Skip to main content
Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

Parton distributions for the LHC run II

  • Regular Article - Theoretical Physics
  • Open access
  • Published: 08 April 2015
  • Volume 2015, article number 40, (2015)
  • Cite this article
Download PDF

You have full access to this open access article

Journal of High Energy Physics Aims and scope Submit manuscript
Parton distributions for the LHC run II
Download PDF
  • The NNPDF collaboration,
  • Richard D. Ball1,2,
  • Valerio Bertone2,
  • Stefano Carrazza2,4,
  • Christopher S. Deans1,
  • Luigi Del Debbio1,
  • Stefano Forte4,
  • Alberto Guffanti5,
  • Nathan P. Hartland1,
  • José I. Latorre3,
  • Juan Rojo6 &
  • …
  • Maria Ubiali7 
  • 3231 Accesses

  • 1852 Citations

  • 25 Altmetric

  • 26 Mentions

  • Explore all metrics

A preprint version of the article is available at arXiv.

Abstract

We present NNPDF3.0, the first set of parton distribution functions (PDFs) determined with a methodology validated by a closure test. NNPDF3.0 uses a global dataset including HERA-II deep-inelastic inclusive cross-sections, the combined HERA charm data, jet production from ATLAS and CMS, vector boson rapidity and transverse momentum distributions from ATLAS, CMS and LHCb, W +c data from CMS and top quark pair production total cross sections from ATLAS and CMS. Results are based on LO, NLO and NNLO QCD theory and also include electroweak corrections. To validate our methodology, we show that PDFs determined from pseudo-data generated from a known underlying law correctly reproduce the statistical distributions expected on the basis of the assumed experimental uncertainties. This closure test ensures that our methodological uncertainties are negligible in comparison to the generic theoretical and experimental uncertainties of PDF determination. This enables us to determine with confidence PDFs at different perturbative orders and using a variety of experimental datasets ranging from HERA-only up to a global set including the latest LHC results, all using precisely the same validated methodology. We explore some of the phenomenological implications of our results for the upcoming 13 TeV Run of the LHC, in particular for Higgs production cross-sections.

Article PDF

Download to read the full article text

Similar content being viewed by others

Parton distributions from high-precision collider data

Article Open access 04 October 2017

New results in the CTEQ-TEA global analysis of parton distributions in the nucleon

Article Open access 04 December 2024

Parton distributions from LHC, HERA, Tevatron and fixed target data: MSHT20 PDFs

Article Open access 21 April 2021

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.
  • Experimental Particle Physics
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. M. Diemoz, F. Ferroni, E. Longo and G. Martinelli, Parton densities from deep inelastic scattering to hadronic processes at super collider energies, Z. Phys. C 39 (1988) 21 [INSPIRE].

    ADS  Google Scholar 

  2. L. Demortier, Proceedings, PHYSTAT 2011 Workshop on Statistical Issues Related to Discovery Claims in Search Experiments and Unfolding, January 17-20, CERN, Geneva, (2011) see chapter Open Issues in the Wake of Banff 2011.

  3. S. Forte, L. Garrido, J.I. Latorre and A. Piccione, Neural network parametrization of deep inelastic structure functions, JHEP 05 (2002) 062 [hep-ph/0204232] [INSPIRE].

    Article  ADS  Google Scholar 

  4. NNPDF collaboration, L. Del Debbio et al., Unbiased determination of the proton structure function F (2)p with faithful uncertainty estimation, JHEP 03 (2005) 080 [hep-ph/0501067] [INSPIRE].

    Article  ADS  Google Scholar 

  5. NNPDF collaboration, L. Del Debbio et al., Neural network determination of parton distributions: the nonsinglet case, JHEP 03 (2007) 039 [hep-ph/0701127] [INSPIRE].

    Article  ADS  Google Scholar 

  6. NNPDF collaboration, R.D. Ball et al., A determination of parton distributions with faithful uncertainty estimation, Nucl. Phys. B 809 (2009) 1 [Erratum ibid. B 816 (2009) 293] [arXiv:0808.1231] [INSPIRE].

  7. NNPDF collaboration, J. Rojo et al., Update on neural network parton distributions: NNPDF1.1, arXiv:0811.2288 [INSPIRE].

  8. NNPDF collaboration, R.D. Ball et al., Precision determination of electroweak parameters and the strange content of the proton from neutrino deep-inelastic scattering, Nucl. Phys. B 823 (2009) 195 [arXiv:0906.1958] [INSPIRE].

    ADS  MATH  Google Scholar 

  9. NNPDF collaboration, R.D. Ball et al., Fitting parton distribution data with multiplicative normalization uncertainties, JHEP 05 (2010) 075 [arXiv:0912.2276] [INSPIRE].

    Google Scholar 

  10. R.D. Ball et al., A first unbiased global NLO determination of parton distributions and their uncertainties, Nucl. Phys. B 838 (2010) 136 [arXiv:1002.4407] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  11. R.D. Ball et al., Impact of heavy quark masses on parton distributions and LHC phenomenology, Nucl. Phys. B 849 (2011) 296 [arXiv:1101.1300] [INSPIRE].

    Article  ADS  Google Scholar 

  12. NNPDF collaboration, R.D. Ball et al., Unbiased global determination of parton distributions and their uncertainties at NNLO and at LO, Nucl. Phys. B 855 (2012) 153 [arXiv:1107.2652] [INSPIRE].

    ADS  Google Scholar 

  13. R.D. Ball et al., Parton distributions with LHC data, Nucl. Phys. B 867 (2013) 244 [arXiv:1207.1303] [INSPIRE].

    Article  ADS  Google Scholar 

  14. G. Watt and R.S. Thorne, Study of Monte Carlo approach to experimental uncertainty propagation with MSTW 2008 PDFs, JHEP 08 (2012) 052 [arXiv:1205.4024] [INSPIRE].

    Article  ADS  Google Scholar 

  15. G. Cowan, Statistical data analysis, Oxford University Press, Oxford U.K. (2002).

    Google Scholar 

  16. H1, ZEUS collaboration, V. Radescu, Combination and QCD analysis of the HERA inclusive cross sections, PoS(ICHEP 2010)168.

  17. ZEUS, H1 collaboration, A.M. Cooper-Sarkar, PDF Fits at HERA, PoS(EPS-HEP2011)320 [arXiv:1112.2107] [INSPIRE].

  18. NNPDF collaboration, R.D. Ball et al., Reweighting NNPDFs: the W lepton asymmetry, Nucl. Phys. B 849 (2011) 112 [Erratum ibid. B 854 (2012) 926] [arXiv:1012.0836] [INSPIRE].

  19. New Muon collaboration, M. Arneodo et al., Accurate measurement of F d2 /F p2 and R d − R p, Nucl. Phys. B 487 (1997) 3 [hep-ex/9611022] [INSPIRE].

    ADS  Google Scholar 

  20. New Muon collaboration, M. Arneodo et al., Measurement of the proton and deuteron structure functions, F p2 and F d2 and of the ratio σ L /σ T , Nucl. Phys. B 483 (1997) 3 [hep-ph/9610231] [INSPIRE].

    ADS  Google Scholar 

  21. BCDMS collaboration, A.C. Benvenuti et al., A high statistics measurement of the proton structure functions F 2(x, Q 2) and R from deep inelastic muon scattering at high Q 2, Phys. Lett. B 223 (1989) 485 [INSPIRE].

    ADS  Google Scholar 

  22. BCDMS collaboration, A.C. Benvenuti et al., A high statistics measurement of the deuteron structure functions F 2(X, Q 2) and R from deep inelastic muon scattering at high Q 2, Phys. Lett. B 237 (1990) 592 [INSPIRE].

    ADS  Google Scholar 

  23. L.W. Whitlow, E.M. Riordan, S. Dasu, S. Rock and A. Bodek, Precise measurements of the proton and deuteron structure functions from a global analysis of the SLAC deep inelastic electron scattering cross-sections, Phys. Lett. B 282 (1992) 475 [INSPIRE].

    Article  ADS  Google Scholar 

  24. H1, ZEUS collaboration, F.D. Aaron et al., Combined measurement and QCD analysis of the inclusive e ± p scattering cross sections at HERA, JHEP 01 (2010) 109 [arXiv:0911.0884] [INSPIRE].

    ADS  Google Scholar 

  25. H1 collaboration, F.D. Aaron et al., Measurement of the proton structure function F L (x, Q 2) at low x, Phys. Lett. B 665 (2008) 139 [arXiv:0805.2809] [INSPIRE].

    ADS  Google Scholar 

  26. ZEUS collaboration, J. Breitweg et al., Measurement of D ∗± production and the charm contribution to F 2 in deep inelastic scattering at HERA, Eur. Phys. J. C 12 (2000) 35 [hep-ex/9908012] [INSPIRE].

    Article  ADS  Google Scholar 

  27. ZEUS collaboration, S. Chekanov et al., Measurement of D ∗± production in deep inelastic e ± p scattering at HERA, Phys. Rev. D 69 (2004) 012004 [hep-ex/0308068] [INSPIRE].

    Google Scholar 

  28. ZEUS collaboration, S. Chekanov et al., Measurement of D ± and D 0 production in deep inelastic scattering using a lifetime tag at HERA, Eur. Phys. J. C 63 (2009) 171 [arXiv:0812.3775] [INSPIRE].

    Google Scholar 

  29. ZEUS collaboration, S. Chekanov et al., Measurement of charm and beauty production in deep inelastic ep scattering from decays into muons at HERA, Eur. Phys. J. C 65 (2010) 65 [arXiv:0904.3487] [INSPIRE].

    ADS  Google Scholar 

  30. H1 collaboration, C. Adloff et al., Measurement of D ∗± meson production and F c2 in deep inelastic scattering at HERA, Phys. Lett. B 528 (2002) 199 [hep-ex/0108039] [INSPIRE].

    ADS  Google Scholar 

  31. H1 collaboration, F.D. Aaron et al., Measurement of the D ∗± meson production cross section and F c2 , at high Q 2 , in ep scattering at HERA, Phys. Lett. B 686 (2010) 91 [arXiv:0911.3989] [INSPIRE].

    ADS  Google Scholar 

  32. H1 collaboration, F.D. Aaron et al., Measurement of the charm and beauty structure functions using the H1 vertex detector at HERA, Eur. Phys. J. C 65 (2010) 89 [arXiv:0907.2643] [INSPIRE].

    ADS  Google Scholar 

  33. ZEUS collaboration, S. Chekanov et al., Measurement of high-Q 2 neutral current deep inelastic e − p scattering cross sections with a longitudinally polarised electron beam at HERA, Eur. Phys. J. C 62 (2009) 625 [arXiv:0901.2385] [INSPIRE].

    Google Scholar 

  34. ZEUS collaboration, S. Chekanov et al., Measurement of charged current deep inelastic scattering cross sections with a longitudinally polarised electron beam at HERA, Eur. Phys. J. C 61 (2009) 223 [arXiv:0812.4620] [INSPIRE].

    Google Scholar 

  35. CHORUS collaboration, G. Onengut et al., Measurement of nucleon structure functions in neutrino scattering, Phys. Lett. B 632 (2006) 65 [INSPIRE].

    ADS  Google Scholar 

  36. NuTeV collaboration, M. Goncharov et al., Precise measurement of dimuon production cross-sections in ν μ Fe and \( {\overline{\nu}}_{\mu }Fe \) deep inelastic scattering at the Tevatron, Phys. Rev. D 64 (2001) 112006 [hep-ex/0102049] [INSPIRE].

    Google Scholar 

  37. D.A. Mason, Measurement of the strange-antistrange asymmetry at NLO in QCD from NuTeV dimuon data, FERMILAB-THESIS-2006-01 (2006).

  38. G. Moreno et al., Dimuon production in proton-copper collisions at \( \sqrt{s}=38.8 \) GeV, Phys. Rev. D 43 (1991) 2815 [INSPIRE].

    ADS  Google Scholar 

  39. NuSea collaboration, J.C. Webb et al., Absolute Drell-Yan dimuon cross-sections in 800 GeV/c pp and pd collisions, hep-ex/0302019 [INSPIRE].

  40. J.C. Webb, Measurement of continuum dimuon production in 800 GeV/C proton nucleon collisions, hep-ex/0301031 [INSPIRE].

  41. NuSea collaboration, R.S. Towell et al., Improved measurement of the \( \overline{d}/\overline{u} \) asymmetry in the nucleon sea, Phys. Rev. D 64 (2001) 052002 [hep-ex/0103030] [INSPIRE].

    Google Scholar 

  42. CDF collaboration, T. Aaltonen et al., Direct measurement of the W production charge asymmetry in \( p\overline{p} \) collisions at \( \sqrt{s}=1.96 \) TeV, Phys. Rev. Lett. 102 (2009) 181801 [arXiv:0901.2169] [INSPIRE].

    Article  ADS  Google Scholar 

  43. CDF collaboration, T.A. Aaltonen et al., Measurement of dσ/dy of Drell-Yan e + e − pairs in the Z mass region from \( p\overline{p} \) collisions at \( \sqrt{s}=1.96 \) TeV, Phys. Lett. B 692 (2010) 232 [arXiv:0908.3914] [INSPIRE].

    ADS  Google Scholar 

  44. D0 collaboration, V.M. Abazov et al., Measurement of the shape of the boson rapidity distribution for \( p\overline{p} \) → Z/gamma ∗ → e + e − + X events produced at \( \sqrt{s}=1.96 \) TeV, Phys. Rev. D 76 (2007) 012003 [hep-ex/0702025] [INSPIRE].

    ADS  Google Scholar 

  45. CDF collaboration, T. Aaltonen et al., Measurement of the inclusive jet cross section at the Fermilab tevatron pp collider using a cone-based jet algorithm, Phys. Rev. D 78 (2008) 052006 [Erratum ibid. D 79 (2009) 119902] [arXiv:0807.2204] [INSPIRE].

  46. D0 collaboration, V.M. Abazov et al., Measurement of the inclusive jet cross-section in \( p\overline{p} \) collisions at \( \sqrt{s}=1.96 \) TeV, Phys. Rev. Lett. 101 (2008) 062001 [arXiv:0802.2400] [INSPIRE].

    Article  ADS  Google Scholar 

  47. ATLAS collaboration, Measurement of the inclusive W ± and Z/γ cross sections in the electron and muon decay channels in pp collisions at \( \sqrt{s}=7 \) TeV with the ATLAS detector, Phys. Rev. D 85 (2012) 072004 [arXiv:1109.5141] [INSPIRE].

    ADS  Google Scholar 

  48. CMS collaboration, Measurement of the electron charge asymmetry in inclusive W production in pp collisions at \( \sqrt{s}=7 \) TeV, Phys. Rev. Lett. 109 (2012) 111806 [arXiv:1206.2598] [INSPIRE].

    Article  ADS  Google Scholar 

  49. LHCb collaboration, Inclusive W and Z production in the forward region at \( \sqrt{s}=7 \) TeV, JHEP 06 (2012) 058 [arXiv:1204.1620] [INSPIRE].

    Google Scholar 

  50. ATLAS collaboration, Measurement of inclusive jet and dijet production in pp collisions at \( \sqrt{s}=7 \) TeV using the ATLAS detector, Phys. Rev. D 86 (2012) 014022 [arXiv:1112.6297] [INSPIRE].

    ADS  Google Scholar 

  51. H1 collaboration, F.D. Aaron et al., Inclusive deep inelastic scattering at high Q 2 with longitudinally polarised lepton beams at HERA, JHEP 09 (2012) 061 [arXiv:1206.7007] [INSPIRE].

    Google Scholar 

  52. H1 collaboration, F.D. Aaron et al., Measurement of the inclusive e ± p scattering cross section at high inelasticity y and of the structure function F L , Eur. Phys. J. C 71 (2011) 1579 [arXiv:1012.4355] [INSPIRE].

    Google Scholar 

  53. ZEUS collaboration, H. Abramowicz et al., Measurement of high-Q 2 neutral current deep inelastic e + p scattering cross sections with a longitudinally polarized positron beam at HERA, Phys. Rev. D 87 (2013) 052014 [arXiv:1208.6138] [INSPIRE].

    ADS  Google Scholar 

  54. ZEUS collaboration, H. Abramowicz et al., Measurement of high-Q 2 charged current deep inelastic scattering cross sections with a longitudinally polarised positron beam at HERA, Eur. Phys. J. C 70 (2010) 945 [arXiv:1008.3493] [INSPIRE].

    ADS  Google Scholar 

  55. H1, ZEUS collaboration, H. Abramowicz et al., Combination and QCD analysis of charm production cross section measurements in deep-inelastic ep scattering at HERA, Eur. Phys. J. C 73 (2013) 2311 [arXiv:1211.1182] [INSPIRE].

    ADS  Google Scholar 

  56. ATLAS collaboration, Measurement of the high-mass Drell-Yan differential cross-section in pp collisions at \( \sqrt{s}=7 \) TeV with the ATLAS detector, Phys. Lett. B 725 (2013) 223 [arXiv:1305.4192] [INSPIRE].

    ADS  Google Scholar 

  57. ATLAS collaboration, Measurement of the transverse momentum distribution of W bosons in pp collisions at \( \sqrt{s}=7 \) TeV with the ATLAS detector, Phys. Rev. D 85 (2012) 012005 [arXiv:1108.6308] [INSPIRE].

    ADS  Google Scholar 

  58. CMS collaboration, Measurement of the muon charge asymmetry in inclusive pp → W + X production at \( \sqrt{s}=7 \) TeV and an improved determination of light parton distribution functions, Phys. Rev. D 90 (2014) 032004 [arXiv:1312.6283] [INSPIRE].

    ADS  Google Scholar 

  59. CMS collaboration, Measurement of the differential and double-differential Drell-Yan cross sections in proton-proton collisions at \( \sqrt{s}=7 \) TeV, JHEP 12 (2013) 030 [arXiv:1310.7291] [INSPIRE].

    ADS  Google Scholar 

  60. CMS collaboration, Measurement of associated W + charm production in pp collisions at \( \sqrt{s}=7 \) TeV, JHEP 02 (2014) 013[arXiv:1310.1138][INSPIRE].

    ADS  Google Scholar 

  61. LHCb collaboration, Measurement of the cross-section for Z → e + e − production in pp collisions at \( \sqrt{s}=7 \) TeV, JHEP 02 (2013) 106 [arXiv:1212.4620] [INSPIRE].

    Google Scholar 

  62. CMS collaboration, Measurements of differential jet cross sections in proton-proton collisions at \( \sqrt{s}=7 \) TeV with the CMS detector, Phys. Rev. D 87 (2013) 112002 [arXiv:1212.6660] [INSPIRE].

    ADS  Google Scholar 

  63. ATLAS collaboration, Measurement of the inclusive jet cross section in pp collisions at \( \sqrt{s}=2.76 \) TeV and comparison to the inclusive jet cross section at \( \sqrt{s}=7 \) TeV using the ATLAS detector, Eur. Phys. J. C 73 (2013) 2509 [arXiv:1304.4739] [INSPIRE].

    ADS  Google Scholar 

  64. G.P. Salam and G. Soyez, A practical seedless infrared-safe cone jet algorithm, JHEP 05 (2007) 086 [arXiv:0704.0292] [INSPIRE].

    Article  ADS  Google Scholar 

  65. ATLAS collaboration, Measurement of the cross section for top-quark pair production in pp collisions at \( \sqrt{s}=7 \) TeV with the ATLAS detector using final states with two high-p T leptons, JHEP 05 (2012) 059 [arXiv:1202.4892] [INSPIRE].

    ADS  Google Scholar 

  66. ATLAS collaboration, Measurement of the \( t\overline{t} \) production cross-section in pp collisions at \( \sqrt{s}=7 \) TeV using kinematic information of lepton+jets events, ATLAS-CONF-2011-121 (2011).

  67. ATLAS collaboration, Measurement of the \( t\overline{t} \) production cross-section in pp collisions at \( \sqrt{s}=8 \) TeV using eμ events with b-tagged jets, ATLAS-CONF-2013-097 (2013).

  68. CMS collaboration, Measurement of the \( t\overline{t} \) production cross section in the dilepton channel in pp collisions at \( \sqrt{s}=8 \) TeV, JHEP 02 (2014) 024 [Erratum ibid. 1402 (2014) 102] [arXiv:1312.7582] [INSPIRE].

  69. CMS collaboration, Measurement of the \( t\overline{t} \) production cross section in the dilepton channel in pp collisions at \( \sqrt{s}=7 \) TeV, JHEP 11 (2012) 067 [arXiv:1208.2671] [INSPIRE].

    ADS  Google Scholar 

  70. CMS collaboration, Measurement of the \( t\overline{t} \) production cross section in pp collisions at \( \sqrt{s}=7 \) TeV with lepton + jets final states, Phys. Lett. B 720 (2013) 83 [arXiv:1212.6682] [INSPIRE].

    ADS  Google Scholar 

  71. S. Forte, Parton distributions at the dawn of the LHC, Acta Phys. Polon. B 41 (2010) 2859 [arXiv:1011.5247] [INSPIRE].

    Google Scholar 

  72. S. Forte and G. Watt, Progress in the determination of the partonic structure of the proton, Ann. Rev. Nucl. Part. Sci. 63 (2013) 291 [arXiv:1301.6754] [INSPIRE].

    Article  ADS  Google Scholar 

  73. M.L. Mangano and J. Rojo, Cross section ratios between different CM energies at the LHC: opportunities for precision measurements and BSM sensitivity, JHEP 08 (2012) 010 [arXiv:1206.3557] [INSPIRE].

    Article  ADS  Google Scholar 

  74. W.J. Stirling and E. Vryonidou, Charm production in association with an electroweak gauge boson at the LHC, Phys. Rev. Lett. 109 (2012) 082002 [arXiv:1203.6781] [INSPIRE].

    Article  ADS  Google Scholar 

  75. S. Alekhin et al., Determination of strange sea quark distributions from fixed-target and collider data, arXiv:1404.6469 [INSPIRE].

  76. M. Czakon, M.L. Mangano, A. Mitov and J. Rojo, Constraints on the gluon PDF from top quark pair production at hadron colliders, JHEP 07 (2013) 167 [arXiv:1303.7215] [INSPIRE].

    Article  ADS  Google Scholar 

  77. M. Beneke, P. Falgari, S. Klein, J. Piclum, C. Schwinn et al., Inclusive top-pair production phenomenology with TOPIXS, JHEP 07 (2012) 194 [arXiv:1206.2454] [INSPIRE].

    Article  ADS  Google Scholar 

  78. R. Gauld, Feasibility of top quark measurements at LHCb and constraints on the large-x gluon PDF, JHEP 02 (2014) 126 [arXiv:1311.1810] [INSPIRE].

    Article  ADS  Google Scholar 

  79. S.A. Malik and G. Watt, Ratios of W and Z cross sections at large boson p T as a constraint on PDFs and background to new physics, JHEP 02 (2014) 025 [arXiv:1304.2424] [INSPIRE].

    Article  ADS  Google Scholar 

  80. M. Czakon and A. Mitov, NNLO corrections to top pair production at hadron colliders: the quark-gluon reaction, JHEP 01 (2013) 080 [arXiv:1210.6832] [INSPIRE].

    Article  ADS  Google Scholar 

  81. M. Czakon, P. Fiedler and A. Mitov, Total top-quark pair-production cross section at hadron colliders through O(α 4 S ), Phys. Rev. Lett. 110 (2013) 252004 [arXiv:1303.6254] [INSPIRE].

    Article  ADS  Google Scholar 

  82. A. Gehrmann-De Ridder, T. Gehrmann, E.W.N. Glover and J. Pires, Second order QCD corrections to jet production at hadron colliders: the all-gluon contribution, Phys. Rev. Lett. 110 (2013) 162003 [arXiv:1301.7310] [INSPIRE].

    Article  ADS  Google Scholar 

  83. CDF collaboration, A. Abulencia et al., Measurement of the inclusive jet cross section using the k T algorithm in \( p\overline{p} \) collisions at \( \sqrt{s}=1.96 \) TeV with the CDF II detector, Phys. Rev. D 75 (2007) 092006 [Erratum ibid. D 75 (2007) 119901] [hep-ex/0701051] [INSPIRE].

  84. H1 collaboration, V. Andreev et al., Measurement of inclusive ep cross sections at high Q 2 at \( \sqrt{s}=225 \) and 252 GeV and of the longitudinal proton structure function F L at HERA, Eur. Phys. J. C 74 (2014) 2814 [arXiv:1312.4821] [INSPIRE].

    Google Scholar 

  85. ZEUS collaboration, S. Chekanov et al., Measurement of the longitudinal proton structure function at HERA, Phys. Lett. B 682 (2009) 8 [arXiv:0904.1092] [INSPIRE].

    ADS  Google Scholar 

  86. V. Bertone and J. Rojo, Parton distributions with the combined HERA charm production cross sections, AIP Conf. Proc. 1523 (2012) 51 [arXiv:1212.0741] [INSPIRE].

    ADS  Google Scholar 

  87. S. Alekhin, J. Blümlein, K. Daum, K. Lipka and S. Moch, Precise charm-quark mass from deep-inelastic scattering, Phys. Lett. B 720 (2013) 172 [arXiv:1212.2355] [INSPIRE].

    Article  ADS  Google Scholar 

  88. J. Gao, M. Guzzi and P.M. Nadolsky, Charm quark mass dependence in a global QCD analysis, Eur. Phys. J. C 73 (2013) 2541 [arXiv:1304.3494] [INSPIRE].

    Article  ADS  Google Scholar 

  89. NNPDF collaboration, R.D. Ball et al., Parton distributions with QED corrections, Nucl. Phys. B 877 (2013) 290 [arXiv:1308.0598] [INSPIRE].

    MATH  Google Scholar 

  90. ATLAS collaboration, Measurement of the transverse momentum distribution of Z/γ∗ bosons in proton-proton collisions at \( \sqrt{s}=7 \) TeV with the ATLAS detector, Phys. Lett. B 705 (2011) 415 [arXiv:1107.2381] [INSPIRE].

    ADS  Google Scholar 

  91. ATLAS collaboration, Measurement of the production of a W boson in association with a charm quark in pp collisions at \( \sqrt{s}=7 \) TeV with the ATLAS detector, JHEP 05 (2014) 068 [arXiv:1402.6263] [INSPIRE].

    ADS  Google Scholar 

  92. LHCb collaboration, Measurement of the cross-section for Z → μμ production with 1 fb −1 of pp collisions at \( \sqrt{s}=7 \) TeV, LHCb-CONF-2013-007 (2013).

  93. LHCb collaboration, Inclusive low mass Drell-Yan production in the forward region at \( \sqrt{s}=7 \) TeV, LHCb-ANA-2012-029 (2012).

  94. CMS collaboration, Measurement of the inclusive jet cross section in pp collisions at \( \sqrt{s}=7 \) TeV, Phys. Rev. Lett. 107 (2011) 132001 [arXiv:1106.0208][INSPIRE].

    Article  ADS  Google Scholar 

  95. B.J.A. Watt, P. Motylinski and R.S. Thorne, The effect of LHC jet data on MSTW PDFs, Eur. Phys. J. C 74 (2014) 2934 [arXiv:1311.5703] [INSPIRE].

    Article  ADS  Google Scholar 

  96. CMS collaboration, Constraints on parton distribution functions and extraction of the strong coupling constant from the inclusive jet cross section in pp collisions at \( \sqrt{s}=7 \) TeV, arXiv:1410.6765 [INSPIRE].

  97. ATLAS collaboration, Measurement of dijet cross sections in pp collisions at 7 TeV centre-of-mass energy using the ATLAS detector, JHEP 05 (2014) 059 [arXiv:1312.3524] [INSPIRE].

    ADS  Google Scholar 

  98. CMS collaboration, Top pair cross section in dileptons, CMS-PAS-TOP-12-007 (2012).

  99. J. Currie, A. Gehrmann-De Ridder, E.W.N. Glover and J. Pires, NNLO QCD corrections to jet production at hadron colliders from gluon scattering, JHEP 01 (2014) 110 [arXiv:1310.3993] [INSPIRE].

    Article  ADS  Google Scholar 

  100. D. de Florian, P. Hinderer, A. Mukherjee, F. Ringer and W. Vogelsang, Approximate next-to-next-to-leading order corrections to hadronic jet production, Phys. Rev. Lett. 112 (2014) 082001 [arXiv:1310.7192] [INSPIRE].

    Article  ADS  Google Scholar 

  101. V. Bertone, S. Carrazza and J. Rojo, APFEL: a PDF evolution library with QED corrections, Comput. Phys. Commun. 185 (2014) 1647 [arXiv:1310.1394] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  102. J.M. Campbell et al., Working group report: quantum chromodynamics, arXiv:1310.5189 [INSPIRE].

  103. The NNPDF collaboration, R.D. Ball et al., Theoretical issues in PDF determination and associated uncertainties, Phys. Lett. B 723 (2013) 330 [arXiv:1303.1189] [INSPIRE].

    Google Scholar 

  104. T. Carli et al., A posteriori inclusion of parton density functions in NLO QCD final-state calculations at hadron colliders: The APPLGRID project, Eur. Phys. J. C 66 (2010) 503 [arXiv:0911.2985] [INSPIRE].

    Article  ADS  Google Scholar 

  105. J.M. Campbell and R.K. Ellis, Next-to-leading order corrections to W + 2 jet and Z + 2 jet production at hadron colliders, Phys. Rev. D 65 (2002) 113007 [hep-ph/0202176] [INSPIRE].

    ADS  Google Scholar 

  106. MCFM, http://mcfm.fnal.gov.

  107. Z. Nagy, Next-to-leading order calculation of three jet observables in hadron hadron collision, Phys. Rev. D 68 (2003) 094002 [hep-ph/0307268] [INSPIRE].

    ADS  Google Scholar 

  108. T. Kluge, K. Rabbertz and M. Wobisch, FastNLO: fast pQCD calculations for PDF fits, hep-ph/0609285 [INSPIRE].

  109. fastNLO collaboration, M. Wobisch et al., Theory-data comparisons for jet measurements in hadron-induced processes, arXiv:1109.1310 [INSPIRE].

  110. L. Del Debbio, N.P. Hartland and S. Schumann, MCgrid: projecting cross section calculations on grids, Comput. Phys. Commun. 185 (2014) 2115 [arXiv:1312.4460] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  111. A. Buckley et al., Rivet user manual, Comput. Phys. Commun. 184 (2013) 2803 [arXiv:1003.0694] [INSPIRE].

    Article  ADS  Google Scholar 

  112. Z. Bern et al., Ntuples for NLO events at hadron colliders, Comput. Phys. Commun. 185 (2014) 1443 [arXiv:1310.7439] [INSPIRE].

    Article  ADS  Google Scholar 

  113. V. Bertone, R. Frederix, S. Frixione, J. Rojo and M. Sutton, aMCfast: automation of fast NLO computations for PDF fits, JHEP 08 (2014) 166 [arXiv:1406.7693] [INSPIRE].

    Article  ADS  Google Scholar 

  114. J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].

    Article  ADS  Google Scholar 

  115. Dynnlo, http://theory.fi.infn.it/grazzini/dy.html.

  116. S. Catani, G. Ferrera and M. Grazzini, W boson production at hadron colliders: the lepton charge asymmetry in NNLO QCD, JHEP 05 (2010) 006 [arXiv:1002.3115] [INSPIRE].

    Article  ADS  Google Scholar 

  117. S. Catani and M. Grazzini, An NNLO subtraction formalism in hadron collisions and its application to Higgs boson production at the LHC, Phys. Rev. Lett. 98 (2007) 222002 [hep-ph/0703012] [INSPIRE].

    Article  ADS  Google Scholar 

  118. S. Catani, L. Cieri, G. Ferrera, D. de Florian and M. Grazzini, Vector boson production at hadron colliders: a fully exclusive QCD calculation at NNLO, Phys. Rev. Lett. 103 (2009) 082001 [arXiv:0903.2120] [INSPIRE].

    Article  ADS  Google Scholar 

  119. R. Gavin, Y. Li, F. Petriello and S. Quackenbush, W physics at the LHC with FEWZ 2.1, Comput. Phys. Commun. 184 (2013) 208 [arXiv:1201.5896] [INSPIRE].

    MathSciNet  Google Scholar 

  120. Y. Li and F. Petriello, Combining QCD and electroweak corrections to dilepton production in FEWZ, Phys. Rev. D 86 (2012) 094034 [arXiv:1208.5967] [INSPIRE].

    ADS  Google Scholar 

  121. M. Czakon and A. Mitov, Top++: a program for the calculation of the top-pair cross-section at hadron colliders, Comput. Phys. Commun. 185 (2014) 2930 [arXiv:1112.5675] [INSPIRE].

    Article  ADS  Google Scholar 

  122. R. Frederix et al., Higgs pair production at the LHC with NLO and parton-shower effects, Phys. Lett. B 732 (2014) 142 [arXiv:1401.7340] [INSPIRE].

    Article  ADS  Google Scholar 

  123. P. Artoisenet et al., A framework for Higgs characterisation, JHEP 11 (2013) 043 [arXiv:1306.6464] [INSPIRE].

    Article  ADS  Google Scholar 

  124. S. Carrazza and J. Pires, Perturbative QCD description of jet data from LHC run-I and Tevatron run-II, JHEP 10 (2014) 145 [arXiv:1407.7031] [INSPIRE].

    Article  ADS  Google Scholar 

  125. C.M. Carloni Calame, G. Montagna, O. Nicrosini and A. Vicini, Precision electroweak calculation of the production of a high transverse-momentum lepton pair at hadron colliders, JHEP 10 (2007) 109 [arXiv:0710.1722] [INSPIRE].

    Article  ADS  Google Scholar 

  126. F.A. Berends and R. Kleiss, Hard photon effects in W ± and Z 0 decay, Z. Phys. C 27 (1985) 365 [INSPIRE].

    ADS  Google Scholar 

  127. F.A. Berends, R. Kleiss, J.P. Revol and J.P. Vialle, QED radiative corrections and radiative decays of the intermediate weak bosons produced in proton-anti-proton collisions, Z. Phys. C 27 (1985) 155 [INSPIRE].

    ADS  Google Scholar 

  128. S. Dittmaier and M. Huber, Radiative corrections to the neutral-current Drell-Yan process in the standard model and its minimal supersymmetric extension, JHEP 01 (2010) 060 [arXiv:0911.2329] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  129. U. Baur, S. Keller and W.K. Sakumoto, QED radiative corrections to Z boson production and the forward backward asymmetry at hadron colliders, Phys. Rev. D 57 (1998) 199 [hep-ph/9707301] [INSPIRE].

    ADS  Google Scholar 

  130. U. Baur, O. Brein, W. Hollik, C. Schappacher and D. Wackeroth, Electroweak radiative corrections to neutral current Drell-Yan processes at hadron colliders, Phys. Rev. D 65 (2002) 033007 [hep-ph/0108274] [INSPIRE].

    ADS  Google Scholar 

  131. R. Boughezal, Y. Li and F. Petriello, Disentangling radiative corrections using the high-mass Drell-Yan process at the LHC, Phys. Rev. D 89 (2014) 034030 [arXiv:1312.3972] [INSPIRE].

    ADS  Google Scholar 

  132. S. Forte, E. Laenen, P. Nason and J. Rojo, Heavy quarks in deep-inelastic scattering, Nucl. Phys. B 834 (2010) 116 [arXiv:1001.2312] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  133. J. Ablinger et al., The 3-loop pure singlet heavy flavor contributions to the structure function F 2(x, Q 2) and the anomalous dimension, Nucl. Phys. B 890 (2014) 48 [arXiv:1409.1135] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  134. S. Alekhin and S. Moch, Heavy-quark deep-inelastic scattering with a running mass, Phys. Lett. B 699 (2011) 345 [arXiv:1011.5790] [INSPIRE].

    Article  ADS  Google Scholar 

  135. F. Demartin, S. Forte, E. Mariani, J. Rojo and A. Vicini, The impact of PDF and α s uncertainties on Higgs Production in gluon fusion at hadron colliders, Phys. Rev. D 82 (2010) 014002 [arXiv:1004.0962] [INSPIRE].

    ADS  Google Scholar 

  136. F. Cascioli, P. Maierhöfer, N. Moretti, S. Pozzorini and F. Siegert, NLO matching for \( t\overline{t}b\overline{b} \) production with massive b-quarks, Phys. Lett. B 734 (2014) 210 [arXiv:1309.5912] [INSPIRE].

    Article  ADS  Google Scholar 

  137. G. D’Agostini, On the use of the covariance matrix to fit correlated data, Nucl. Instrum. Meth. A 346 (1994) 306 [INSPIRE].

    Article  ADS  Google Scholar 

  138. A.D. Martin, W.J. Stirling, R.S. Thorne and G. Watt, Parton distributions for the LHC, Eur. Phys. J. C 63 (2009) 189 [arXiv:0901.0002] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  139. R.D. Ball et al., Parton distribution benchmarking with LHC data, JHEP 04 (2013) 125 [arXiv:1211.5142] [INSPIRE].

    Article  ADS  Google Scholar 

  140. J. Butterworth et al., Les Houches 2013: physics at TeV colliders: standard model working group report, arXiv:1405.1067 [INSPIRE].

  141. G. D’Agostini, Bayesian reasoning in data analysis: a critical introduction, World Scientific, Singapore (2003).

    Book  MATH  Google Scholar 

  142. G.P. Salam and J. Rojo, A Higher Order Perturbative Parton Evolution Toolkit (HOPPET), Comput. Phys. Commun. 180 (2009) 120 [arXiv:0804.3755] [INSPIRE].

    Article  ADS  Google Scholar 

  143. The NNPDF collaboration, R.D. Ball et al., Unbiased determination of polarized parton distributions and their uncertainties, Nucl. Phys. B 874 (2013) 36 [arXiv:1303.7236] [INSPIRE].

    Google Scholar 

  144. NNPDF collaboration, E.R. Nocera et al., A first unbiased global determination of polarized PDFs and their uncertainties, Nucl. Phys. B 887 (2014) 276 [arXiv:1406.5539] [INSPIRE].

    ADS  MATH  Google Scholar 

  145. G. Altarelli, S. Forte and G. Ridolfi, On positivity of parton distributions, Nucl. Phys. B 534 (1998) 277 [hep-ph/9806345] [INSPIRE].

    Article  ADS  Google Scholar 

  146. F. Demartin, F. Maltoni, K. Mawatari, B. Page and M. Zaro, Higgs characterisation at NLO in QCD: CP properties of the top-quark Yukawa interaction, Eur. Phys. J. C 74 (2014) 3065 [arXiv:1407.5089] [INSPIRE].

    Article  ADS  Google Scholar 

  147. G. Altarelli, R.D. Ball and S. Forte, Small x resummation with quarks: deep-inelastic scattering, Nucl. Phys. B 799 (2008) 199 [arXiv:0802.0032] [INSPIRE].

    Article  ADS  Google Scholar 

  148. D.J. Montana and L. Davis, Training feedforward neural networks using genetic algorithms, in the proceedings of the 11th International Joint Conference on Artificial Intelligence (IJCAI89) — Volume 1, Morgan Kaufmann Publishers Inc., U.S.A. (1989)

  149. A. Glazov, S. Moch and V. Radescu, Parton distribution uncertainties using smoothness prior, Phys. Lett. B 695 (2011) 238 [arXiv:1009.6170] [INSPIRE].

    Article  ADS  Google Scholar 

  150. H.-L. Lai et al., New parton distributions for collider physics, Phys. Rev. D 82 (2010) 074024 [arXiv:1007.2241] [INSPIRE].

    ADS  Google Scholar 

  151. J. Gao et al., CT10 next-to-next-to-leading order global analysis of QCD, Phys. Rev. D 89 (2014) 033009 [arXiv:1302.6246] [INSPIRE].

    ADS  Google Scholar 

  152. NNPDF collaboration, R.D. Ball et al., Parton distributions: determining probabilities in a space of functions, arXiv:1110.1863 [INSPIRE].

  153. J. Pumplin, Parametrization dependence and Δχ2 in parton distribution fitting, Phys. Rev. D 82 (2010) 114020 [arXiv:0909.5176] [INSPIRE].

    ADS  Google Scholar 

  154. R.D. Ball et al., Reweighting and unweighting of parton distributions and the LHC W lepton asymmetry data, Nucl. Phys. B 855 (2012) 608 [arXiv:1108.1758] [INSPIRE].

    Article  ADS  Google Scholar 

  155. C. Anastasiou, S. Buehler, F. Herzog and A. Lazopoulos, Total cross-section for Higgs boson hadroproduction with anomalous Standard Model interactions, JHEP 12 (2011) 058 [arXiv:1107.0683] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  156. P. Skands, S. Carrazza and J. Rojo, Tuning PYTHIA 8.1: the Monash 2013 tune, Eur. Phys. J. C 74 (2014) 3024 [arXiv:1404.5630] [INSPIRE].

    Article  ADS  Google Scholar 

  157. J.M. Campbell, J.W. Huston and W.J. Stirling, Hard interactions of quarks and gluons: a primer for LHC physics, Rept. Prog. Phys. 70 (2007) 89 [hep-ph/0611148] [INSPIRE].

    Article  ADS  Google Scholar 

  158. F. Caola, S. Forte and J. Rojo, HERA data and DGLAP evolution: theory and phenomenology, Nucl. Phys. A 854 (2011) 32 [arXiv:1007.5405] [INSPIRE].

    Article  ADS  Google Scholar 

  159. M. Cacciari and N. Houdeau, Meaningful characterisation of perturbative theoretical uncertainties, JHEP 09 (2011) 039 [arXiv:1105.5152] [INSPIRE].

    Article  ADS  Google Scholar 

  160. E. Bagnaschi, M. Cacciari, A. Guffanti and L. Jenniches, An extensive survey of the estimation of uncertainties from missing higher orders in perturbative calculations, JHEP 02 (2015) 133 [arXiv:1409.5036] [INSPIRE].

    Article  ADS  Google Scholar 

  161. S. Forte, A. Isgró and G. Vita, Do we need N 3 LO parton distributions?, Phys. Lett. B 731 (2014) 136 [arXiv:1312.6688] [INSPIRE].

    Article  ADS  Google Scholar 

  162. L.A. Harland-Lang, A.D. Martin, P. Motylinski and R.S. Thorne, Parton distributions in the LHC era: MMHT 2014 PDFs, arXiv:1412.3989 [INSPIRE].

  163. A.D. Martin et al., Extended parameterisations for MSTW PDFs and their effect on lepton charge asymmetry from W decays, Eur. Phys. J. C 73 (2013) 2318 [arXiv:1211.1215] [INSPIRE].

    Article  ADS  Google Scholar 

  164. S.J. Brodsky, P. Hoyer, C. Peterson and N. Sakai, The intrinsic charm of the proton, Phys. Lett. B 93 (1980) 451 [INSPIRE].

    Article  ADS  Google Scholar 

  165. J. Pumplin, H.L. Lai and W.K. Tung, The charm parton content of the nucleon, Phys. Rev. D 75 (2007) 054029 [hep-ph/0701220] [INSPIRE].

    ADS  Google Scholar 

  166. L. Barze et al., Neutral current Drell-Yan with combined QCD and electroweak corrections in the POWHEG BOX, Eur. Phys. J. C 73 (2013) 2474 [arXiv:1302.4606] [INSPIRE].

    Article  ADS  Google Scholar 

  167. A.D. Martin, R.G. Roberts, W.J. Stirling and R.S. Thorne, MRST partons and uncertainties, hep-ph/0307262 [INSPIRE].

  168. S. Forte and J. Rojo, Dataset sensitivity of the gg → H cross-section in the NNPDF analysis, in Les Houches 2013: physics at TeV colliders: standard model working group report, J. Butterworth et al., arXiv:1405.1067 [INSPIRE].

  169. NuTeV collaboration, D. Mason et al., Measurement of the nucleon strange-antistrange asymmetry at next-to-leading order in QCD from NuTeV dimuon data, Phys. Rev. Lett. 99 (2007) 192001 [INSPIRE].

    Article  Google Scholar 

  170. NOMAD collaboration, O. Samoylov et al., A precision measurement of charm dimuon production in neutrino interactions from the NOMAD experiment, Nucl. Phys. B 876 (2013) 339 [arXiv:1308.4750] [INSPIRE].

    ADS  Google Scholar 

  171. ATLAS collaboration, Determination of the strange quark density of the proton from ATLAS measurements of the W → ℓν and Z → ℓℓ cross sections, Phys. Rev. Lett. 109 (2012) 012001 [arXiv:1203.4051] [INSPIRE].

    Article  ADS  Google Scholar 

  172. A. Glazov, private communication, on behalf of the H1-ZEUS combination and ATLAS.

  173. M. Gouzevitch, private communication, on behalf of CMS.

  174. P. Jimenez-Delgado, The role of the input scale in parton distribution analyses, Phys. Lett. B 714 (2012) 301 [arXiv:1206.4262] [INSPIRE].

    Article  ADS  Google Scholar 

  175. S. Carrazza, A. Ferrara, D. Palazzo and J. Rojo, APFEL Web: a web-based application for the graphical visualization of parton distribution functions, J. Phys. G 42 (2015) 057001 [arXiv:1410.5456] [INSPIRE].

    Article  ADS  Google Scholar 

  176. J. Rojo, Parton distributions based on a maximally consistent dataset, arXiv:1409.3029 [INSPIRE].

  177. M. Cacciari, G.P. Salam and G. Soyez, The anti-k t jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  178. S. Frixione, Isolated photons in perturbative QCD, Phys. Lett. B 429 (1998) 369 [hep-ph/9801442] [INSPIRE].

    Article  ADS  Google Scholar 

  179. R. Frederix et al., Four-lepton production at hadron colliders: aMC@NLO predictions with theoretical uncertainties, JHEP 02 (2012) 099 [arXiv:1110.4738] [INSPIRE].

    Article  ADS  Google Scholar 

  180. H.-L. Lai et al., Uncertainty induced by QCD coupling in the CTEQ global analysis of parton distributions, Phys. Rev. D 82 (2010) 054021 [arXiv:1004.4624] [INSPIRE].

    ADS  Google Scholar 

  181. M. Krämer et al., Supersymmetry production cross sections in pp collisions at \( \sqrt{s}=7 \) TeV, arXiv:1206.2892 [INSPIRE].

  182. C. Borschensky et al., Squark and gluino production cross sections in pp collisions at \( \sqrt{s} \) = 13, 14, 33 and 100TeV,Eur. Phys. J. C 74(2014) 3174 [arXiv:1407.5066] [INSPIRE].

    Article  ADS  Google Scholar 

  183. W. Beenakker, R. Hopker, M. Spira and P.M. Zerwas, Squark and gluino production at hadron colliders, Nucl. Phys. B 492 (1997) 51 [hep-ph/9610490] [INSPIRE].

    Article  ADS  Google Scholar 

  184. T. Plehn, http://www.thphys.uni-heidelberg.de/∼plehn/index.php?show=prospino&visible=tools

  185. D. Bourilkov, R.C. Group and M.R. Whalley, LHAPDF: PDF use from the Tevatron to the LHC, hep-ph/0605240 [INSPIRE].

  186. T. Sjöstrand, S. Mrenna and P.Z. Skands, A brief introduction to PYTHIA 8.1, Comput. Phys. Commun. 178 (2008) 852 [arXiv:0710.3820] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  187. S. Alekhin et al., The PDF4LHC working group interim report, arXiv:1101.0536 [INSPIRE].

  188. S. Dawson, A. Ismail and I. Low, Redux on “When is the top quark a parton?”, Phys. Rev. D 90 (2014) 014005 [arXiv:1405.6211] [INSPIRE].

    ADS  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

  1. The Higgs Centre for Theoretical Physics, University of Edinburgh, JCMB, KB, Mayfield Rd, Edinburgh, EH9 3JZ, United Kingdom

    Richard D. Ball, Christopher S. Deans, Luigi Del Debbio & Nathan P. Hartland

  2. PH Department, TH Unit, CERN, CH-1211, Geneva 23, Switzerland

    Richard D. Ball, Valerio Bertone & Stefano Carrazza

  3. Departament d’Estructura i Constituents de la Matèria, Universitat de Barcelona, Diagonal 647, E-08028, Barcelona, Spain

    José I. Latorre

  4. Dipartimento di Fisica, Università di Milano and INFN — Sezione di Milano, Via Celoria 16, I-20133, Milano, Italy

    Stefano Carrazza & Stefano Forte

  5. Niels Bohr International Academy and Discovery Center, Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, DK-2100, Copenhagen, Denmark

    Alberto Guffanti

  6. Rudolf Peierls Centre for Theoretical Physics, University of Oxford, 1 Keble Road, OX1 3NP, Oxford, United Kingdom

    Juan Rojo

  7. The Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, Cambridge, CB3 0HE, United Kingdom

    Maria Ubiali

Authors
  1. Richard D. Ball
    View author publications

    You can also search for this author inPubMed Google Scholar

  2. Valerio Bertone
    View author publications

    You can also search for this author inPubMed Google Scholar

  3. Stefano Carrazza
    View author publications

    You can also search for this author inPubMed Google Scholar

  4. Christopher S. Deans
    View author publications

    You can also search for this author inPubMed Google Scholar

  5. Luigi Del Debbio
    View author publications

    You can also search for this author inPubMed Google Scholar

  6. Stefano Forte
    View author publications

    You can also search for this author inPubMed Google Scholar

  7. Alberto Guffanti
    View author publications

    You can also search for this author inPubMed Google Scholar

  8. Nathan P. Hartland
    View author publications

    You can also search for this author inPubMed Google Scholar

  9. José I. Latorre
    View author publications

    You can also search for this author inPubMed Google Scholar

  10. Juan Rojo
    View author publications

    You can also search for this author inPubMed Google Scholar

  11. Maria Ubiali
    View author publications

    You can also search for this author inPubMed Google Scholar

Consortia

The NNPDF collaboration

Corresponding author

Correspondence to Stefano Forte.

Additional information

ArXiv ePrint: 1410.8849

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

The NNPDF collaboration., Ball, R.D., Bertone, V. et al. Parton distributions for the LHC run II. J. High Energ. Phys. 2015, 40 (2015). https://doi.org/10.1007/JHEP04(2015)040

Download citation

  • Received: 07 November 2014

  • Revised: 24 February 2015

  • Accepted: 02 March 2015

  • Published: 08 April 2015

  • DOI: https://doi.org/10.1007/JHEP04(2015)040

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • QCD Phenomenology
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our brands

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Discover
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Legal notice
  • Cancel contracts here

Not affiliated

Springer Nature

© 2025 Springer Nature