Skip to main content
Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX

  • Open access
  • Published: 09 June 2010
  • Volume 2010, article number 43, (2010)
  • Cite this article
Download PDF

You have full access to this open access article

Journal of High Energy Physics Aims and scope Submit manuscript
A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX
Download PDF
  • Simone Alioli1,2,
  • Paolo Nason2,
  • Carlo Oleari3,2 &
  • …
  • Emanuele Re4,2 
  • 2615 Accesses

  • 1912 Citations

  • 24 Altmetric

  • 2 Mentions

  • Explore all metrics

Abstract

In this work we illustrate the POWHEG BOX, a general computer code framework for implementing NLO calculations in shower Monte Carlo programs according to the POWHEG method. Aim of this work is to provide an illustration of the needed theoretical ingredients, a view of how the code is organized and a description of what a user should provide in order to use it.

Article PDF

Download to read the full article text

Similar content being viewed by others

NLOAccess: automated online computations for collider physics

Article 16 March 2023

UFO 2.0: the ‘Universal Feynman Output’ format

Article Open access 17 July 2023

How-to: write a parton-level Monte Carlo particle physics event generator

Article 15 June 2020

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.
  • Experimental Particle Physics
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. P. Nason, A new method for combining NLO QCD with shower Monte Carlo algorithms, JHEP 11 (2004) 040 [hep-ph/0409146] [SPIRES].

    Article  ADS  Google Scholar 

  2. S. Frixione, P. Nason and C. Oleari, Matching NLO QCD computations with Parton Shower simulations: the POWHEG method, JHEP 11 (2007) 070 [arXiv:0709.2092] [SPIRES].

    Article  ADS  Google Scholar 

  3. P. Nason and G. Ridolfi, A positive-weight next-to-leading-order Monte Carlo for Z pair hadroproduction, JHEP 08 (2006) 077 [hep-ph/0606275] [SPIRES].

    Article  ADS  Google Scholar 

  4. S. Frixione, P. Nason and G. Ridolfi, A Positive-Weight Next-to-Leading-Order Monte Carlo for Heavy Flavour Hadroproduction, JHEP 09 (2007) 126 [arXiv:0707.3088] [SPIRES].

    Article  ADS  Google Scholar 

  5. O. Latunde-Dada, S. Gieseke and B. Webber, A positive-weight next-to-leading-order Monte Carlo for e + e − annihilation to hadrons, JHEP 02 (2007) 051 [hep-ph/0612281] [SPIRES].

    Article  ADS  Google Scholar 

  6. O. Latunde-Dada, Applying the POWHEG method to top pair production and decays at the ILC, Eur. Phys. J. C 58 (2008) 543 [arXiv:0806.4560] [SPIRES].

    Article  ADS  Google Scholar 

  7. S. Alioli, P. Nason, C. Oleari and E. Re, NLO vector-boson production matched with shower in POWHEG, JHEP 07 (2008) 060 [arXiv:0805.4802] [SPIRES].

    Article  ADS  Google Scholar 

  8. K. Hamilton, P. Richardson and J. Tully, A Positive-Weight Next-to-Leading Order Monte Carlo Simulation of Drell-Yan Vector Boson Production, JHEP 10 (2008) 015 [arXiv:0806.0290] [SPIRES].

    Article  ADS  Google Scholar 

  9. A. Papaefstathiou and O. Latunde-Dada, NLO production of W′ bosons at hadron colliders using the MC@NLO and POWHEG methods, JHEP 07 (2009) 044 [arXiv:0901.3685] [SPIRES].

    Article  ADS  Google Scholar 

  10. S. Alioli, P. Nason, C. Oleari and E. Re, NLO Higgs boson production via gluon fusion matched with shower in POWHEG, JHEP 04 (2009) 002 [arXiv:0812.0578] [SPIRES].

    Article  ADS  Google Scholar 

  11. K. Hamilton, P. Richardson and J. Tully, A Positive-Weight Next-to-Leading Order Monte Carlo Simulation for Higgs Boson Production, JHEP 04 (2009) 116 [arXiv:0903.4345] [SPIRES].

    Article  ADS  Google Scholar 

  12. S. Alioli, P. Nason, C. Oleari and E. Re, NLO single-top production matched with shower in POWHEG: s- and t-channel contributions, JHEP 09 (2009) 111 [arXiv:0907.4076] [SPIRES].

    Article  ADS  Google Scholar 

  13. S. Alioli, P. Nason, C. Oleari and E. Re, NLO Z + 1 jet production matched with shower in POWHEG, to appear soon.

  14. P. Nason and C. Oleari, NLO Higgs boson production via vector-boson fusion matched with shower in POWHEG, JHEP 02 (2010) 037 [arXiv:0911.5299] [SPIRES].

    Article  Google Scholar 

  15. S. Frixione and B.R. Webber, Matching NLO QCD computations and parton shower simulations, JHEP 06 (2002) 029 [hep-ph/0204244] [SPIRES].

    Article  ADS  Google Scholar 

  16. G. Corcella et al., HERWIG 6.5: an event generator for Hadron Emission Reactions With Interfering Gluons (including supersymmetric processes), JHEP 01 (2001) 010 [hep-ph/0011363] [SPIRES].

    Article  ADS  Google Scholar 

  17. G. Corcella et al., HERWIG 6.5 release note, hep-ph/0210213 [SPIRES].

  18. T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 Physics and Manual, JHEP 05 (2006) 026 [hep-ph/0603175] [SPIRES].

    Article  ADS  Google Scholar 

  19. R. Frederix, T. Gehrmann and N. Greiner, Automation of the Dipole Subtraction Method in MadGraph/MadEvent, JHEP 09 (2008) 122 [arXiv:0808.2128] [SPIRES].

    Article  ADS  Google Scholar 

  20. K. Hasegawa, S. Moch and P. Uwer, AutoDipole – Automated generation of dipole subtraction terms, arXiv:0911.4371 [SPIRES].

  21. T. Binoth et al., A proposal for a standard interface between Monte Carlo tools and one-loop programs, arXiv:1001.1307 [SPIRES].

  22. T. Hahn and M. Pérez-Victoria, Automatized one-loop calculations in four and D dimensions, Comput. Phys. Commun. 118 (1999) 153 [hep-ph/9807565] [SPIRES].

    Article  ADS  Google Scholar 

  23. Y. Kurihara et al., QCD event generators with next-to-leading order matrix-elements and parton showers, Nucl. Phys. B 654 (2003) 301 [hep-ph/0212216] [SPIRES].

    Article  ADS  Google Scholar 

  24. G. Bélanger et al., Automatic calculations in high energy physics and Grace at one-loop, Phys. Rept. 430 (2006) 117 [hep-ph/0308080] [SPIRES].

    Article  ADS  Google Scholar 

  25. R.K. Ellis, W.T. Giele and Z. Kunszt, A Numerical Unitarity Formalism for Evaluating One-Loop Amplitudes, JHEP 03 (2008) 003 [arXiv:0708.2398] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  26. G. Ossola, C.G. Papadopoulos and R. Pittau, CutTools: a program implementing the OPP reduction method to compute one-loop amplitudes, JHEP 03 (2008) 042 [arXiv:0711.3596] [SPIRES].

    Article  ADS  Google Scholar 

  27. T. Binoth, J.P. Guillet, G. Heinrich, E. Pilon and T. Reiter, Golem95: a numerical program to calculate one-loop tensor integrals with up to six external legs, Comput. Phys. Commun. 180 (2009) 2317 [arXiv:0810.0992] [SPIRES].

    Article  ADS  Google Scholar 

  28. C.F. Berger et al., An Automated Implementation of On-Shell Methods for One- Loop Amplitudes, Phys. Rev. D 78 (2008) 036003 [arXiv:0803.4180] [SPIRES].

    ADS  Google Scholar 

  29. A. Lazopoulos, Multi-gluon one-loop amplitudes numerically, arXiv:0812.2998 [SPIRES].

  30. J.-C. Winter and W.T. Giele, Calculating gluon one-loop amplitudes numerically, arXiv:0902.0094 [SPIRES].

  31. Particle Data Group collaboration, C. Amsler et al., Review of particle physics, Phys. Lett. B 667 (2008) 1 [SPIRES].

    ADS  Google Scholar 

  32. R. Frederix, S. Frixione, F. Maltoni and T. Stelzer, Automation of next-to-leading order computations in QCD: the FKS subtraction, JHEP 10 (2009) 003 [arXiv:0908.4272] [SPIRES].

    Article  ADS  Google Scholar 

  33. Z. Kunszt, A. Signer and Z. Trócsányi, One loop helicity amplitudes for all 2 → 2 processes in QCD and N = 1 supersymmetric Yang-Mills theory, Nucl. Phys. B 411 (1994) 397 [hep-ph/9305239] [SPIRES].

    Article  ADS  Google Scholar 

  34. S. Catani and M.H. Seymour, A general algorithm for calculating jet cross sections in NLO QCD, Nucl. Phys. B 485 (1997) 291 [hep-ph/9605323] [SPIRES].

    Article  ADS  Google Scholar 

  35. S. Frixione, Z. Kunszt and A. Signer, Three jet cross-sections to next-to-leading order, Nucl. Phys. B 467 (1996) 399 [hep-ph/9512328] [SPIRES].

    Article  ADS  Google Scholar 

  36. S. Frixione, A General approach to jet cross-sections in QCD, Nucl. Phys. B 507 (1997) 295 [hep-ph/9706545] [SPIRES].

    Article  ADS  Google Scholar 

  37. P. Nason, MINT: a Computer Program for Adaptive Monte Carlo Integration and Generation of Unweighted Distributions, arXiv:0709.2085 [SPIRES].

  38. E. Boos et al., Generic user process interface for event generators, hep-ph/0109068 [SPIRES].

  39. R. Frederix, private communication.

Download references

Author information

Authors and Affiliations

  1. Deutsches Elektronen-Synchrotron DESY, Platanenallee 6, D-15738, Zeuthen, Germany

    Simone Alioli

  2. INFN, Sezione di Milano-Bicocca, Piazza della Scienza 3, 20126, Milan, Italy

    Simone Alioli, Paolo Nason, Carlo Oleari & Emanuele Re

  3. Università di Milano-Bicocca, Piazza della Scienza 3, 20126, Milan, Italy

    Carlo Oleari

  4. Institute for Particle Physics Phenomenology, Department of Physics, University of Durham, Durham, DH1 3LE, U.K.

    Emanuele Re

Authors
  1. Simone Alioli
    View author publications

    You can also search for this author inPubMed Google Scholar

  2. Paolo Nason
    View author publications

    You can also search for this author inPubMed Google Scholar

  3. Carlo Oleari
    View author publications

    You can also search for this author inPubMed Google Scholar

  4. Emanuele Re
    View author publications

    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence to Carlo Oleari.

Additional information

ArXiv ePrint: 1002.2581

Rights and permissions

Open Access This is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License (https://creativecommons.org/licenses/by-nc/2.0), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and permissions

About this article

Cite this article

Alioli, S., Nason, P., Oleari, C. et al. A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX. J. High Energ. Phys. 2010, 43 (2010). https://doi.org/10.1007/JHEP06(2010)043

Download citation

  • Received: 04 March 2010

  • Accepted: 10 May 2010

  • Published: 09 June 2010

  • DOI: https://doi.org/10.1007/JHEP06(2010)043

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • NLO Computations
  • Hadronic Colliders
  • QCD
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our brands

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Discover
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Legal notice
  • Cancel contracts here

Not affiliated

Springer Nature

© 2025 Springer Nature