Skip to main content

Information Transfer in Quantum Measurements: Irreversibility and Amplification

  • Chapter
Quantum Optics, Experimental Gravity, and Measurement Theory

Part of the book series: NATO Advanced Science Institutes Series ((NSSB,volume 94))

  • 662 Accesses

Abstract

The aim of these lectures is to investigate the transfer of information occurring in course of quantum interactions. In particular, I shall explore circumstances in which such an information transfer with the quantum environment of the considered quantum system leads to the destruction of the phase coherence between the states of the privileged basis in the system Hilbert space. This basis shall be called the pointer basis. I shall argue that states of this pointer basis correspond to the “classical” states of the observables of the quantum system in question.

[Heisenberg] . . remarks . . that even in the case of microscopic phenomena we may say, in a certain sense, that they are created by repeated observations. . .

[Niels Bohr1, in 1928 Nature article]

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. N. Bohr, The quantum postulate and the recent development of atomic theory, Nature 121: 580–590 (1928).

    Article  ADS  MATH  Google Scholar 

  2. W. Heisenberg, Über den anschaulichen Inhalt der quanten theoretischen Kinematik und Mechanik, Z. Physik 43:172–198 (1927); English translation, The physical content of quantum kinematic and mechanics, to appear in: “Quantum Theory and Measurement,” J.A. Wheeler and W.H. Zurek, Princeton University Press (1982).

    Google Scholar 

  3. J. von Neumann, “Mathematical Foundations of Quantum Mechanics”, translated by R. T. Beyer, Princeton University Press (1955).

    MATH  Google Scholar 

  4. A. Einstein, B. Podolsky and N. Rosen, Can quantum-mechanical description of physical reality be considered complete?, Phys. Rev.47:777–780 (1935)

    Article  ADS  MATH  Google Scholar 

  5. E. Schrödinger, Die gegenwärtige Situation in der Quanten mechanik, Naturwiss. 23:807–812; 823–828; 844–849 (1935); English translation, The present situation in quantum mechanics.

    Article  ADS  Google Scholar 

  6. J. D. Trimmer in: Proc. Am. Phil. Soc. 124:323–338 (1980).

    Google Scholar 

  7. N. Bohr, Discussion with Einstein on epistemological problems in atomic physics, in: “Albert Einstein: Philosopher- Scientist,” P. A. Schilpp, ed., The Library of Living Philosophers, Evanston (1949).

    Google Scholar 

  8. F. London and E. Bauer, “La théorie de 1’observation en Mécanique quantique,” Hermann, Paris ( 1939 ); English translation “The Theory of Observation in Quantum Mechanics” to appear in “Quantum Theory and Measurement,” J. A. Wheeler and W. H. Zurek, Princeton University Press (1982).

    Google Scholar 

  9. H. D. Zeh, On the irreversibility of time and observation in quantum theory, in: “Foundations of Quantum Mechanics,” B. D’Espagnat, ed., Academic Press, New York (1971).

    Google Scholar 

  10. E.P. Wigner, Review of the quantum mechanical measurement problem, preprint based on a lecture delivered by E. P. Wigner at Los Alamos, June 1981. See also E. P. Wigner, this volume, and references therein.

    Google Scholar 

  11. D. Bohm, “Quantum Theory”, Prentice-Hall, New York (1951).

    Google Scholar 

  12. V. B. Braginsky and A. B. Manukin, “Measurement of Weak Forces in Physics Experiments,” University of Chicago Press, Chicago (1977).

    Google Scholar 

  13. K. S. Thorne, R. W. P. Drever, C. M. Caves, M. Zimmermann, and V. D. Sandberg, Quantum nondemoltion measurements of harmonic oscillators, Phys. Rev. Lett. 40:667–671 (1978)

    Google Scholar 

  14. C. M. Caves, K. S. Thorne, R. W. P. Drever, V. D. Sandberg, and M. Zimmermann, On the measurement of a weak classical force coupled to a quantummechanical oscillator, Rev. Mod. Phys. 52:341–392 (1980); see also C. M. Caves, this volume, and references therein.

    Article  ADS  Google Scholar 

  15. W. G. Unruh, Quantum nondemolition and gravity wave detection, Phys. Rev. D 19:2888–2896 (1979), see also W. G. Unruh, this volume.

    Article  ADS  Google Scholar 

  16. H. Everett III, “Relative State” formulation of quantum mechanics, Rev. Mod. Phys.29:454–462 (1957).

    Article  MathSciNet  ADS  Google Scholar 

  17. H. P. Yuen, this volume.

    Google Scholar 

  18. I. Prigogine, C. George, F. Henin, and L. Rosenfeld, A unified formulation of dynamics and thermodynamics, Chemica Scripta 4: 5–32 (1973).

    Google Scholar 

  19. S. W. Hawking, Breakdown of predictability in gravitational collapse, Phys. Rev. D 14:2460–2473 (1976).

    Article  MathSciNet  ADS  Google Scholar 

  20. R. Penrose, Time asymmetry and quantum gravity, to appear in “Quantum Gravity II, A Second Oxford Symposium,” Oxford University Press, Oxford (1982).

    Google Scholar 

  21. E. P. Wigner, Remarks on the Mind-Body question, in “The Scientist Speculates,” I. J. Good, ed., Heinmann, London (1961).

    Google Scholar 

  22. M. O. Scully, R. Shea and J. D. McCullen, State reduction in quantum mechanics: A calculational example, Phys. Reports 43:485–498 (1978).

    Google Scholar 

  23. M. O. Scully, this volume, and references therein.

    Google Scholar 

  24. J. A. Wheeler, The “past” and the “delayed choice” double slit experiment, in: “Mathematical Foundations of Quantum Theory,” Academic Press, New York (1978).

    Google Scholar 

  25. J. A. Wheeler, Frontiers of time, in: “Problems in the Foundations of Physics”, N. Toraldo di Francia, ed., North Holland, Amsterdam (1979).

    Google Scholar 

  26. H. S. Green, Observation in quantum mechanics, Nuovo Cimento 9: 880–889 (1958).

    Article  Google Scholar 

  27. J. A. Wheeler, The “past” and the “delayed choice” double slit experiment, in: “Mathematical Foundations of Quantum Theory,” Academic Press, New York (1978).

    Google Scholar 

  28. H. S. Green, Observation in quantum mechanics, Nuovo Cimento 9: 880–889 (1958).

    Article  Google Scholar 

  29. A. Daneri, A. Loinger and G. M. Prosperi, Quantum theory of measurement and ergodicity conditions, Nuclear Phys. 33: 297–319 (1962).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  30. A. Daneri, A. Loinger and G. M. Prosperi, Quantum theory of measurement and ergodicity conditions, Nuclear Phys. 33: 297–319 (1962).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  31. F. Haake and W. Weidlich, A model for measuring process in quantum theory, Z. Phys. 213:451–465.

    Google Scholar 

  32. G. G. Emch, On quantum measurement processes, Helv. Phys. Acta 45:1049–1056 (1972).

    Google Scholar 

  33. G. G. Emch, On quantum measurement processes, Helv. Phys. Acta 45:1049–1056 (1972).

    Google Scholar 

  34. R. W. Zwanzig, Statistical mechanics of irreversibility, in “Lectures on Theoretical Physics” 3:106–141, Wiley- Interscience, New York (1961).

    Google Scholar 

  35. H. D. Zeh, On the interpretation of measurement in quantum theory, Found Phys. 1: 69–76 (1970).

    Article  ADS  Google Scholar 

  36. B. S. DeWitt and N. Graham, eds., “The Many-World Interpretation of Quantum Mechanics” Princeton University Press, Princeton (1973).

    Google Scholar 

  37. C. H. Shannon and W. Weaver, “The Mathematical Theory of Communication,” University of Illinois Press, Urbana (1949).

    MATH  Google Scholar 

  38. B. D’Espagnat, “Conceptual Foundations of Quantum Mechanics” Benjamin, Reading, Mass. (second edition, 1976 ).

    Google Scholar 

  39. R. Balescu, chapters 14–17 in “Equilibrium and Nonequilibrium Statistical Mechanics,” Wiley-Interscience, New York (1975).

    Google Scholar 

  40. D. Deutsch, Quantum theory as a universal physical theory, Phys. Rep., submitted.

    Google Scholar 

  41. P. Bocchieri and A. Loinger, Quantum recurrence theorem, Phys. Rev. 107:337–338 (1957).

    Google Scholar 

  42. L. Lugiato, this volume.

    Google Scholar 

  43. S. Stenholm, this volume.

    Google Scholar 

  44. S. Machida and M. Namiki, Theory of measurement in quantum mechanics, Progr. Theor. Phys. 63:1457–1473 and 1833–1847 (1980).

    Article  ADS  Google Scholar 

  45. H. Araki, A remark on Machida-Namiki theory of measurement, Progr. Theor. Phys. 64:719–730 (1980).

    MathSciNet  ADS  MATH  Google Scholar 

  46. N. Bohr, Can quantum-mechanical description of physical reality be considered complete?, Phys. Rev. 48:696–702 (1935).

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Plenum Press, New York

About this chapter

Cite this chapter

Zurek, W.H. (1983). Information Transfer in Quantum Measurements: Irreversibility and Amplification. In: Meystre, P., Scully, M.O. (eds) Quantum Optics, Experimental Gravity, and Measurement Theory. NATO Advanced Science Institutes Series, vol 94. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-3712-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-3712-6_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-3714-0

  • Online ISBN: 978-1-4613-3712-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics