Skip to main content
Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

Exclusive radiative Higgs decays as probes of light-quark Yukawa couplings

  • Regular Article - Theoretical Physics
  • Open access
  • Published: 04 August 2015
  • Volume 2015, article number 12, (2015)
  • Cite this article
Download PDF

You have full access to this open access article

Journal of High Energy Physics Aims and scope Submit manuscript
Exclusive radiative Higgs decays as probes of light-quark Yukawa couplings
Download PDF
  • Matthias König1 &
  • Matthias Neubert1,2,3 
  • 684 Accesses

  • 1 Altmetric

  • Explore all metrics

A preprint version of the article is available at arXiv.

Abstract

We present a detailed analysis of the rare exclusive Higgs boson decays into a single vector meson and a photon and investigate the possibility of using these processes to probe the light-quark Yukawa couplings. We work with an effective Lagrangian with modified Higgs couplings to account for possible new-physics effects in a model-independent way. The h → Vγ decay rate is governed by the destructive interference of two amplitudes, one of which involves the Higgs coupling to the quark anti-quark pair inside the vector meson. We derive this amplitude at next-to-leading order in α s using QCD factorization, including the resummation of large logarithmic corrections and accounting for the effects of flavor mixing. The high factorization scale μ ∼ m h ensures that our results are rather insensitive to the hadronic parameters characterizing the light-cone distribution amplitude of the vector meson. The second amplitude arises from the loop-induced effective hγγ* and hγZ* couplings, where the off-shell gauge boson converts into the vector meson. We devise a strategy to eliminate theoretical uncertainties related to this amplitude to almost arbitrary precision. This opens up the possibility to probe for \( \mathcal{O}(1) \) modifications of the c- and b-quark Yukawa couplings and \( \mathcal{O}(30) \) modifications of the s-quark Yukawa coupling in the high-luminosity LHC run. In particular, we show that measurements of the ratios Br(h → Υ(nS)γ)/Br(h → γγ) and \( \mathrm{B}\mathrm{r}\left(h\to b\overline{b}\right)/\mathrm{B}\mathrm{r}\left(h\to \gamma \gamma \right) \) can provide complementary information on the real and imaginary parts of the b-quark Yukawa coupling. More accurate measurements would be possible at a future 100 TeV proton-proton collider.

Article PDF

Download to read the full article text

Similar content being viewed by others

Exclusive weak radiative Higgs decays in the standard model and beyond

Article Open access 12 December 2016

Higgs boson decays \(h\rightarrow Z \gamma \) and \(h\rightarrow m_V Z\) in the \(U(1)_X\)SSM

Article Open access 01 November 2022

Higgs boson production cross-section measurements and their EFT interpretation in the \(4\ell \) decay channel at \(\sqrt{s}=\)13 TeV with the ATLAS detector

Article Open access 16 October 2020
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. ATLAS collaboration, Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].

  2. CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].

  3. CMS collaboration, Precise determination of the mass of the Higgs boson and tests of compatibility of its couplings with the standard model predictions using proton collisions at 7 and 8 TeV, Eur. Phys. J. C 75 (2015) 212 [arXiv:1412.8662] [INSPIRE].

  4. ATLAS collaboration, Measurements of the Higgs boson production and decay rates and coupling strengths using pp collision data at \( \sqrt{s}=7 \) and 8 TeV in the ATLAS experiment, ATLAS-CONF-2015-007 (2015).

  5. G.F. Giudice and O. Lebedev, Higgs-dependent Yukawa couplings, Phys. Lett. B 665 (2008) 79 [arXiv:0804.1753] [INSPIRE].

    Article  ADS  Google Scholar 

  6. R. Harnik, J. Kopp and J. Zupan, Flavor violating Higgs decays, JHEP 03 (2013) 026 [arXiv:1209.1397] [INSPIRE].

    Article  ADS  Google Scholar 

  7. F. Goertz, Indirect handle on the down-quark Yukawa coupling, Phys. Rev. Lett. 113 (2014) 261803 [arXiv:1406.0102] [INSPIRE].

    Article  ADS  Google Scholar 

  8. CMS collaboration, Search for lepton flavour violating decays of the Higgs boson, CMS-PAS-HIG-14-005 (2014).

  9. G.T. Bodwin, F. Petriello, S. Stoynev and M. Velasco, Higgs boson decays to quarkonia and the \( H\overline{c}c \) coupling, Phys. Rev. D 88 (2013) 053003 [arXiv:1306.5770] [INSPIRE].

    ADS  Google Scholar 

  10. A.L. Kagan, G. Perez, F. Petriello, Y. Soreq, S. Stoynev and J. Zupan, Exclusive window onto Higgs Yukawa couplings, Phys. Rev. Lett. 114 (2015) 101802 [arXiv:1406.1722] [INSPIRE].

    Article  ADS  Google Scholar 

  11. S. Dawson et al., Working group report: Higgs boson, arXiv:1310.8361 [INSPIRE].

  12. G.P. Lepage and S.J. Brodsky, Exclusive processes in quantum chromodynamics: evolution equations for hadronic wave functions and the form-factors of mesons, Phys. Lett. B 87 (1979) 359 [INSPIRE].

    Article  ADS  Google Scholar 

  13. G.P. Lepage and S.J. Brodsky, Exclusive processes in perturbative quantum chromodynamics, Phys. Rev. D 22 (1980) 2157 [INSPIRE].

    ADS  Google Scholar 

  14. A.V. Efremov and A.V. Radyushkin, Asymptotical behavior of pion electromagnetic form-factor in QCD, Theor. Math. Phys. 42 (1980) 97 [Teor. Mat. Fiz. 42 (1980) 147] [INSPIRE].

  15. A.V. Efremov and A.V. Radyushkin, Factorization and asymptotical behavior of pion form-factor in QCD, Phys. Lett. B 94 (1980) 245 [INSPIRE].

    Article  ADS  Google Scholar 

  16. V.L. Chernyak and A.R. Zhitnitsky, Asymptotic behavior of exclusive processes in QCD, Phys. Rept. 112 (1984) 173 [INSPIRE].

    Article  ADS  Google Scholar 

  17. M. Beneke, G. Buchalla, M. Neubert and C.T. Sachrajda, QCD factorization for B → ππ decays: Strong phases and CP-violation in the heavy quark limit, Phys. Rev. Lett. 83 (1999) 1914 [hep-ph/9905312] [INSPIRE].

    Article  ADS  Google Scholar 

  18. M. Beneke, G. Buchalla, M. Neubert and C.T. Sachrajda, QCD factorization for exclusive, nonleptonic B meson decays: general arguments and the case of heavy light final states, Nucl. Phys. B 591 (2000) 313 [hep-ph/0006124] [INSPIRE].

    Article  ADS  Google Scholar 

  19. Y. Grossman, M. König and M. Neubert, Exclusive radiative decays of W and Z bosons in QCD factorization, JHEP 04 (2015) 101 [arXiv:1501.06569] [INSPIRE].

    Article  ADS  Google Scholar 

  20. ATLAS collaboration, Search for Higgs and Z boson decays to J/ϕγ and Υ(nS)γ with the ATLAS detector, Phys. Rev. Lett. 114 (2015) 121801 [arXiv:1501.03276] [INSPIRE].

  21. Particle Data Group collaboration, K.A. Olive et al., Review of particle physics, Chin. Phys. C 38 (2014) 090001 [INSPIRE].

  22. ATLAS, CMS collaboration, Combined measurement of the Higgs boson mass in pp collisions at \( \sqrt{s}=7 \) and 8 TeV with the ATLAS and CMS experiments, Phys. Rev. Lett. 114 (2015) 191803 [arXiv:1503.07589] [INSPIRE].

  23. ATLAS, CDF, CMS, D0 collaboration, First combination of Tevatron and LHC measurements of the top-quark mass, arXiv:1403.4427 [INSPIRE].

  24. S. Moch et al., High precision fundamental constants at the TeV scale, arXiv:1405.4781 [INSPIRE].

  25. G. Perez, Y. Soreq, E. Stamou and K. Tobioka, Constraining the charm Yukawa and Higgs-quark universality, arXiv:1503.00290 [INSPIRE].

  26. J. Brod, U. Haisch and J. Zupan, Constraints on CP-violating Higgs couplings to the third generation, JHEP 11 (2013) 180 [arXiv:1310.1385] [INSPIRE].

    Article  ADS  Google Scholar 

  27. D. McKeen, M. Pospelov and A. Ritz, Modified Higgs branching ratios versus CP and lepton flavor violation, Phys. Rev. D 86 (2012) 113004 [arXiv:1208.4597] [INSPIRE].

    ADS  Google Scholar 

  28. ACME collaboration, J. Baron et al., Order of magnitude smaller limit on the electric dipole moment of the electron, Science 343 (2014) 269 [arXiv:1310.7534] [INSPIRE].

  29. M.A. Shifman and M.I. Vysotsky, Form-factors of heavy mesons in QCD, Nucl. Phys. B 186 (1981) 475 [INSPIRE].

    Article  ADS  Google Scholar 

  30. W.-Y. Keung, The decay of the Higgs boson into heavy quarkonium states, Phys. Rev. D 27 (1983) 2762 [INSPIRE].

    ADS  Google Scholar 

  31. X.-P. Wang and D. Yang, The leading twist light-cone distribution amplitudes for the S-wave and P-wave quarkonia and their applications in single quarkonium exclusive productions, JHEP 06 (2014) 121 [arXiv:1401.0122] [INSPIRE].

    Article  ADS  Google Scholar 

  32. G.T. Bodwin, H.S. Chung, J.-H. Ee, J. Lee and F. Petriello, Relativistic corrections to Higgs boson decays to quarkonia, Phys. Rev. D 90 (2014) 113010 [arXiv:1407.6695] [INSPIRE].

    ADS  Google Scholar 

  33. C.W. Bauer, S. Fleming, D. Pirjol and I.W. Stewart, An effective field theory for collinear and soft gluons: heavy to light decays, Phys. Rev. D 63 (2001) 114020 [hep-ph/0011336] [INSPIRE].

    ADS  Google Scholar 

  34. C.W. Bauer, D. Pirjol and I.W. Stewart, Soft collinear factorization in effective field theory, Phys. Rev. D 65 (2002) 054022 [hep-ph/0109045] [INSPIRE].

    ADS  Google Scholar 

  35. C.W. Bauer, S. Fleming, D. Pirjol, I.Z. Rothstein and I.W. Stewart, Hard scattering factorization from effective field theory, Phys. Rev. D 66 (2002) 014017 [hep-ph/0202088] [INSPIRE].

    ADS  Google Scholar 

  36. M. Beneke, A.P. Chapovsky, M. Diehl and T. Feldmann, Soft collinear effective theory and heavy to light currents beyond leading power, Nucl. Phys. B 643 (2002) 431 [hep-ph/0206152] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  37. M. Beneke and T. Feldmann, Symmetry breaking corrections to heavy to light B meson form-factors at large recoil, Nucl. Phys. B 592 (2001) 3 [hep-ph/0008255] [INSPIRE].

    Article  ADS  Google Scholar 

  38. G. ’t Hooft and M.J.G. Veltman, Regularization and renormalization of gauge fields, Nucl. Phys. B 44 (1972) 189 [INSPIRE].

  39. G. Bonneau, Preserving canonical Ward identities in dimensional regularization with a nonanticommuting γ 5, Nucl. Phys. B 177 (1981) 523 [INSPIRE].

    Article  ADS  Google Scholar 

  40. S.A. Larin, The renormalization of the axial anomaly in dimensional regularization, Phys. Lett. B 303 (1993) 113 [hep-ph/9302240] [INSPIRE].

    Article  ADS  Google Scholar 

  41. M.A. Shifman, A.I. Vainshtein and V.I. Zakharov, QCD and resonance physics: applications, Nucl. Phys. B 147 (1979) 448 [INSPIRE].

    Article  ADS  Google Scholar 

  42. M. Benayoun, L. DelBuono, S. Eidelman, V.N. Ivanchenko and H.B. O’Connell, Radiative decays, nonet symmetry and SU(3) breaking, Phys. Rev. D 59 (1999) 114027 [hep-ph/9902326] [INSPIRE].

    ADS  Google Scholar 

  43. A. Kucukarslan and U.-G. Meissner, Omega-phi mixing in chiral perturbation theory, Mod. Phys. Lett. A 21 (2006) 1423 [hep-ph/0603061] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  44. M. Benayoun, P. David, L. DelBuono, O. Leitner and H.B. O’Connell, The dipion mass spectrum in e + e − annihilation and tau decay: a dynamical (ρ, ω, ϕ) mixing approach, Eur. Phys. J. C 55 (2008) 199 [arXiv:0711.4482] [INSPIRE].

    Article  ADS  Google Scholar 

  45. W.E. Caswell and G.P. Lepage, Effective Lagrangians for bound state problems in QED, QCD and other field theories, Phys. Lett. B 167 (1986) 437 [INSPIRE].

    Article  ADS  Google Scholar 

  46. G.T. Bodwin, E. Braaten and G.P. Lepage, Rigorous QCD analysis of inclusive annihilation and production of heavy quarkonium, Phys. Rev. D 51 (1995) 1125 [Erratum ibid. D 55 (1997) 5853] [hep-ph/9407339] [INSPIRE].

  47. P. Ball and G.W. Jones, Twist-3 distribution amplitudes of K* and phi mesons, JHEP 03 (2007) 069 [hep-ph/0702100] [INSPIRE].

    Article  ADS  Google Scholar 

  48. P. Ball, G.W. Jones and R. Zwicky, B → Vγ beyond QCD factorisation, Phys. Rev. D 75 (2007) 054004 [hep-ph/0612081] [INSPIRE].

    ADS  Google Scholar 

  49. V.V. Braguta, A.K. Likhoded and A.V. Luchinsky, The study of leading twist light cone wave function of η c meson, Phys. Lett. B 646 (2007) 80 [hep-ph/0611021] [INSPIRE].

    Article  ADS  Google Scholar 

  50. L. Bergstrom and G. Hulth, Induced Higgs couplings to neutral bosons in e + e − collisions, Nucl. Phys. B 259 (1985) 137 [Erratum ibid. B 276 (1986) 744] [INSPIRE].

  51. A. Djouadi, M. Spira, J.J. van der Bij and P.M. Zerwas, QCD corrections to γγ decays of Higgs particles in the intermediate mass range, Phys. Lett. B 257 (1991) 187 [INSPIRE].

    Article  ADS  Google Scholar 

  52. M. Spira, A. Djouadi, D. Graudenz and P.M. Zerwas, Higgs boson production at the LHC, Nucl. Phys. B 453 (1995) 17 [hep-ph/9504378] [INSPIRE].

    Article  ADS  Google Scholar 

  53. U. Aglietti, R. Bonciani, G. Degrassi and A. Vicini, Two loop light fermion contribution to Higgs production and decays, Phys. Lett. B 595 (2004) 432 [hep-ph/0404071] [INSPIRE].

    Article  ADS  Google Scholar 

  54. G. Degrassi and F. Maltoni, Two-loop electroweak corrections to the Higgs-boson decay H → γγ, Nucl. Phys. B 724 (2005) 183 [hep-ph/0504137] [INSPIRE].

    Article  ADS  Google Scholar 

  55. S. Actis, G. Passarino, C. Sturm and S. Uccirati, NNLO computational techniques: the cases H → γγ and H → gg, Nucl. Phys. B 811 (2009) 182 [arXiv:0809.3667] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  56. F. Bishara, Y. Grossman, R. Harnik, D.J. Robinson, J. Shu and J. Zupan, Probing CP-violation in h → γγ with converted photons, JHEP 04 (2014) 084 [arXiv:1312.2955] [INSPIRE].

    Article  ADS  Google Scholar 

  57. LHC Higgs Cross Section Working Group collaboration, S. Heinemeyer et al., Handbook of LHC Higgs cross sections: 3. Higgs properties, arXiv:1307.1347 [INSPIRE].

  58. Y. Grossman and D. Pirjol, Extracting and using photon polarization information in radiative B decays, JHEP 06 (2000) 029 [hep-ph/0005069] [INSPIRE].

    Article  ADS  Google Scholar 

  59. R. Tarrach, The pole mass in perturbative QCD, Nucl. Phys. B 183 (1981) 384 [INSPIRE].

    Article  ADS  Google Scholar 

  60. D.J. Broadhurst and A.G. Grozin, Matching QCD and HQET heavy-light currents at two loops and beyond, Phys. Rev. D 52 (1995) 4082 [hep-ph/9410240] [INSPIRE].

    ADS  Google Scholar 

  61. F.M. Dittes and A.V. Radyushkin, Two loop contribution to the evolution of the pion wave function, Phys. Lett. B 134 (1984) 359 [INSPIRE].

    Article  ADS  Google Scholar 

  62. S.V. Mikhailov and A.V. Radyushkin, Evolution kernels in QCD: two loop calculation in Feynman gauge, Nucl. Phys. B 254 (1985) 89 [INSPIRE].

    Article  ADS  Google Scholar 

  63. S.J. Brodsky, P. Damgaard, Y. Frishman and G.P. Lepage, Conformal symmetry: exclusive processes beyond leading order, Phys. Rev. D 33 (1986) 1881 [INSPIRE].

    ADS  Google Scholar 

  64. D. Mueller, Conformal constraints and the evolution of the nonsinglet meson distribution amplitude, Phys. Rev. D 49 (1994) 2525 [INSPIRE].

    ADS  Google Scholar 

  65. D. Mueller, The evolution of the pion distribution amplitude in next-to-leading-order, Phys. Rev. D 51 (1995) 3855 [hep-ph/9411338] [INSPIRE].

    ADS  Google Scholar 

  66. S.S. Agaev, V.M. Braun, N. Offen and F.A. Porkert, Light cone sum rules for the π 0 -γ * -γ form factor revisited, Phys. Rev. D 83 (2011) 054020 [arXiv:1012.4671] [INSPIRE].

    ADS  Google Scholar 

  67. W. Vogelsang, Next-to-leading order evolution of transversity distributions and Soffer’s inequality, Phys. Rev. D 57 (1998) 1886 [hep-ph/9706511] [INSPIRE].

    ADS  Google Scholar 

  68. A. Hayashigaki, Y. Kanazawa and Y. Koike, Next-to-leading order Q 2 evolution of the transversity distribution h 1(x, Q 2), Phys. Rev. D 56 (1997) 7350 [hep-ph/9707208] [INSPIRE].

    ADS  Google Scholar 

  69. ETM collaboration, K. Jansen, C. McNeile, C. Michael and C. Urbach, Meson masses and decay constants from unquenched lattice QCD, Phys. Rev. D 80 (2009) 054510 [arXiv:0906.4720] [INSPIRE].

  70. RBC-UKQCD collaboration, C. Allton et al., Physical results from 2 + 1 flavor ___domain wall QCD and SU(2) chiral perturbation theory, Phys. Rev. D 78 (2008) 114509 [arXiv:0804.0473] [INSPIRE].

  71. V.M. Braun et al., A lattice calculation of vector meson couplings to the vector and tensor currents using chirally improved fermions, Phys. Rev. D 68 (2003) 054501 [hep-lat/0306006] [INSPIRE].

    ADS  Google Scholar 

  72. D. Becirevic, V. Lubicz, F. Mescia and C. Tarantino, Coupling of the light vector meson to the vector and to the tensor current, JHEP 05 (2003) 007 [hep-lat/0301020] [INSPIRE].

    Article  ADS  Google Scholar 

  73. G.T. Bodwin, H.S. Chung, D. Kang, J. Lee and C. Yu, Improved determination of color-singlet nonrelativistic QCD matrix elements for S-wave charmonium, Phys. Rev. D 77 (2008) 094017 [arXiv:0710.0994] [INSPIRE].

    ADS  Google Scholar 

  74. H.S. Chung, J. Lee and C. Yu, NRQCD matrix elements for S-wave bottomonia and Γ[η b (nS) → γγ] with relativistic corrections, Phys. Lett. B 697 (2011) 48 [arXiv:1011.1554] [INSPIRE].

    Article  ADS  Google Scholar 

  75. I.I.Y. Bigi, M.A. Shifman, N.G. Uraltsev and A.I. Vainshtein, The pole mass of the heavy quark. Perturbation theory and beyond, Phys. Rev. D 50 (1994) 2234 [hep-ph/9402360] [INSPIRE].

    ADS  Google Scholar 

  76. M. Beneke and V.M. Braun, Heavy quark effective theory beyond perturbation theory: Renormalons, the pole mass and the residual mass term, Nucl. Phys. B 426 (1994) 301 [hep-ph/9402364] [INSPIRE].

    Article  ADS  Google Scholar 

  77. M. Beneke et al., Leptonic decay of the Υ(1S) meson at third order in QCD, Phys. Rev. Lett. 112 (2014) 151801 [arXiv:1401.3005] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. PRISMA Cluster of Excellence & Mainz Institute for Theoretical Physics, Johannes Gutenberg University, 55099, Mainz, Germany

    Matthias König & Matthias Neubert

  2. Institut für Theoretische Physik, Universität Heidelberg, Philosophenweg 16, 69120, Heidelberg, Germany

    Matthias Neubert

  3. Department of Physics, LEPP, Cornell University, Ithaca, NY, 14853, United States

    Matthias Neubert

Authors
  1. Matthias König
    View author publications

    You can also search for this author inPubMed Google Scholar

  2. Matthias Neubert
    View author publications

    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence to Matthias Neubert.

Additional information

ArXiv ePrint: 1505.03870

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

König, M., Neubert, M. Exclusive radiative Higgs decays as probes of light-quark Yukawa couplings. J. High Energ. Phys. 2015, 12 (2015). https://doi.org/10.1007/JHEP08(2015)012

Download citation

  • Received: 18 May 2015

  • Accepted: 13 July 2015

  • Published: 04 August 2015

  • DOI: https://doi.org/10.1007/JHEP08(2015)012

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Higgs Physics
  • Rare Decays
  • Resummation
  • Effective field theories
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our brands

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Discover
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Legal notice
  • Cancel contracts here

Not affiliated

Springer Nature

© 2025 Springer Nature