Skip to main content
Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

Gluon-induced Higgs-strahlung at next-to-leading order QCD

  • Open access
  • Published: 13 February 2013
  • Volume 2013, article number 78, (2013)
  • Cite this article
Download PDF

You have full access to this open access article

Journal of High Energy Physics Aims and scope Submit manuscript
Gluon-induced Higgs-strahlung at next-to-leading order QCD
Download PDF
  • Lukas Altenkamp1,
  • Stefan Dittmaier1,
  • Robert V. Harlander2,
  • Heidi Rzehak1,3 &
  • …
  • Tom J. E. Zirke2 
  • 736 Accesses

  • 120 Citations

  • 1 Altmetric

  • Explore all metrics

Abstract

Gluon-induced contributions to the associated production of a Higgs and a Z boson are calculated with NLO accuracy in QCD. They constitute a significant contribution to the cross section for this process. The perturbative correction factor (K-factor) is calculated in the limit of infinite top-quark and vanishing bottom-quark masses. The qualitative similarity of the results to the well-known ones for the gluon-fusion process gg → H allows to conclude that rescaling the LO prediction by this K-factor leads to a reliable NLO result and realistic error estimate due to missing higher-order perturbative effects. We consider the total inclusive cross section as well as a scenario with a boosted Higgs boson, where the Higgs boson’s transverse momentum is restricted to values p T,H > 200 GeV. In both cases, we find large correction factors K ≈ 2 in most of the parameter space.

Article PDF

Download to read the full article text

Similar content being viewed by others

Higgs boson production at large transverse momentum within the SMEFT: analytical results

Article Open access 04 October 2018

Light quark mediated Higgs boson threshold production in the next-to-leading logarithmic approximation

Article Open access 27 July 2020

Higgs boson production at the LHC using the qT subtraction formalism at N3LO QCD

Article Open access 14 February 2019
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. ATLAS collaboration, Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].

    ADS  Google Scholar 

  2. CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].

    ADS  Google Scholar 

  3. CDF, D0 collaboration, T. Aaltonen et al., Evidence for a particle produced in association with weak bosons and decaying to a bottom-antibottom quark pair in Higgs boson searches at the Tevatron, Phys. Rev. Lett. 109 (2012) 071804 [arXiv:1207.6436] [INSPIRE].

    Article  ADS  Google Scholar 

  4. LHC Higgs Cross Section Working Group collaboration, S. Dittmaier et al., Handbook of LHC Higgs cross sections: 1. inclusive observables, arXiv:1101.0593 [INSPIRE].

  5. LHC Higgs Cross Section Working Group collaboration, S. Dittmaier et al., Handbook of LHC Higgs cross sections: 2. Differential distributions, arXiv:1201.3084 [INSPIRE].

  6. J.M. Butterworth, A.R. Davison, M. Rubin and G.P. Salam, Jet substructure as a new Higgs search channel at the LHC, Phys. Rev. Lett. 100 (2008) 242001 [arXiv:0802.2470] [INSPIRE].

    Article  ADS  Google Scholar 

  7. R. Hamberg, W. van Neerven and T. Matsuura, A complete calculation of the order \( \alpha_s^2 \) correction to the Drell-Yan K factor, Nucl. Phys. B 359 (1991) 343 [Erratum ibid. B 644 (2002) 403-404] [INSPIRE].

  8. R.V. Harlander and W.B. Kilgore, Next-to-next-to-leading order Higgs production at hadron colliders, Phys. Rev. Lett. 88 (2002) 201801 [hep-ph/0201206] [INSPIRE].

    Article  ADS  Google Scholar 

  9. O. Brein, A. Djouadi and R. Harlander, NNLO QCD corrections to the Higgs-strahlung processes at hadron colliders, Phys. Lett. B 579 (2004) 149 [hep-ph/0307206] [INSPIRE].

    Article  ADS  Google Scholar 

  10. G. Ferrera, M. Grazzini and F. Tramontano, Associated WH production at hadron colliders: a fully exclusive QCD calculation at NNLO, Phys. Rev. Lett. 107 (2011) 152003 [arXiv:1107.1164] [INSPIRE].

    Article  ADS  Google Scholar 

  11. O. Brein, R. Harlander, M. Wiesemann and T. Zirke, Top-Quark Mediated Effects in Hadronic Higgs-Strahlung, Eur. Phys. J. C 72 (2012) 1868 [arXiv:1111.0761] [INSPIRE].

    Article  ADS  Google Scholar 

  12. M. Ciccolini, S. Dittmaier and M. Krämer, Electroweak radiative corrections to associated WH and ZH production at hadron colliders, Phys. Rev. D 68 (2003) 073003 [hep-ph/0306234] [INSPIRE].

    ADS  Google Scholar 

  13. A. Denner, S. Dittmaier, S. Kallweit and A. Mück, Electroweak corrections to Higgs-strahlung off W/Z bosons at the Tevatron and the LHC with HAWK, JHEP 03 (2012) 075 [arXiv:1112.5142] [INSPIRE].

    Article  ADS  Google Scholar 

  14. O. Brein et al., Precision calculations for associated WH and ZH production at hadron colliders, hep-ph/0402003 [INSPIRE].

  15. A. Banfi and J. Cancino, Implications of QCD radiative corrections on high-p T Higgs searches, Phys. Lett. B 718 (2012) 499 [arXiv:1207.0674] [INSPIRE].

    Article  ADS  Google Scholar 

  16. S. Dawson, S. Dittmaier and M. Spira, Neutral Higgs boson pair production at hadron colliders: QCD corrections, Phys. Rev. D 58 (1998) 115012 [hep-ph/9805244] [INSPIRE].

    ADS  Google Scholar 

  17. L.D. Landau, The moment of a 2-photon system, Dokl. Akad. Nawk. 60 (1948) 207.

    Google Scholar 

  18. C.-N. Yang, Selection rules for the dematerialization of a particle into two photons, Phys. Rev. 77 (1950) 242 [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  19. B.A. Kniehl, Associated production of Higgs and Z bosons from gluon fusion in hadron collisions, Phys. Rev. D 42 (1990) 2253 [INSPIRE].

    ADS  Google Scholar 

  20. B.A. Kniehl, On the decay mode Z → Hgg, Phys. Rev. D 42 (1990) 3100 [INSPIRE].

    ADS  Google Scholar 

  21. O. Brein, R.V. Harlander and T.J. Zirke, vh@nnlo — Higgs strahlung at hadron colliders, Comput. Phys. Commun. 184 (2013) 998 [arXiv:1210.5347] [INSPIRE].

    Article  ADS  Google Scholar 

  22. M. Spira, A. Djouadi, D. Graudenz and P. Zerwas, Higgs boson production at the LHC, Nucl. Phys. B 453 (1995) 17 [hep-ph/9504378] [INSPIRE].

    Article  ADS  Google Scholar 

  23. M. Krämer, E. Laenen and M. Spira, Soft gluon radiation in Higgs boson production at the LHC, Nucl. Phys. B 511 (1998) 523 [hep-ph/9611272] [INSPIRE].

    Article  ADS  Google Scholar 

  24. S. Marzani, R.D. Ball, V. Del Duca, S. Forte and A. Vicini, Higgs production via gluon-gluon fusion with finite top mass beyond next-to-leading order, Nucl. Phys. B 800 (2008) 127 [arXiv:0801.2544] [INSPIRE].

    Article  ADS  Google Scholar 

  25. R.V. Harlander, H. Mantler, S. Marzani and K.J. Ozeren, Higgs production in gluon fusion at next-to-next-to-leading order QCD for finite top mass, Eur. Phys. J. C 66 (2010) 359 [arXiv:0912.2104] [INSPIRE].

    Article  ADS  Google Scholar 

  26. R.V. Harlander and K.J. Ozeren, Top mass effects in Higgs production at next-to-next-to-leading order QCD: Virtual corrections, Phys. Lett. B 679 (2009) 467 [arXiv:0907.2997] [INSPIRE].

    Article  ADS  Google Scholar 

  27. A. Pak, M. Rogal and M. Steinhauser, Finite top quark mass effects in NNLO Higgs boson production at LHC, JHEP 02 (2010) 025 [arXiv:0911.4662] [INSPIRE].

    Article  ADS  Google Scholar 

  28. A. Pak, M. Rogal and M. Steinhauser, Production of scalar and pseudo-scalar Higgs bosons to next-to-next-to-leading order at hadron colliders, JHEP 09 (2011) 088 [arXiv:1107.3391] [INSPIRE].

    Article  ADS  Google Scholar 

  29. R.V. Harlander, T. Neumann, K.J. Ozeren and M. Wiesemann, Top-mass effects in differential Higgs production through gluon fusion at order \( \alpha_s^4 \), JHEP 08 (2012) 139 [arXiv:1206.0157] [INSPIRE].

    Article  ADS  Google Scholar 

  30. V.A. Smirnov, Applied asymptotic expansions in momenta and masses, Springer Tracts on Modern Physics volume 177, Springer, U.S.A. (2002).

  31. V.A. Smirnov, Asymptotic expansions in momenta and masses and calculation of Feynman diagrams, Mod. Phys. Lett. A 10 (1995) 1485 [hep-th/9412063] [INSPIRE].

    Article  ADS  Google Scholar 

  32. G. ’t Hooft and M. Veltman, Regularization and renormalization of gauge fields, Nucl. Phys. B 44 (1972) 189 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  33. P. Breitenlohner and D. Maison, Dimensional renormalization and the action principle, Commun. Math. Phys. 52 (1977) 11 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  34. S.A. Larin, The renormalization of the axial anomaly in dimensional regularization, Phys. Lett. B 303 (1993) 113 [hep-ph/9302240] [INSPIRE].

    Article  ADS  Google Scholar 

  35. M. Spira, A. Djouadi, D. Graudenz and P. Zerwas, SUSY Higgs production at proton colliders, Phys. Lett. B 318 (1993) 347 [INSPIRE].

    Article  ADS  Google Scholar 

  36. R.P. Kauffman and W. Schaffer, QCD corrections to production of Higgs pseudoscalars, Phys. Rev. D 49 (1994) 551 [hep-ph/9305279] [INSPIRE].

    ADS  Google Scholar 

  37. R.V. Harlander and W.B. Kilgore, Production of a pseudoscalar Higgs boson at hadron colliders at next-to-next-to leading order, JHEP 10 (2002) 017 [hep-ph/0208096] [INSPIRE].

    Article  ADS  Google Scholar 

  38. C. Anastasiou and K. Melnikov, Pseudoscalar Higgs boson production at hadron colliders in NNLO QCD, Phys. Rev. D 67 (2003) 037501 [hep-ph/0208115] [INSPIRE].

    ADS  Google Scholar 

  39. V. Ahrens, T. Becher, M. Neubert and L.L. Yang, Origin of the large perturbative corrections to Higgs production at hadron colliders, Phys. Rev. D 79 (2009) 033013 [arXiv:0808.3008] [INSPIRE].

    ADS  Google Scholar 

  40. J. Küblbeck, M. Böhm and A. Denner, FeynArts: computer algebraic generation of Feynman graphs and amplitudes, Commun. Math. Phys. 60 (1990) 165.

    Article  Google Scholar 

  41. P. Nogueira, Automatic Feynman graph generation, J. Comput. Phys. 105 (1993) 279.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  42. R. Harlander, T. Seidensticker and M. Steinhauser, Complete corrections of O(αα s ) to the decay of the Z boson into bottom quarks, Phys. Lett. B 426 (1998) 125 [hep-ph/9712228] [INSPIRE].

    Article  ADS  Google Scholar 

  43. T. Seidensticker, Automatic application of successive asymptotic expansions of Feynman diagrams, hep-ph/9905298 [INSPIRE].

  44. M. Steinhauser, MATAD: a program package for the computation of MAssive TADpoles, Comput. Phys. Commun. 134 (2001) 335 [hep-ph/0009029] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  45. R.V. Harlander, Virtual corrections to gg → H to two loops in the heavy top limit, Phys. Lett. B 492 (2000) 74 [hep-ph/0007289] [INSPIRE].

    Article  ADS  Google Scholar 

  46. S. Catani and M.H. Seymour, A general algorithm for calculating jet cross-sections in NLO QCD, Nucl. Phys. B 485 (1997) 291 [Erratum ibid. B 510 (1998) 503-504] [hep-ph/9605323] [INSPIRE].

  47. K. Chetyrkin, J.H. Kühn and M. Steinhauser, RunDec: a Mathematica package for running and decoupling of the strong coupling and quark masses, Comput. Phys. Commun. 133 (2000) 43 [hep-ph/0004189] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  48. G. ’t Hooft and M.J.G. Veltman, Scalar one loop integrals, Nucl. Phys. B 153 (1979) 365 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  49. G. Passarino and M. Veltman, One loop corrections for e + e − annihilation Into μ + μ − in the Weinberg model, Nucl. Phys. B 160 (1979) 151 [INSPIRE].

    Article  ADS  Google Scholar 

  50. W. Beenakker and A. Denner, Infrared divergent scalar box integrals with applications in the electroweak standard model, Nucl. Phys. B 338 (1990) 349 [INSPIRE].

    Article  ADS  Google Scholar 

  51. A. Denner and S. Dittmaier, Reduction of one loop tensor five point integrals, Nucl. Phys. B 658 (2003) 175 [hep-ph/0212259] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  52. A. Denner and S. Dittmaier, Reduction schemes for one-loop tensor integrals, Nucl. Phys. B 734 (2006) 62 [hep-ph/0509141] [INSPIRE].

    Article  ADS  Google Scholar 

  53. A. Denner and S. Dittmaier, Scalar one-loop 4-point integrals, Nucl. Phys. B 844 (2011) 199 [arXiv:1005.2076] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  54. T. Hahn, Generating Feynman diagrams and amplitudes with FeynArts 3, Comput. Phys. Commun. 140 (2001) 418 [hep-ph/0012260] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  55. T. Hahn and M. Pérez-Victoria, Automatized one loop calculations in four-dimensions and D-dimensions, Comput. Phys. Commun. 118 (1999) 153 [hep-ph/9807565] [INSPIRE].

    Article  ADS  Google Scholar 

  56. T. Hahn, Automatic loop calculations with FeynArts, FormCalc and LoopTools, Nucl. Phys. Proc. Suppl. 89 (2000) 231 [hep-ph/0005029] [INSPIRE].

    Article  ADS  Google Scholar 

  57. J. Vermaseren, New features of FORM, math-ph/0010025 [INSPIRE].

  58. R.K. Ellis and G. Zanderighi, Scalar one-loop integrals for QCD, JHEP 02 (2008) 002 [arXiv:0712.1851] [INSPIRE].

    Article  ADS  Google Scholar 

  59. A. Martin, W. Stirling, R. Thorne and G. Watt, Parton distributions for the LHC, Eur. Phys. J. C 63 (2009) 189 [arXiv:0901.0002] [INSPIRE].

    Article  ADS  Google Scholar 

  60. M. Whalley, D. Bourilkov and R. Group, The Les Houches accord PDFs (LHAPDF) and LHAGLUE, hep-ph/0508110 [INSPIRE].

  61. LHAPDF the Les Houches Accord PDF Interface, http://projects.hepforge.org/lhapdf/.

  62. M. Botje et al., The PDF4LHC working group interim recommendations, arXiv:1101.0538 [INSPIRE].

  63. H.-L. Lai et al., New parton distributions for collider physics, Phys. Rev. D 82 (2010) 074024 [arXiv:1007.2241] [INSPIRE].

    ADS  Google Scholar 

  64. R.D. Ball et al., Parton distributions with LHC data, Nucl. Phys. B 867 (2013) 244 [arXiv:1207.1303] [INSPIRE].

    Article  ADS  Google Scholar 

  65. S.L. Adler, Axial vector vertex in spinor electrodynamics, Phys. Rev. 177 (1969) 2426 [INSPIRE].

    Article  ADS  Google Scholar 

  66. S.L. Adler and W.A. Bardeen, Absence of higher order corrections in the anomalous axial vector divergence equation, Phys. Rev. 182 (1969) 1517 [INSPIRE].

    Article  ADS  Google Scholar 

  67. A. Denner, Techniques for calculation of electroweak radiative corrections at the one loop level and results for W physics at LEP-200, Fortschr. Phys. 41 (1993) 307 [arXiv:0709.1075] [INSPIRE].

    Google Scholar 

  68. S. Dittmaier, Separation of soft and collinear singularities from one loop N point integrals, Nucl. Phys. B 675 (2003) 447 [hep-ph/0308246] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, D-79104, Freiburg, Germany

    Lukas Altenkamp, Stefan Dittmaier & Heidi Rzehak

  2. Fachbereich C, Bergische Universität Wuppertal, D-42097, Wuppertal, Germany

    Robert V. Harlander & Tom J. E. Zirke

  3. TH Division, Physics Department, CERN, CH-1211, Geneva 23, Switzerland

    Heidi Rzehak

Authors
  1. Lukas Altenkamp
    View author publications

    You can also search for this author inPubMed Google Scholar

  2. Stefan Dittmaier
    View author publications

    You can also search for this author inPubMed Google Scholar

  3. Robert V. Harlander
    View author publications

    You can also search for this author inPubMed Google Scholar

  4. Heidi Rzehak
    View author publications

    You can also search for this author inPubMed Google Scholar

  5. Tom J. E. Zirke
    View author publications

    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence to Robert V. Harlander.

Additional information

ArXiv ePrint: 1211.5015

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License ( https://creativecommons.org/licenses/by/2.0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and permissions

About this article

Cite this article

Altenkamp, L., Dittmaier, S., Harlander, R.V. et al. Gluon-induced Higgs-strahlung at next-to-leading order QCD. J. High Energ. Phys. 2013, 78 (2013). https://doi.org/10.1007/JHEP02(2013)078

Download citation

  • Received: 22 November 2012

  • Revised: 17 January 2013

  • Accepted: 21 January 2013

  • Published: 13 February 2013

  • DOI: https://doi.org/10.1007/JHEP02(2013)078

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • NLO Computations
  • Hadronic Colliders
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our brands

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Discover
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Legal notice
  • Cancel contracts here

Not affiliated

Springer Nature

© 2025 Springer Nature