basis consisting of eigenvectors, is one of
the highlights of this book. The work in earlier chapters pays off here with espe-
cially simple proofs. This chapter also deals with positive operators, isometries,
unitary operators, matrix factorizations, and especially the singular value de-
composition, which leads to the polar decomposition and norms of linear maps.

• Chapter 8: This chapter shows that for each operator on a complex vector space,
there is a basis of the vector space consisting of generalized eigenvectors of the
operator. Then the generalized eigenspace decomposition describes a linear
operator on a complex vector space. The multiplicity of an eigenvalue is defined
as the dimension of the corresponding generalized eigenspace. These tools are
used to prove that every invertible linear operator on a complex vector space
has a square root. Then the chapter gives a proof that every linear operator on
a complex vector space can be put into Jordan form. The chapter concludes
with an investigation of the trace of operators.

• Chapter 9: This chapter begins by looking at bilinear forms and showing that the
vector space of bilinear forms is the direct sum of the subspaces of symmetric
bilinear forms and alternating bilinear forms. Then quadratic forms are diag-
onalized. Moving to multilinear forms, the chapter shows that the subspace of
alternating 𝑛-linear forms on an 𝑛-dimensional vector space has dimension one.
This result leads to a clean basis-free definition of the determinant of an opera-
tor. For complex vector spaces, the determinant turns out to equal the product of
the eigenvalues, with each eigenvalue included in the product as many times as
its multiplicity. The chapter concludes with an introduction to tensor products.



Preface for Instructors xv

This book usually develops linear algebra simultaneously for real and complex
vector spaces by letting 𝐅 denote either the real or the complex numbers. If you and
your students prefer to think of 𝐅 as an arbitrary field, then see the comments at the
end of Section 1A. I prefer avoiding arbitrary fields at this level because they intro-
duce extra abstraction without leading to any new linear algebra. Also, students are
more comfortable thinking of polynomials as functions instead of the more formal
objects needed for polynomials with coefficients in finite fields. Finally, even if the
beginning part of the theory were developed with arbitrary fields, inner product
spaces would push consideration back to just real and complex vector spaces.

You probably cannot cover everything in this book in one semester. Going
through all the material in the first seven or eight chapters during a one-semester
course may require a rapid pace. If you must reach Chapter 9, then consider
skipping the material on quotient spaces in Section 3E, skipping Section 3F
on duality (unless you intend to cover tensor products in Section 9D), covering
Chapter 4 on polynomials in a half hour, skipping Section 5E on commuting
operators, and skipping the subsection in Section 6C on the pseudoinverse.

A goal more important than teaching any particular theorem is to develop in
students the ability to understand and manipulate the objects of linear algebra.
Mathematics can be learned only by doing. Fortunately, linear algebra has many
good homework exercises. When teaching this course, during each class I usually
assign as homework several of the exercises, due the next class. Going over the
homework might take up significant time in a typical class.

Some of the exercises are intended to lead curious students into important
topics beyond what might usually be included in a basic second course in linear
algebra.

The author’s top ten
Listed below are the author’s ten favorite results in the book, in order of their
appearance in the book. Students who leave your course with a good understanding
of these crucial results will have an excellent foundation in linear algebra.

• any two bases of a vector space have the same length (2.34)
• fundamental theorem of linear maps (3.21)
• existence of eigenvalues if 𝐅 = 𝐂 (5.19)
• upper-triangular form always exists if 𝐅 = 𝐂 (5.47)
• Cauchy–Schwarz inequality (6.14)
• Gram–Schmidt procedure (6.32)
• spectral theorem (7.29 and 7.31)
• singular value decomposition (7.70)
• generalized eigenspace decomposition theorem when 𝐅 = 𝐂 (8.22)
• dimension of alternating 𝑛-linear forms on 𝑉 is 1 if dim𝑉 = 𝑛 (9.37)
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Major improvements and additions for the fourth edition

• Over 250 new exercises and over 70 new examples.

• Increasing use of the minimal polynomial to provide cleaner proofs of multiple
results, including necessary and sufficient conditions for an operator to have an
upper-triangular matrix with respect to some basis (see Section 5C), necessary
and sufficient conditions for diagonalizability (see Section 5D), and the real
spectral theorem (see Section 7B).

• New section on commuting operators (see Section 5E).

• New subsection on pseudoinverse (see Section 6C).

• New subsections on QR factorization/Cholesky factorization (see Section 7D).

• Singular value decomposition now done for linear maps from an inner product
space to another (possibly different) inner product space, rather than only deal-
ing with linear operators from an inner product space to itself (see Section 7E).

• Polar decomposition now proved from singular value decomposition, rather than
in the opposite order; this has led to cleaner proofs of both the singular value
decomposition (see Section 7E) and the polar decomposition (see Section 7F).

• New subsection on norms of linear maps on finite-dimensional inner prod-
uct spaces, using the singular value decomposition to avoid even mentioning
supremum in the definition of the norm of a linear map (see Section 7F).

• New subsection on approximation by linear maps with lower-dimensional range
(see Section 7F).

• New elementary proof of the important result that if 𝑇 is an operator on a finite-
dimensional complex vector space 𝑉, then there exists a basis of 𝑉 consisting
of generalized eigenvectors of 𝑇 (see 8.9).

• New Chapter 9 on multilinear algebra, including bilinear forms, quadratic
forms, multilinear forms, and tensor products. Determinants now are defined
using a basis-free approach via alternating multilinear forms.

• New formatting to improve the student-friendly appearance of the book. For
example, the definition and result boxes now have rounded corners instead of
right-angle corners, for a gentler look. The main font size has been reduced
from 11 point to 10.5 point.

Please check the website below for additional links and information about the
book. Your suggestions, comments, and corrections are most welcome.

Best wishes for teaching a successful linear algebra class!

Contact the author, or Springer if the
author is not available, for permission
for translations or other commercial
reuse of the contents of this book.

Sheldon Axler
San Francisco State University

website: https://linear.axler.net
e-mail: linear@axler.net
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